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Abstract. We investigate Takagi-type functions with roughness parameter γ that are
Hölder continuous with coefficient H = log γ

log 1
2

. Analytical access is provided by an embedding
into a dynamical system related to the baker transform where the graphs of the functions
are identified as their global attractors. They possess stable manifolds hosting Sinai-Bowen-
Ruelle (SBR) measures. We show that the SBR measure is absolutely continuous for large
enough γ. Dually, where duality is related to time reversal, we prove that for large enough
γ a version of the Takagi-type curve centered around fibers of the associated stable manifold
possesses a square integrable local time.

1. Introduction

The interest in the subject of this paper, rough Takagi-type curves, arose from a two
dimensional example of such functions studied in the context of the Fourier analytic approach
of rough path analysis or rough integration theory laid out in [9] and [10]. In [10], the
construction of a Stratonovich type integral of a rough function f with respect to another
rough function g is based on the notion of paracontrol of f by g. This Fourier analytic
concept generalizes the original notion of control introduced by Gubinelli [8]. In search of
a good example of two-dimensional functions for which no component is controlled by the
other one, in [15] we come up with a pair of Weierstrass functions W = (W1,W2). One of
them fluctuates on all dyadic scales in a sinusoidal manner, the other one in a cosinusoidal
one. Hence while the first one has minimal increments, the second one has maximal ones,
and vice versa. This is seen to mathematically underpin in a rigorous way the fact that they
are mutually not controlled. It is also seen that the Lévy areas of the approximating finite
sums of the representing series do not converge. This geometric pathology motivated us to
look for further geometric properties of the pair, or of its single components. Here we look
at a relative of the Weierstrass curves, Takagi-type curves with similar regularity parameters.
In contrast to the former, they are more easily accessible to the analysis we employ for the
investigation of their geometric properties. They are given by

T (x) =

∞∑
n=0

γnΦ(2nx), x ∈ [0, 1],
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with Φ(x) = d(x,Z), the distance of x to the closest point in Z, and a roughness parameter
γ ∈]1

2 , 1[ (see Figure 1). They are Hölder continuous with Hurst parameter H = log γ

log 1
2

.
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Figure 1. Takagi curve for differents values of γ

We continue the study of geometric properties of such functions by asking the question:
under which condition on γ does T possess a local time? In fact, we shall answer this
question for a modification H of T defined in (5.1), obtained by perturbation of T with a
very smooth path, naturally given by geometric properties of the associated dynamical system
our analysis is based on. The answer to this question resonates back to rough path analysis,
as is impressively shown in [6]. There it is proved that curves possessing smooth local times
have a regularizing effect, if added to an ill-posed ODE. More precisely, in [6] the notion of
(ρ, γ)-irregularity is introduced. It is proved that adding a (ρ, γ)-irregular function to an ill-
posed ODE typically gives rise to a well-posed equation. This notion of irregularity is based
on a Sobolev smoothness of the occupation measure given in terms of the decay of its Fourier
modes. From the stochastic analysis point of view, at least for one-dimensional problems, it
is more natural to study regularity of the occupation measure in terms of local times.

It had been noticed in a series of papers (see [12], [3], [4], [5], [2], [16], [18]) on one-
dimensional Weierstrass type curves that the number of iterations of the expansion by a real
factor can be taken as a starting point in interpreting their graphs as pullback attractors of
dynamical systems in which a baker transformation defines the dynamics. This observation
marks, in many of the papers quoted, the point of departure for determining the Hausdorff
dimension of graphs of one dimensional Weierstrass type functions. For a historical survey of
this work the reader may consult [5]. For our curve we use the same metric dynamical system
based on a suitable baker transformation as a starting point. This is done by introducing,
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besides a variable x that encodes expansion by the factor 2 forward in time, an auxiliary
variable ξ describing contraction by the factor 1

2 in turn, forward in time as well. The operation
of expansion-contraction in both variables is described by the baker transformation B =
(B1, B2). Backward in time, the sense of expansion and contraction is interchanged. The
action of applying forward expansion in one step just corresponds to stepping from one term
in the series expansion of T to the following one. This indicates that T is an attractor of a
three dimensional hyperbolic dynamical system F that, besides contracting a leading variable
by the factor γ, adds the first term of the series to the result. So by definition of F , T is its
attractor. Since 1

2 , the factor x in the forward fiber motion, is the smallest Lyapunov exponent
of the linearization of F , there is a stable manifold related to this Lyapunov exponent. It is
spanned by the vector which is given as another Weierstrass type series

S(ξ, x) = −
∞∑
n=1

κnΦ′
(
Bn

2 (ξ, x)
)
,

where κ = 1
2γ ∈]1

2 , 1[ is a roughness parameter dual to γ. This will be explained below. The
pushforward of the Lebesgue measure by S(·, x) for x ∈ [0, 1] fixed, is the x-marginal of the
Sinai-Bowen-Ruelle measure of F . The definition of F as a linear transformation added to
a very smooth function may be understood as conveying the concept of self-affinity for the
Takagi curve. Self-affinity can be seen as a concept providing the magnifying lens to zoom out
microscopic properties of the underlying geometric object to a macroscopic scale. Our main
tool of telescoping relations translates this rough idea into mathematical formulas, quite in
the sense of Keller’s paper [16]. Our telescoping is done in both time directions, forward and
backward, and in doing this, we can, roughly, relate the Sinai-Bowen-Ruelle measure and the
occupation measure underlying local time by duality through the operation of time reversal.
More formally, we investigate the doubly infinite series

H(ξ, x) =
∑
n∈Z

γ−n
[
Φ
(
B−n2 (ξ, x)

)
− Φ

(
B−n2 (ξ, 0)

)]
, ξ, x ∈ [0, 1].

A key equation relates H, T and the stable process S by the formula

H(ξ, y)−H(ξ, x) = T (y)− T (x)−
∫ y

x
S(ξ, z)dz.

For a geometric interpretation of the increments of H, define the stable fiber through a point
(x, T (x)) of the graph of T by solutions of the initial value problem of the ODE

d

dv
l(ξ,x,w)(v) = S(ξ, v), l(ξ,x,w)(x) = w,

where we set w = T (x). Then vertical distances on different stable fibers are just given by
the increments of H:

l(ξ,y,T (y))(y)− l(ξ,x,T (x))(y) = H(ξ, y)−H(ξ, x), ξ, x, y ∈ [0, 1].

To study the Sinai-Bowen-Ruelle measure, we will start by looking at the measure ρ given by
the pushforward of three-dimensional Lebesgue measure with the transformation

(ξ, η, x) 7→ S(ξ, x)− S(η, x).

For the investigation of the occupation measure, in a dual step, we shall start with consid-
ering χ, the pushforward of three-dimensional Lebesgue measure with the transformation

(x, y, ξ) 7→ H(ξ, y)−H(ξ, x).

For both measures we shall derive telescoping equations relating them with macroscopic ver-
sions ρ̂ resp. χ̂ which live on the macroscopic sets {ξ0 6= η0} where ξ0 resp. η0 denote the
first components in the dyadic expansion of ξ resp. η. The key element of our approach is the
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observation that the behaviour of S on these macroscopic sets is easy to describe, at least for
specific ranges of the roughness parameters κ resp. γ. The related macroscopic properties are
close to transversality properties used in many of the papers cited earlier. The first appear-
ance of this notion describing a quality of the flow related to the map x 7→ S(ξ, x)− S(η, x)
for (ξ, η) in the macroscopic set {ξ0 6= η0} is in Tsujii [19]. The particular role played by
Takagi-type curves among more general Weierstrass curves is the relative simplicity of the
stable manifold map S stating that S(ξ, ·) is constant on its domain [0, 1], for ξ ∈ [0, 1]. In
this situation, transversality is just expressed by positivity of S(ξ, 0) resp. S(ξ, 0) − S(η, 0)
uniformly on macroscopic sets {ξ0 = 1} resp. {1

2 < |ξ − η|}. This makes the usually tedious
investigation of transversality relatively simple for Takagi-type curves. This property of pos-
itivity is established for ranges of κ resp. γ obtained from a representation of S(ξ, ·)− S(η, ·)
by series depending only on the jump times τk at which the dyadic components ξ−n and η−n
representing ξ resp. η differ for the kth time (for details see Subsection 4.1 below). The tele-
scoping relations used in Fourier analytic criteria for the smoothness of SBR resp. occupation
measures reduce to simpler Fourier analytic criteria for the macroscopic restrictions of the
measures that are deduced using transversality in the main theorems of the paper.

The paper is organized along these lines of reasoning in the following way. In Section 2,
repeating [3], [12] or [16], we explain the interpretation of our Takagi-type curve in terms
of dynamical systems based on the baker transform. In Section 3, we describe the measures
related to the SBR measure, deduce telescoping relationships between them, and representa-
tion formulas for S(ξ, ·) − S(η, ·) using the jump times τn, n ∈ N outlined above. In Section
4, we treat the absolute continuity of the SBR measure. In the short Subsection 4.1 we es-
tablish transversality on suitable ranges of κ resp. γ. This provides the basis for the proof
of absolute continuity of the SBR measure in Subsection 4.3, after the relationship between
measures related to the SBR measure and their macroscopic versions have been clarified in
Section 4.2. Dually, in Section 5, we deal with measures related to the occupation measure of
H, and use a Fourier analytic criterion to show absolute continuity of the occupation measure
of H = T −

∫ ·
0 S(ξ, z)dz.

2. The curve as the attractor of a dynamical system

Let γ ∈]1
2 , 1[. Our aim is to investigate the fine structure geometry of the one-dimensional

Takagi type curves given by

(2.1) T (x) =
∞∑
n=0

γnΦ(2nx), x ∈ [0, 1],

where Φ(y) = d(y,Z), y ∈ R. Let us first determine the Hölder exponent of x 7→ T (x) (see [2]
for an overview).

Proposition 2.1. T is Hölder continuous with exponent − log γ
log 2 .

Proof. Let x, y ∈ [0, 1] and choose an integer k ≥ 0 such that

2−(k+1) ≤ |x− y| ≤ 2−k.
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Then we have, using the Lipschitz continuity of the distance function

|T (x)− T (y)| ≤
k∑

n=1

γn|d(2nx,Z)− d(2ny,Z)|+ 2

∞∑
n=k+1

γn

.
k∑

n=1

(2γ)n|x− y|+ γk . (2γ)k 2−k + γk ' γk = 2
−k log γ

log 1
2

. |x− y|−
log γ
log 2 .

This shows that log γ

log 1
2

is an upper bound for the Hölder exponent of T . To see that it is also

a lower bound, for n ∈ N choose xn = 0, yn = 2−n. Then we may write

|T (xn)− T (yn)| =
∣∣∣ ∞∑
k=1

γkd(2k−n,Z)
∣∣∣

=

n−1∑
k=1

γk2k−n ' 2
−n log γ

log 1
2 = |xn − yn|−

log γ
log 2 .

Since |xn − yn| → 0 as n → ∞, this shows that − log γ
log 2 is also a lower bound for the Hölder

exponent of T . The argument can be extended to the other points in the interval. �

Our access to the analysis and geometry of T is via the theory of dynamical systems.
In fact, we shall describe a dynamical system on [0, 1]2, alternatively Ω = {0, 1}N × {0, 1}N
the attractor of which is given by the graph of the function. For elements of Ω we write
for convenience ω = ((ω−n)n≥0, (ωn)n≥1); one understands Ω as the space of 2-dimensional
sequences of Bernoulli random variables. Denote by θ the canonical shift on Ω, given by

θ : Ω→ Ω, ω 7→ (ωn+1)n∈Z.

Ω is endowed with the product σ-algebra, and the infinite product ι = ⊗n∈Z(1
2δ{0} + 1

2δ{1})
of Bernoulli measures on {0, 1}. We recall that θ is ι-invariant.

Now let

T = (T1, T2) : Ω→ [0, 1]2, ω 7→ (
∞∑
n=0

ω−n2−(n+1),
∞∑
n=1

ωn2−n).

Let us denote by T1 the first component of T , and by T2 the second one. It is well known
that ι is mapped by the transformation T to λ2 (i.e. ι = λ2 ◦ T ), the 2-dimensional Lebesgue
measure. It is also well known that the inverse of T , the dyadic representation of the two
components from [0, 1]2, is uniquely defined apart from the dyadic pairs. For these we define
the inverse to map to the sequences not converging to 0. Let

B = (B1, B2) = T ◦ θ ◦ T−1.

We call B = (B1, B2) the baker’s transformation. The θ-invariance of ι directly translates
into the B-invariance of λ2:

λ2 ◦B−1 = (λ2 ◦ T ) ◦ θ−1 ◦ T−1 = (ι ◦ θ−1) ◦ T−1 = ι ◦ T−1 = λ2.(2.2)

For (ξ, x) ∈ [0, 1]2 let us note

T−1(ξ, x) =
(
(ξ−n)n≥0, (xn)n≥1

)
.

Let us calculate the action of B and its entire iterates on [0, 1]2.
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Lemma 2.2. Let (ξ, x) ∈ [0, 1]2. Then for k ≥ 0

Bk(ξ, x) =
(

2kξ (mod 1),
ξ−k+1

2
+
ξ−k+2

22
+ · · ·+ ξ0

2k
+

x

2k

)
,

for k ≥ 1

B−k(ξ, x) =
( ξ

2k
+
x1

2k
+

x2

2k−1
+ · · ·+ xk

2
, 2kx(mod 1)

)
.

Proof: By definition of θk for k ≥ 0

Bk(ξ, x) =
(∑
n≥0

ξ−n+k2
−(n+1),

ξ−k+1

2
+
ξ−k+2

22
+ · · ·+ ξ0

2k
+
∑
n≥1

xn2−(k+n)
)
.

Now we can write∑
n≥0

ξ−n+k2
−(n+1) = 2kξ(mod 1) and

∑
n≥1

xn2−(k+n) =
x

2k
.

This gives the first formula. For the second, note that by definition of θ−k for k ≥ 1

B−k(ξ, x) =
(∑
n≥0

ξ−n2−(n+1+k) +
x1

2k
+

x2

2k−1
+ · · ·+ xk

2
,
∑
n≥1

xn+k2
−n
)
.

Again, we identify∑
n≥1

xn+k2
−n = 2kx(mod 1) and

∑
n≥0

ξ−n2−(n+1+k) =
ξ

2k
.

�
For k ∈ Z, (ξ, x) ∈ [0, 1]2 we abbreviate the k-fold iterate of the baker transform of (ξ, x) as

Bk(ξ, x) =
(
Bk

1 (ξ, x), Bk
2 (ξ, x)

)
= (ξk, xk),

where for k ≥ 0

ξk = 2kξ(mod 1), and xk =
ξ−k+1

2
+
ξ−k+2

22
+ · · ·+ ξ0

2k
+

x

2k
,

and for k ≥ 1

ξ−k =
ξ

2k
+
x1

2k
+

x2

2k−1
+ · · ·+ xk

2
, and x−k = 2kx(mod 1).

Following Baranski [3, 4, 5], Shen [18], Hunt [12] and [14], we will next interpret the Takagi
curve T by a transformation on our base space [0, 1]2. Let

F : [0, 1]2 × R → [0, 1]2 × R,

(ξ, x, y) 7→
(
B(ξ, x), γy + Φ(B2(ξ, x))

)
.

Here we note B = (B1, B2) for the two components of the baker transform B.
For convenience, we extend T from [0, 1] to [0, 1]2 by setting

T (ξ, x) = T (x), ξ, x ∈ [0, 1].

To see that the graph of T is an attractor for F , the skew-product structure of F with respect
to B plays a crucial role.

Lemma 2.3. For any ξ, x ∈ [0, 1] we have

F
(
ξ, x, T (ξ, x)

)
=
(
B(ξ, x), T

(
B(ξ, x)

))
.
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Proof: By the definition of the baker’s transform we may write

T (ξ, x) =
∞∑
n=0

γnΦ
(
B−n2 (ξ, x)

)
, ξ, x ∈ [0, 1].

Hence, setting k = n− 1, for ξ, x ∈ [0, 1]

T
(
B2(ξ, x)

)
=

∞∑
n=0

γnΦ
(
B−n+1

2 (ξ, x)
)

= Φ
(
B2(ξ, x)

)
+ γ

∞∑
k=0

γkΦ
(
B−k2 (ξ, x)

)
= Φ

(
B2(ξ, x)

)
+ γT (x).

Hence by definition of F(
B(ξ, x), T (B(ξ, x))

)
=
(
B(ξ, x), T (B2(ξ, x))

)
= F

(
ξ, x, T (ξ, x)

)
.

�

To assess the stability properties of the dynamical system generated by F , we calculate its
Jacobian. We obtain for ξ, x ∈ [0, 1], y ∈ R

DF (ξ, x, y) =

 2 0 0
0 1

2 0
0 −1

2Φ′
(
B2(ξ, x)

)
γ

 .
Hence the Lyapunov exponents of the dynamical system associated with F are given by 2, 1

2 ,
and γ. The corresponding invariant vector fields are given by 1

0
0

 , X(ξ, x) =

 0
1∑∞

n=1

(
1

2γ

)n
Φ′
(
Bn

2 (ξ, x)
)
 ,

 0
0
1

 ,

as is straightforwardly verified. Note that X is well defined, since by our choice of γ we have
2γ > 1. Hence we have in particular for ξ, x ∈ [0, 1], y ∈ R

DF (ξ, x, y)X(ξ, x) =
1

2
X
(
B(ξ, x)

)
.

Note that the vector X spans an invariant stable manifold and does not depend on y.

3. The Sinai-Bowen-Ruelle measure

Abbreviate κ = 1
2γ ∈]0, 1[. In Tsujii [19] the problem of the absolute continuity of the

Sinai-Bowen-Ruelle (SBR) measure on the stable manifold described by

S(ξ, x) =

∞∑
n=1

κnΦ′
(
Bn

2 (ξ, x)
)
, ξ, x ∈ [0, 1],

with respect to Lebesgue measure has been treated. It has been related to the transversality
of the map x 7→ S(ξ, x) − S(η, x) for ξ, η ∈ [0, 1] such that ξ0 6= η0. We shall now tackle a
proof of this statement for a reasonably big range of κ by giving the problem of transversality
of S a closer look. Our proof rests upon a comparison of the measures ρ, image measure of
three dimensional Lebesgue measure under the map

(x, ξ, η) 7→ S(ξ, x)− S(η, x),
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and its restriction to the set {1
2 < |ξ − η|} which contains {ξ0 6= η0}, namely ρ̂ = ρ(· ∩ {1

2 <
|ξ − η|}). This comparison will simplify the derivation of smoothness of the SBR measure
from transversality in the spirit of Tsuji [19].

To recall the SBR measure of F , let us first calculate the action of S on the λ2-measure
preserving map B. For ξ, x ∈ [0, 1] we have

S(B(ξ, x)) =

∞∑
n=1

κnΦ′
(
Bn

2

(
B2(ξ, x)

))
=

∞∑
n=1

κnΦ′
(
Bn+1

2 (ξ, x)
)

= κ−1
∞∑
k=1

κkΦ′
(
Bk

2 (ξ, x)
)
− Φ′

(
B2(ξ, x)

)
= 2γS(ξ, x)− Φ′

(
B2(ξ, x)

)
.

So we may define the Anosov skew product

Γ : [0, 1]2 × R→ [0, 1]2 × R,

(ξ, x, v) 7→
(
B(ξ, x), 2γv − Φ′

(
B2(ξ, x)

))
.

Then the equation just obtained yields the following result (compare with Lemma 2.3).

Lemma 3.1. For ξ, x ∈ [0, 1] we have

Γ
(
ξ, x, S(ξ, x)

)
=
(
B(ξ, x), S(B(ξ, x))

)
.

The push-forward of the Lebesgue measure in R2 to the graph of S given by

ψ = λ2 ◦ (id, S)−1

on B([0, 1]2)⊗ B(R) is Γ-invariant.

Proof: The first equation has been verified above. The Γ-invariance of ψ is a direct con-
sequence of the B-invariance of λ2. �

Define π2 : [0, 1]2 → [0, 1], (ξ, x) 7→ x and define the measure

µ = λ2 ◦ (π2, S)−1(3.1)

on B([0, 1]2). The measure µ is called the Sinai-Bowen-Ruelle measure of Γ. Its marginals in
x ∈ [0, 1] are denoted µx = λ ◦ S(·, x)−1.

We now define a map on our probability space that exhibits certain increments of S in a
self similar way. Let

G(ξ, x) =
∑
n∈Z

κ−n
[
Φ′
(
B−n2 (ξ, x)

)
− Φ′

(
B−n2 (0, x)

)]
, ξ, x ∈ [0, 1].

Then we have the following simple relationship between G and S.

Lemma 3.2. For x, ξ, η ∈ [0, 1] we have

G(ξ, x)−G(η, x) = S(ξ, x)− S(η, x).
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Proof: For x, ξ, η ∈ [0, 1], the equation

G(ξ, x)−G(η, x) =
∑
n∈Z

κ−n
[
Φ′
(
B−n2 (ξ, x)

)
− Φ′

(
B−n2 (η, x)

)]
=

∞∑
k=1

κk
[
Φ′
(
Bk

2 (ξ, x)
)
− Φ′

(
Bk

2 (η, x)
)]

= S(ξ, x)− S(η, x),

holds. Here we used that the first sum for non-negative integers n is zero.
This completes the proof. �

The following result describes the scaling properties of G.

Lemma 3.3. For ξ, x ∈ [0, 1] we have

G
(
B−1(ξ, x)

)
= κG(ξ, x).

Proof: Note that by definition, setting n+ 1 = k, for ξ, x ∈ [0, 1]

G
(
B−1(ξ, x)

)
=

∑
n∈Z

κ−n
[
Φ′
(
B−n−1(ξ, x)

)
− Φ′

(
B−n(B−1

1 (ξ, x), 0)
)]

+
∑
n∈Z

κ−n
[
Φ′
(
B−n−1(ξ, x)

)
− Φ′

(
B−n−1(ξ, 0)

)]
+

∑
n∈Z

κ−n[Φ′
(
B−n−1

2 (ξ, 0)
)
− Φ′

(
B−n2 (B−1

1 (ξ, x), 0)
)]

= κG(ξ, x) +

∞∑
k=1

κk[Φ′(Bk−1
2 (ξ, 0))− Φ′(Bk

2 (B−1
1 (ξ, x), 0))]

= κG(ξ, x).

For the last equality, note that Φ′ is constant on the two halves of the unit interval, and that

Bk−1
2 (ξ, 0) =

ξ0

2k−1
+ · · ·+

ξ−k+2

2
and

Bk
2 (B−1

1 (ξ, x), 0) =
x1

2k
+

ξ0

2k−1
+ · · ·+

ξ−k+2

2
belong to the same half. This provides the claimed identity.�

We finish this section by giving a representation which will be the starting point for our
subsequent approach of transversality of S. To this end, fix ξ, η ∈ [0, 1]. We recursively define
the following sequence of times of disagreement of dyadic components of ξ and η. For n ∈ N
let

τ1 = inf{` ≥ 0 : ξ̄−` 6= η̄−`}, and τn+1 = inf{` > τn : ξ̄−` 6= η̄−`},(3.2)

and for x ∈ [0, 1]

g(x) :=
∞∑
m=0

κm
[
Φ′
(
Bm

2 (0,
1 + x

2
)
)
− Φ′

(
Bm

2 (0,
x

2
)
)]

=

∞∑
m=0

κm
[
Φ′
(1 + x

2m+1

)
− Φ′

( x

2m+1

)]
.

We have the following result.
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Proposition 3.4. Let ξ, η, x ∈ [0, 1]. Then

(3.3) S(ξ, x)− S(η, x) =
∞∑
`=1

κτ`+1 (−1)(1−ξ̄−τ` )g
(
Bτ`

2 (ξ, x)
)
.

Proof: It follows from the definition of τn, n ∈ N, that ξ can be written

ξ = (η0, . . . , ητ1+1, ξ−τ1 , η−τ1−1, · · · , η−τ2+1, ξ−τ2 , η−τ2−1, · · · · · · , η−τn+1, ξ−τn , η−τn−1, · · · ).

For n ∈ N let ξn be the sequence which up to τn represents the dyadic expansion of ξ, and
then switches to the representing sequence of η. Then for n ∈ N we have

ξn = (η0, . . . , ητ1+1, ξ−τ1 , η−τ1−1, · · · , η−τ2+1, ξ−τ2 , η−τ2−1, · · · · · · , η−τn+1, ξ−τn , η−τn−1, · · · , η−m, · · · ).

Note that limn→∞ ξ
n = ξ.We can therefore rewrite the left hand side of (3.3) in the telescoping

form

S(ξ, x)− S(η, x) =
∞∑
l=1

(
S(ξ`, x)− S(ξ`−1, x)

)
,

where ξ0 = η.

For ` ∈ N let us calculate S(ξ`, ·)− S(ξ`−1, ·). Since ξ`−k = ξ
`−1
−k for k ≤ τ` − 1, we have

S(ξ`, x)− S(ξ`−1, x) =

∞∑
n=1

κn
[
Φ′
(
Bn

2 (ξ`, x)
)
− Φ′

(
Bn

2 (ξ`−1, x)
)]

=
∞∑

n=τ`+1

κn
[
Φ′
(
Bn

2 (ξ`, x)
)
− Φ′

(
Bn

2 (ξ`−1, x)
)]

=κτ`
∞∑
m=1

κm
[
Φ′
(
Bm

2

(
Bτ`

2 (ξ`, x)
))
− Φ′

(
Bm

2

(
Bτ`

2 (ξ`−1, x)
))]

.

Now
Bτ`

2 (ξ`, x) = Bτ`
2 (ξ, x) = Bτ`

2 (ξ`−1, x).

And in case ξ−τ` = 1 we have

B1
2

(
Bτ`

2 (ξ`, x)
)

= Bτ`+1
2 (ξ`, x) =

1 +Bτ`
2 (ξ`, x)

2
=

1 +Bτ`
2 (ξ, x)

2
,

while

B1
2

(
Bτ`

2 (ξ`−1, x)
)

= Bτ`+1
2 (ξ`−1, x) =

Bτ`
2 (ξ, x)

2
.

In case ξ−τ` = 0, we have in contrast

B1
2

(
Bτ`

2 (ξ`, x)
)

= Bτ`+1
2 (ξ`, x) =

Bτ`
2 (ξ`, x)

2
=
Bτ`

2 (ξ, x)

2
,

while

B1
2

(
Bτ`

2 (ξ`−1, x)
)

= Bτ`+1
2 (ξ`−1, x) =

1 +Bτ`
2 (ξ`, x)

2
=

1 +Bτ`
2 (ξ, x)

2
.

So we may write by definition of g

S(ξ`, x)−S(ξ`−1, x)

= (−1)(1−ξ−τ` ) κτ`
∞∑
m=1

κm
[
Φ′
(
Bm−1

2

(1 +Bτ`
2 (ξ, x)

2

))
− Φ′

(
Bm−1

2

(Bτ`
2 (ξ, x)

2

))]
=κτ`+1 (−1)(1−ξ−τ` ) g

(
Bτ`

2 (ξ, x)
)
.
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Hence we obtain the claimed representation

S(ξ, x)− S(η, x) =
∞∑
`=1

κτ`+1 (−1)(1−ξ−τ` ) g
(
Bτ`

2 (ξ, x)
)
, ξ, η, x ∈ [0, 1].

�

Let us calculate g. Here, as opposed to the trigonometric case in the stable manifold of
Weierstrass curves (see [13]), the simplicity of φ implies the following surprising identity.

Lemma 3.5. We have g(x) = 2, x ∈ [0, 1].

Proof: Let us inspect the first term in the series decomposition of g. Here we have
B0

2(0, 1+x
2 ) = 1+x

2 ∈ [1
2 , 1], while B0

2(0, x2 ) = x
2 ∈ [0, 1

2 ]. Hence the contribution of the first
term is 1 + 1 = 2. For m ≥ 1 we have in contrast that both Bm

2 (0, 1+x
2 ) = 1+x

2m+1 and
Bm

2 (0, x2 ) = x
2m+1 belong to [0, 1

2 ]. Hence the contribution of terms of order m ≥ 1 vanishes.
This implies the claimed identity.�

Lemma 3.5 gives the following simplification of the representation formula of Proposition
3.4.

Corollary 3.6. Let ξ, η, x ∈ [0, 1]. Then

(3.4) S(ξ, x)− S(η, x) = 2

∞∑
`=1

κτ`+1 (−1)(1−ξ̄−τ` ).

Proof: This follows by combining Lemma 3.5 and Proposition 3.4. �

Let us finally extend this property to S(ξ, .) for ξ ∈ [0, 1]. First observe that for any
x ∈ [0, 1] we have

(3.5) S(0, x) =

∞∑
n=1

κnΦ′(
x

2n
) =

∞∑
n=1

κn =
κ

1− κ
.

Now denote by τ0
n, n ∈ N, the sequence of stopping times described above for the particular

case η = 0. Then we obtain

Corollary 3.7. Let ξ, x ∈ [0, 1]. Then

(3.6) S(ξ, x) =
κ

1− κ
+ 2

∞∑
`=1

κτ
0
` +1.

Proof: Combine Corollary 3.6 with (3.5), and note that by definition ξ−τ0k
= 1 for all

k ≥ 1. �

4. Smoothness of the SBR measure

In this section we shall address the smoothness of the SBR measure defined in Section 3.
More precisely, we shall prove that the SBR measure is absolutely continuous. To do this, in
Subsection 4.2 we shall derive a telescoping relationship linking the image of three dimensional
Lebesgue measure by the map

([0, 1]3 3 (x, ξ, η) 7→ S(ξ, x)− S(η, x)

to its macroscopic restriction to the set {1
2 < |ξ− η}. Smoothness of the SBR measure will be

seen to be crucially linked to transversality of S, i.e. positivity properties of S(ξ, ·)− S(η, ·)
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on the macroscopic set {1
2 < |ξ − η|}. This will be discussed in the following Subsection 4.1.

Finally, in Subsection 4.3 we shall use a Fourier analytic approach to establish smoothness of
the SBR measure.

4.1. Transversality of S. As a consequence of Corollary 3.6 we shall now tackle the transver-
sality property for the stable manifold map S. The property will turn out to be crucial for
the smoothness of the SBR measure deduced subsequently. Here, we simply say that S is
transversal if S(ξ, ·)−S(η, ·), a constant function according to Corollary 3.6, is bounded away
from 0 on the set {1

2 < |ξ − η|}. We will design an interval I in ]1
2 , 1[ such that for κ ∈ I the

map S is transversal.

Proposition 4.1. For κ ∈ I =]1
2 ,

1√
2
] the map S is transversal on the set {1

2 < |ξ − η|}.

Proof: Assume w.l.o.g. (modulo changing the roles of ξ and η) that ξ − η > 1
2 . This

implies that ξ0 = 1, η0 = 0, hence τ1 = 0, and also ξ−τ1 = 1, ξ−τ2 = 1. As a consequence, we
have

S(ξ, ·)− S(η, ·) = 2(κ+ κτ2+1 +

∞∑
`=3

κτ`+1 (−1)(1−ξ̄−τ` ))

≥ 2κ[1 + κτ2 − κτ3 1

1− κ
].(4.1)

Now by definition τ3 ≥ τ2 + 1, τ2 ≥ 1, and κ > 1
2 . Hence we may estimate

(1 + κτ2)(1− κ)− κτ3 ≥ 1− κ+ κτ2 − κτ2+1 − κτ2+1

= 1− κ+ κτ2(1− 2κ) ≥ 1− κ+ κ(1− 2κ) = 1− 2κ2.

And 1 − 2κ2 > 0 iff κ < 1√
2
. Using this in (4.1) yields the claimed uniform positivity of

S(ξ, ·)− S(η, ·). �

4.2. The relationship between ρ, ρ̂ and Lebesgue measure. In this section we exploit
the scaling properties of S, more precisely its self affinity in order to express ρ in terms of ρ̂.
Recall that ρ is the image measure of the three-dimensional Lebesgue measure by the map

[0, 1]3 3 (x, ξ, η) 7→ S(ξ, x)− S(η, x),

namely, for any Borel set A ⊂ R, we define

ρ(A) = λ3
({

(x, ξ, η) ∈ [0, 1]3 : S(ξ, x)− S(η, x) ∈ A
})
.

and ρ̂(·) = ρ(· ∩ {1
2 < |ξ− η|}). By its very definition, ρ̂ lives on the set of pairs (ξ, η) ∈ [0, 1]2

for which 1
2 < |ξ − η|. On this set, transversality of S will allow a comparison of ρ̂ with

the Lebesgue measure. This will finally lead to conclusions about the regularity of the SBR
measure. In the following formula, ρ is shown to be a weighted average of expansions measured
by ρ̂.

Proposition 4.2. For Borel sets A on the real line, we have

ρ(A) =
∞∑
n=0

2−nρ̂(κ−nA).
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Proof: We have using Lemma 2.2

ρ(A) =
∞∑
n=0

λ3
({

(ξ, η, x) : S(ξ, x)− S(η, x) ∈ A, 2−(n+1) < |ξ − η| ≤ 2−n
})

=

∞∑
n=0

λ3
({

(ξ, η, x) : S(ξ, x)− S(η, x) ∈ A, 1

2
< |Bn

1 (ξ, x)−Bn
1 (η, x)| ≤ 1

})
=

∞∑
n=0

lim
ε→0

1

λ4(Dε)
λ4
({

(ξ, η, x, y) : S(ξ, x)− S(η, y) ∈ A,

1

2
< |Bn

1 (ξ, x)−Bn
1 (η, y)| ≤ 1, |x− y| ≤ ε

})
,

where for ε > 0 we let Dε = {(ξ, η, x, y) : |x − y| ≤ ε}. We next use the invariance of B (see
(2.2)) to estimate term n of the preceding series. Then for n ≥ 0

lim
ε→0

1

λ4(Dε)
λ4
({

(ξ, η, x, y) : S(ξ, x)− S(η, y) ∈ A,

1

2
< |Bn

1 (ξ, x)−Bn
1 (η, y)| ≤ 1, |x− y| ≤ ε

})
= lim

ε→0

1

λ4(Dε)
λ4
({

(ξ, η, x, y) : S(B−n(ξ, x))− S(B−n(η, y)) ∈ A,

1

2
< |ξ − η| ≤ 1, |B−n2 (ξ, x)−B−n2 (η, y)| ≤ ε

})
= lim

ε→0

λ4(D2−nε)

λ4(Dε)

1

λ4(D2−nε)
λ4
({

(ξ, η, x, y) : S(B−n(ξ, x))− S(B−n(η, y)) ∈ A,

1

2
< |ξ − η| ≤ 1, |x− y| ≤ 2−nε

})
= 2−nλ3

({
(ξ, η, x) : S(B−n(ξ, x))− S(B−n(η, x)) ∈ A, 1

2
< |ξ − η| ≤ 1

})
.

Now we apply Lemma 3.3 to transform term n in the preceding chain of equations into

λ3
({

(ξ, η, x) : κn(S(ξ, x)− S(η, x)) ∈ A, 1

2
< |ξ − η| ≤ 1

})
= ρ̂
(
κ−nA

)
.

This implies the claimed equation. �

4.3. The smoothness of the SBR measure. In this section we will finally draw our con-
clusions from the preceding two sections. In fact, we will derive a sufficient criterion for the
absolute continuity of the SBR measure from Proposition 4.1. We note here that absolute
continuity of the SBR measure, at least for the classical Weierstrass function, can be estab-
lished for the entire range [1

2 , 1[ for κ, as is shown in [18]. We stick to the simpler positivity
criterion just for allowing an explicitly dual form for a criterion for absolute continuity of the
occupation measure in section 5. For establishing absolute continuity, we consider the Fourier
transforms of the marginals µx, x ∈ [0, 1], of the SBR measure µ defined in (3.1). Let

φx(u) =

∫
R

exp(iuy)µx(dy), u ∈ R.

By definition of µ and the integral transform theorem we have

φx(u) =

∫ 1

0
exp

(
iuS(ξ, x)

)
dξ, u ∈ R, x ∈ [0, 1].
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To prove the absolute continuity of µx we have to prove that φx is square integrable on R.
Therefore, to prove that µ is absolutely continuous, it will be sufficient to show∫ 1

0

∫
R
|φx(u)|2dudx =

∫
R

∫
[0,1]3

exp
(
iu
(
S(ξ, x)− S(η, x)

))
dxdξdηdu

=

∫
R

∫
R

exp(iux)ρ(dx)du <∞.

Theorem 4.3. Let κ ≤ 1√
2
. Then for almost every x ∈ [0, 1] the function

ξ 7→ S(ξ, x)

has an absolutely continuous law with respect to the Lebesgue measure with square integrable
density. In particular, the SBR measure (3.1) is absolutely continuous with respect to the
Lebesgue measure with square integrable density.

Proof: By Proposition 4.2, the integral transformation formula and noting that 1
2κ = γ,

we may write ∫
R

∫
R

exp(iux)ρ(dx)du =
∞∑
n=0

2−n
∫
R

∫
R

exp(iuy)ρ̂(κ−ndy)du

=

∫
R

∫
R

∞∑
n=0

2−n exp(iuκny)ρ̂(dy)du

=

∫
R

∫
R

∞∑
n=0

γn exp(iuy)ρ̂(dy)du

=
1

1− γ

∫
R

∫
R

exp(iuy)ρ̂(dy)du.

We have to show that

lim sup
K→∞

∫ K

−K

∫
R

exp(iuy)duρ̂(dy) <∞.

Recall that ρ̂ is antisymmetric with respect to reflection at the origin and has compact support
[−L,L]. From Proposition 4.1 and Corollary 3.6 we further know that there is k > 0 such
that ρ̂([−k, k]) = 0. Hence we have∫ K

−K

∫
R

exp(iuy)duρ̂(dy) =

∫ K

−K

∫ L

−L
exp(iuy)ρ̂(dy)du

= 2

∫ L

−L

∫ K

0
cos(uy)duρ̂(dy)

= 2

∫ L

−L

sin(Ky)

y
ρ̂(dy)

= 4

∫ L

k

sin(Ky)

y
ρ̂(dy).(4.2)

But the integrand in the last line of (4.2) is uniformly bounded in K. This implies the claimed
absolute continuity.
�
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5. The existence of a local time for T

In this section we use a similar criterion as in the preceding one to show that the occupation
measure associated with T possesses a square integrable density. This will be done in an
indirect way. We first establish an intrinsic link between the Takagi curve as the attractor
of an underlying dynamical system and its stable manifold spanned by S. It will identify
H(ξ, x) = T (x)−

∫ x
0 S(ξ, z)dz = H(ξ, x)−xS(ξ, 0) for x, ξ ∈ [0, 1] as a function having much

in common with the function G of the preceding sections. To relate microscopic properties
of H with macroscopic ones, we will deduce scaling relationships for H with respect to both
its arguments. We will define measures χ and χ̂ related to increments of H in the second
variable. This will be done in an analogous way as ρ and ρ̂ in the preceding section. It will
be crucial again to investigate the relationship between the macroscopic measures and the
Lebesgue measure. This will be done by an argument as in subsection 4.2.

In the following key lemma we establish the link between T and the stable manifold of F .
For this purpose, we define

H(ξ, x) =
∑
n∈Z

γn
[
Φ(B−n2 (ξ, x)

)
− Φ

(
B−n2 (ξ, 0)

)]
, ξ, x ∈ [0, 1].(5.1)

Then we have the following relationships between H and S.

Lemma 5.1. For x, y, ξ ∈ [0, 1] we have

H(ξ, y)−H(ξ, x) = T (y)− T (x)−
∫ y

x
S(ξ, z)dz.

For x, ξ, η ∈ [0, 1] we have

H(η, x)−H(ξ, x) =

∫ x

0

(
S(ξ, z)− S(η, z)

)
dz = x(S(ξ, 0)− S(η, 0)).

Proof: For x, y, ξ ∈ [0, 1] we have indeed (recall κ = 1
2γ )

H(ξ, y)−H(ξ, x) =
∑
n∈Z

γn
[
Φ
(
B−n2 (ξ, y)

)
− Φ

(
B−n2 (ξ, x)

)]
=

∞∑
n=0

γn
[
Φ
(
B−n2 (ξ, y)

)
− Φ

(
B−n2 (ξ, x)

)]
+
∞∑
k=1

γ−k
[
Φ
(
Bk

2 (ξ, y)
)
− Φ

(
Bk

2 (ξ, x)
)
]

= T (y)− T (x)−
∫ y

x

∞∑
k=1

(2γ)−kΦ′
(
Bk

2 (ξ, z)
)
dz

= T (y)− T (x)−
∫ y

x

∞∑
k=1

κkΦ′
(
Bk

2 (ξ, z)
)
dz

= T (y)− T (x)−
∫ y

x
S(ξ, z)dz.
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To argue for the second equation, note that for x, ξ, η ∈ [0, 1] we have

H(η, x)−H(ξ, x) =
∑
n∈Z

γn
{[

Φ
(
B−n2 (η, x)

)
− Φ

(
B−n2 (η, 0)

)]
−
[
Φ
(
B−n2 (ξ, x)

)
− Φ

(
B−n2 (ξ, 0)

)]}
=

∞∑
k=1

γ−k
{[

Φ
(
Bk

2 (η, x)
)
− Φ

(
Bk

2 (η, 0)
)]

−
[
Φ
(
Bk

2 (ξ, x)
)
− Φ

(
Bk

2 (ξ, 0)
)]}

= −
∫ x

0

∞∑
k=1

(2γ)−k
[
Φ′
(
Bk

2 (η, z)
)
− Φ′

(
Bk

2 (ξ, z)
)]

dz

= −
∫ x

0

∞∑
k=1

κk
[
Φ′
(
Bk

2 (η, z)
)
− Φ′

(
Bk

2 (ξ, z)
)]

dz

=

∫ x

0
[S(ξ, z)− S(η, z)]dz.

This completes the proof of the second equation. �

We next address the scaling properties of H.

Lemma 5.2. For ξ, x ∈ [0, 1] we have

H
(
B(ξ, x)

)
= γH(ξ, x) +

ξ0

2
S(2ξ, 0).

Consequently, for ξ, x, y ∈ [0, 1]

H(B(ξ, y))−H(B(ξ, x)) = γ[H(ξ, y)−H(ξ, x)].

Proof: Let ξ, x ∈ [0, 1]. By definition and setting n − 1 = k we obtain, defining ξ̂ to be
represented by the dyadic sequence (0, ξ−1, ξ−2, · · · ),

H(B(ξ, x)) =
∑
n∈Z

γn
[
Φ
(
B−n+1(ξ, x)

)
− Φ

(
B−n(B1(ξ, x), 0)

)]
=

∑
n∈Z

γn
[
Φ
(
B−n+1(ξ, x)

)
− Φ

(
B−n+1(ξ, 0)

)]
+

∑
n∈Z

γn
[
Φ
(
B−n+1(ξ, 0)

)
− Φ

(
B−n(B1(ξ, x), 0)

)]
= γ

∑
k∈Z

γk
[
Φ
(
B−k(ξ, x)

)
− Φ

(
B−k(ξ, 0)

)]
+

∞∑
k=1

γ−k[Φ
(
Bk+1

2 (ξ, 0)
)
− Φ

(
Bk+1

2 (ξ̂, 0)
)]

= γH(ξ, x) + ξ0

∞∑
k=1

γ−k2−k−1Φ′(Bk+1
2 (ξ̂, 0))

= γH(ξ, x) +
ξ0

2

∞∑
k=1

κkΦ′(Bk
2 (2ξ, 0))

= γH(ξ, x) +
ξ0

2
S(2ξ, 0).
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The last equation follows from the fact that the second term in the first formula only depends
on ξ. �

We finally give a representation of increments of H that can be considered dual to the
representation of Proposition 3.4. It will serve as an entrance to investigating the smoothness
of the occupation measure, i. e. the existence of local time. To this end, fix x, y ∈ [0, 1]. We
recursively define the following sequence of times of disagreement of dyadic components of x
and y. For n ∈ N let

σ1 = inf{` ≥ 1 : x̄` 6= ȳ`}, and σn+1 = inf{` > σn : x̄` 6= ȳ`}.(5.2)

For x, y ∈ [0, 1] denote by x ∧ y the number in [0, 1] with dyadic representation sequence
xn ∧ yn, n ∈ N.

We have the following result.

Proposition 5.3. Let ξ, x, y ∈ [0, 1]. Then

(5.3) H(ξ, y)−H(ξ, x) =
∞∑
`=1

γσ` (−1)(1−ȳσ` )S
(
B−σ`1 (ξ, x ∧ y), 0)

)
.

Proof: It follows from the definition of σn, n ∈ N, that y can be written

y = (x1, . . . , xσ1−1, yσ1 , xσ1+1, · · · , xσ2−1, yσ2 , xσ2+1, · · · · · · , xσn−1, yσn , xσn+1, · · · ).
For n ∈ N let yn be the sequence which up to σn represents the dyadic expansion of y, and
then switches to the representing sequence of x. Then for n ∈ N we have

yn = (x1, . . . , xσ1−1, yσ1 , xσ1+1, · · · , xσ2−1, yσ2 , xσ2+1, · · · · · · , xσn−1, yσn , xσn+1, · · · , xm, · · · ).
Note that limn→∞ y

n = y. Hence the left hand side of (5.3) has the telescoping representation

H(ξ, y)−H(ξ, x) =

∞∑
l=1

(
H(ξ, y`)−H(ξ, y`−1)

)
,

where y0 = x.
For ` ∈ N let us calculate H(·, y`)−H(·, y`−1). Since B−n2 (ξ, y`) = B−n2 (ξ, y`−1) for n ≥ σ`

we have

H(ξ, y`)−H(ξ, y`−1) =
∑
n∈Z

γn
[
Φ
(
B−n2 (ξ, y`)

)
− Φ

(
B−n2 (ξ, y`−1)

)]
=
∑
n<σ`

γn
[
Φ
(
B−n2 (ξ, y`)

)
− Φ

(
B−n2 (ξ, y`−1)

)]
=γσ`

∞∑
m=1

γ−m
[
Φ
(
Bm

2

(
B−σ`(ξ, y`)

))
− Φ

(
Bm

2

(
B−σ`2 (ξ, y`−1)

))]
.

Now for m ≤ σ`, denoting x̂l = 2σ`x(mod1), we have

Bm
2 (B−σ`2 (ξ, y`)) =

x̂l
2m

+
yσ`
2m

+ · · ·+
yσ`−(m−1)

2
,

Bm
2 (B−σ`2 (ξ, y`−1)) =

x̂l
2m

+
xσ`
2m

+ · · ·+
yσ`−(m−1)

2
,

and similar formulas for m > σ` where in the last summands components of the dyadic
expansion of ξ enter. Hence

Φ
(
Bm

2 (B−σ`(ξ, y`))
)
− Φ

(
Bm

2 (B−σ`(ξ, y`−1))
)

= (−1)(1−yσ` ) 2−mΦ′
(
Bm

2 (B−σ`(ξ, x ∧ y))
)
,
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and therefore, by κ = 1
2γ , and since S is known to be constant in x,

H(ξ, y`)−H(ξ, y`−1) = (−1)(1−yσ` )
∞∑
m=1

κmΦ′
(
Bm

2 (B−σ`(ξ, x ∧ y))
)

= S(B−σ`1 (ξ, x ∧ y), 0).

This again implies the formula

H(ξ, y)−H(ξ, x) =

∞∑
`=1

(−1)(1−yσ` ) γσ` S(B−σ`1 (ξ, x ∧ y), 0),

which is just the claimed one. �

5.1. Positivity properties of increments of H. In this subsection we shall deduce posi-
tivity properties of the increments H(ξ, y) −H(ξ, x) for ξ ∈ [0, 1], and x, y belonging to the
macroscopic set {y > x + 1

2}. This will be crucial for obtaining the existence of a local time
for H, in a dual way to proving the smoothness of the SBR measure in section 4. Thereby,
the dual representation formula of Proposition 5.3 will replace the formula of Proposition 3.4.
Let us first use the representation formulas for S from section 3 to describe increments of H
in more detail. For this purpose, for x, y ∈ [0, 1] with dyadic representations (xn)n∈N, (yn)n∈N
define

α1 = inf{k ≥ 1 : xk ∧ yk 6= 0}, αn+1 = inf{k > αn : xk ∧ yk 6= 0}, n ∈ N,

and for ` ∈ N let
R` = sup{k ∈ N : αk ≤ σ`}.

Corollary 5.4. Let ξ, x, y ∈ [0, 1]. Then we have

H(ξ, y)−H(ξ, x) =
∞∑
`=1

γσ`(−1)(1−yσ` )[
κ

1− κ
+ 2κσ`

R∑̀
p=1

κ−αp ]

+
∞∑
`=1

(
1

2
)σ`(−1)(1−yσ` )[S(ξ, 0)− S(0, 0)]

=
∞∑
`=1

γσ`(−1)(1−yσ` )[
κ

1− κ
+ 2κσ`

R∑̀
p=1

κ−αp ] + (y − x)[S(ξ, 0)− S(0, 0)].(5.4)

Proof: According to Proposition 5.3 we have to calculate S(B−σ`1 (ξ, x∧ y), 0) for ξ, x, y ∈
[0, 1], ` ∈ N using the formulas provided by Corollaries 3.6, 3.7. To exploit them, we first note
that the dyadic sequence associated with B−σ`(ξ, x ∧ y) is given by
(zσ` , zσ`−1

, · · · , z2, z1, ξ0, ξ−1, · · · ), where zk = xk ∧ yk, k ∈ N. We therefore can write

S(B−σ`1 (ξ, x ∧ y), 0) =
κ

1− κ
+ 2κσ`

R∑̀
p=1

κ−αp + 2

∞∑
m=1

κσ`+τ
0
m+1

=
κ

1− κ
+ 2κσ`

R∑̀
p=1

κ−αp + κσ`(S(ξ, 0)− S(0, 0)).

Now insert this formula into the representation of Proposition 5.3, and observe that γκ = 1
2

to obtain the first equation. For the second, observe that the second term on the right hand
side of the first equation simply equals (y−x)[S(ξ, 0)−S(0, 0)], by the definition of σk, k ∈ N.�
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Our main goal in this subsection is to show positivity of the right hand side of (5.4) on
the macroscopic set {y > x + 1

2}. By Corollary 3.7, on this set the second term is clearly
positive, provided ξ 6= 0. We will therefore be occupied with the first term. We first note how
the condition y > x+ 1

2 translates into the dyadic representations of x and y. In fact, it just
says that

(5.5) σ1 = 1, x1 = 0, y1 = 1, , σ2 ≥ 2, yσ2 = 1, xσ2 = 0.

Note also that for zk = xk ∧ yk, k ∈ N, since σk, k ∈ N, mark the components m for which
xm 6= ym, we have

(5.6) zσk = 0, k ∈ N,
while αp, p ∈ N, just mark the components m for which xm = ym = 1. As a consequence of
(5.5), the first two summands of the first series on the right hand side of (5.4) are positive.
It further follows from (5.5) and (5.6) that

(5.7) α1 ≥ 2, αR` ≤ σ` − 1.

Lemma 5.5. Let κ ∈ [1
2 , 1[, `,N ∈ N, with ` > N , and assume that σ1 = 1, σ2 = 2, · · · , σN =

N . Then
κ

1− κ
+ 2κσ`

R∑̀
p=1

κ−αp ≤ κ

1− κ
3 + κ− 2κ2([

σ`−σN−2

2
]+1)

1 + κ
.

Proof: Define
Q` = inf{k ∈ N : αk > σ`}, ` ∈ N.

With this notation, we may write

κσ`
R∑̀
p=1

κ−αp ≤ κσ`
∑̀

k=σN+1

αRk∑
m=αQk−1

κ−m1{σk−1<Qk−1≤Rk<σk}

≤ κσ`
∑̀

k=σN+1

σk−1∑
m=σk−1+1

κ−m1{σk−σk−1≥2}

=
κ

1− κ
κσ`

∑̀
k=ΣN+1

κ−σk(1− κσk−σk−1−1)1{σk−σk−1≥2}

=
κ

1− κ
κσ`

∑̀
k=σN+1

[κ−σk − κ−σk−1−1]1{σk−σk−1≥2}

≤ κ

1− κ
κσ`

∑̀
k=σN+1

κ−σk−1−1[
1

κ
− 1]1{σk−σk−1≥2}

= κσ`
∑̀

k=σN+1

κ−σk−1−11{σk−σk−1≥2}

=

`−1∑
p=1

κσ`−σp−11{σp+1−σp≥2}

≤ κ

1− κ2
(1− κ2([

σ`−σN−2

2
]+1)).

Adding κ
1−κ to the doubled estimate just obtained evidently provides the claimed estimate.

�
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Lemma 5.5 allows the following estimate for the remainder of the first term in (5.4).

Lemma 5.6. Let κ ∈ [1
2 , 1[, `,N ∈ N, with ` > N , and assume that σ1 = 1, σ2 = 2, · · · , σN =

N . Then

|
∞∑
k=`

γσk(−1)(1−yσk [
κ

1− κ
+ 2κσ`

R∑̀
p=1

κ−αp ]|

≤ κ

1− κ

∞∑
k=σ`

γσ`
3 + κ− 2κ2([

σ`−σN−2

2
]+1)

1 + κ

≤ γσ`

1− γ
κ

1− κ
3 + κ

1 + κ
.

Proof: Combine Lemma 5.5 with an obvious estimate for geometric series. �

We next provide a range of roughness parameters for which the first term on the right
hand side of (5.4) is positive.

Lemma 5.7. There exists γ0 ≥ 0.668 > 2
3 such that for γ ∈ I =] 1√

2
, γ0] the expression J

defined by

J =
∞∑
`=1

γσ`(−1)(1−ȳσ` )
[ κ

1− κ
+ 2κσ`

R∑̀
p=1

κ−αp
]

=
∞∑
`=1

γσ`(−1)(1−ȳσ` )
[ 1

2γ − 1
+ 2

R∑̀
p=1

(
1

2γ
)σ`−αp

]
satisfies J > 0.

Proof: Using Lemma 5.6, we can write

J =
∞∑
`=1

γσ`(−1)(1−ȳσ` )
[ 1

2γ − 1
+ 2

R∑̀
p=1

(
1

2γ
)σ`−αp

]

= γ
1

2γ − 1
+ γσ2

[ 1

2γ − 1
+ 2

R2∑
p=1

(
1

2γ
)σ2−αp

]

+ (−1)(1−ȳσ3 )γσ3
[ 1

2γ − 1
+ 2

R3∑
p=1

(
1

2γ
)σ3−αp

]
+ (−1)(1−ȳσ4 )γσ4

[ 1

2γ − 1
+ 2

R2∑
p=1

(
1

2γ
)σ4−αp

]

+

∞∑
`=5

γσ`(−1)(1−ȳσ` )
[ 1

2γ − 1
+ 2

R∑̀
p=1

(
1

2γ
)σ`−αp

]

≥ γ
1

2γ − 1
+ γσ2

( 1

2γ − 1
+ 2

R2∑
p=1

(
1

2γ
)σ2−αp

)
− γσ3

( 1

2γ − 1
+ 2

R2∑
p=1

(
1

2γ
)σ3−αp

)
− γσ`

(2γ − 1)(1− γ)

6γ + 1

2γ + 1
.(5.8)

We now distinguish four cases.
(1) Case 1: σ2 = 5 and σ3 ≥ 6. Then (5.8) becomes

J ≥ 1

2γ − 1

(
γ + γ5 − γ6

(1− γ)

6γ + 1

2γ + 1

)
> 0
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for γ < 0.702.
(2) Case 2: σ2 = 4 and σ3 ≥ 5. Similarly, using the first three terms of the series we get

J ≥ 1

2γ − 1

(
γ + γ4 − γ5

(1− γ)

6γ + 1

2γ + 1

)
> 0

for γ < 0.668.
(3) Case 3: σ2 = 3. We distinguish two subcases. First we use the first two terms of the

series, then the first four terms of the series.
• Suppose σ3 ≥ 5. We then have

J ≥ 1

2γ − 1

(
γ + γ3 − γ5

(1− γ)

6γ + 1

2γ + 1

)
> 0

for γ < 0.681.
• Suppose σ3 = 4, σ4 = 5, σ5 ≥ 6. Thus using the first four terms of the series, we
obtain

J ≥ 1

2γ − 1

(
γ + γ3 − γ4 − γ5 − γ6

(1− γ)

6γ + 1

2γ + 1

)
> 0

for γ < 0.675.
(4) Case 4: σ2 = 2. In this case we consider subcases depending on the values of

σ3, σ4, . . . , σ7. We distinguish seven of them.
• Suppose σ3 ≥ 5. Then

J ≥ 1

2γ − 1

(
γ + γ2 − γ5

(1− γ)

6γ + 1

2γ + 1

)
> 0

for γ < 0.697.
• Suppose σ3 = 4, σ4 = 5, σ5 ≥ 6. In this case we have

J ≥ 1

2γ − 1

(
γ + γ2 − γ4 − γ5

(1− γ)

6γ + 1

2γ + 1

)
− γ3 − γ3

2
> 0

for γ < 0.674.
• Suppose σ3 = 3, σ4 ≥ 6. Here

J ≥ 1

2γ − 1

(
γ + γ2 − γ3 − γ6

(1− γ)

6γ + 1

2γ + 1

)
> 0

for γ < 0.699.
• Suppose σ3 = 3, σ4 = 5 and σ5 ≥ 6. In this case

J ≥ 1

2γ − 1

(
γ + γ2 − γ3 − γ5 − γ6

(1− γ)

6γ + 1

2γ + 1

)
− γ4(2γ − 1) > 0

for γ < 0.673.
• Suppose σ3 = 3, σ4 = 4 and σ5 ≥ 6. We have

J ≥ 1

2γ − 1

(
γ + γ2 − γ3 − γ4 − γ6

(1− γ)

6γ + 1

2γ + 1

)
> 0

for γ < 0.673.
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• Suppose σ3 = 3, σ4 = 4, σ5 = 5 and σ6 ≥ 7. Then we have

J ≥ 1

2γ − 1

(
γ + γ2 − γ3 − γ4 − γ5 − γ7

(1− γ)

6γ + 1

2γ + 1

)
> 0

for γ < 0.682.
• Suppose σ3 = 3, σ4 = 4, σ5 = 5, σ6 = 6 and σ7 ≥ 7. Then we have

J ≥ 1

2γ − 1

(
γ + γ2 − γ3 − γ5 − γ6 − γ7

(1− γ)

6γ + 1

2γ + 1

)
> 0

for γ < 0.669.
�

5.2. The relationship between χ, χ̂ and Lebesgue measure. Let us next define ana-
logues of the measures ρ and ρ̂ describing the spatial distribution of the increments of S with
respect to the two coordinates. For the first version, the increments of H are taken with
respect to the second variable x which is “dual” to ξ. We define the image measure of λ3 on
[0, 1]3 by the mapping [0, 1]3 3 (x, y, ξ) 7→ H(ξ, y)−H(ξ, x) ∈ R, namely for Borel sets A ⊂ R
define

χ(A) = λ3
({

(x, y, ξ) ∈ [0, 1]3 : H(ξ, x)−H(ξ, y) ∈ A
})
.

Further, denote by χ̂ the measure χ, restricted to {1
2 < |y − x| ≤ 1}, and by χ̌ the measure

χ̂, restricted to {ξ0 = 1}. Note that χ̌ is macroscopic in both variables.
To prove existence of a local time, we shall use smoothness properties of the density of the

measure χ̂.We will deduce them via a Fourier analytic criterion as before. Similarly to section
4.2, in this subsection we first address the scaling properties of H with respect to increments
in the second variable as to establish an analogous relationship between χ and χ̂.

In the following formula and using arguments dual to those given in subsection 4.2, χ is
shown to be a weighted average of expansions measured by χ̂.

Proposition 5.8. For Borel sets A on the real line, we have

χ(A) =

∞∑
n=0

2−nχ̂(γ−nA).

Proof: By definition of B and H, we have

χ(A) =

∞∑
n=0

λ3
({

(ξ, x, y) : H(ξ, x)−H(ξ, y) ∈ A, 2−(n+1) < |y − x| ≤ 2−n
})

=
∞∑
n=0

λ3
({

(ξ, x, y) : H(ξ, x)−H(ξ, y) ∈ A, 1

2
< |B−n2 (ξ, y)−B−n2 (ξ, x)| ≤ 1

})
=

∞∑
n=0

lim
ε→0

1

λ4(Dε)
λ4
({

(ξ, η, x, y) : H(ξ, x)−H(η, y) ∈ A,

1

2
< |B−n2 (ξ, y)−B−n2 (ξ, x)| ≤ 1, |ξ − η| ≤ ε

})
,

where for ε > 0 we let Dε = {(ξ, η, x, y) : |ξ− η| ≤ ε}. We make use of invariance of the baker
transform across the Lebesgue measure (see (2.2)) to estimate term n of the preceding series,
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then, for n ≥ 0, by definition of the baker transform B

lim
ε→0

1

λ4(Dε)
λ4
({

(ξ, η, x, y) : H(ξ, x)−H(ξ, y) ∈ A,

1

2
< |B−n2 (ξ, y)−B−n2 (ξ, x)| ≤ 1, |ξ − η| ≤ ε

})
= lim

ε→0

1

λ4(Dε)
λ4
({

(ξ, η, x, y) : H(Bn(ξ, x))−H(Bn(η, y)) ∈ A,

1

2
< |y − x| ≤ 1, |Bn

1 (ξ, x)−Bn
1 (η, y)| ≤ ε

})
= lim

ε→0

λ4(D2−nε)

λ4(Dε)

1

λ4(D2−nε)
λ4
({

(ξ, η, x, y) : H(Bn(ξ, x))−H(Bn(η, y)) ∈ A,

1

2
< |y − x| ≤ 1, |ξ − η| ≤ 2−nε

})
= 2−nλ3

({
(ξ, x, y) : H(Bn(ξ, x))−H(Bn(ξ, y)) ∈ A, 1

2
< |y − x| ≤ 1

})
.

Now we apply Lemma 5.2 to transform term n of the preceding chain of equations into

λ3
({

(ξ, x, y) : γn(H(ξ, x)−H(ξ, y)) ∈ A, 1

2
< |y − x| ≤ 1

})
= χ̂(γ−nA).

Altogether, this implies the desired equation. �

5.3. The existence of local time. In this subsection we will show that T (·)−
∫ ·

0 S(ξ, z)dz
possesses a local time. For this purpose we shall use arguments such as those for the absolute
continuity of the SBR measure, starting with the Fourier analytic criterion. For this purpose,
denote by β the law of the map [0, 1]2 3 (ξ, x) 7→ H(ξ, x) = T (x)−

∫ x
0 S(ξ, z)dz. We consider

the Fourier transforms of the marginals βξ, ξ ∈ [0, 1]. Let

φξ(u) =

∫
R

exp(iuy)βξ(dy), u ∈ R.

By the integral transform, we have

φξ(u) =

∫ 1

0
exp

(
iuH(ξ, x)

)
dx, u ∈ R, ξ ∈ [0, 1].

To prove absolute continuity of βξ, we have to prove that φξ is square integrable on R.
Therefore, to prove that H(ξ, ·) possesses a local time, it will be sufficient to show∫ 1

0

∫
R
|φξ(u)|2dudξ =

∫
R

∫
[0,1]3

exp
(
iu
(
H(ξ, y)−H(ξ, x)

))
dξdxdydu

=

∫
R

∫
R

exp(iux)χ(dx)du <∞.

By macroscopic properties of χ, the verification of this criterion will boil down to a similar
one with χ̂ replacing χ.

Theorem 5.9. Let γ0 be given by Lemma 5.7. Then for all γ ∈ [1
2 , γ0] and for a.a. ξ ∈ [0, 1]

the function
x 7→ H(ξ, x)

has an absolutely continuous law with respect to the Lebesgue measure with a square integrable
density. In particular, H(ξ, ·) possesses a square integrable local time for a.e. ξ ∈ [0, 1].
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Proof: Applying Proposition 5.8 and the integral transformation theorem we first obtain∫
R

∫
R

exp(iux)χ(dx)du =

∞∑
n=0

2−n
∫
R

∫
R

exp(iuy)χ̂(γ−ndy)du

=

∫
R

∫
R

∞∑
n=0

2−n exp(iuγny)χ̂(dy)du

=

∫
R

∫
R

∞∑
n=0

κn exp(iuy)χ̂(dy)du

=
1

1− κ

∫
R

∫
R

exp(iuz)χ̂(dz)du.

Now recall that by definition of χ̂ and corollary 3.7 we have∫
R

∫
R

exp(iuz)χ̂(dz)du =

∫
R

∫
{ 1
2
<|x−y|}

∫
[0,1]

exp(iu(H(ξ, x)−H(ξ, y)))dξdxdydu.

The positivity of the integral and Fubini’s theorem allow us to integrate in u first, giving∫
R

∫
{ 1
2
<|x−y|}

∫
[0,1]

exp(iu(H(ξ, y)−H(ξ, x)))dξdxdydu

= lim
N→∞

∫ N

−N

∫
{ 1
2
<|x−y|}

∫
[0,1]

exp(iu(H(ξ, y)−H(ξ, x)))dξdxdydu

= lim
N→∞

∫
{ 1
2
<|x−y|}

∫
[0,1]

2 sin(N(H(ξ, y)−H(ξ, x))

H(ξ, y)−H(ξ, x)
dξdxdy.

For the last equation we use that the function x 7→ sin(Nx)
x is pair. We now use Corollary 5.4

and Lemma 5.7 to show that the denominator of the integrand in the preceding equation is
bounded away from 0 for the claimed parameter range. Since the numerator of the integrand
is bounded inN , we conclude that the entire integral is bounded inN , and the claim follows. �

Remark. A simpler argument than the one following Lemma 5.7 gives the result of
Theorem 5.9 for the smaller parameter range γ ≤ 2

3 . Recall that for ξ, x, y ∈ [0, 1] we have

H(ξ, y)−H(ξ, x) = T (x)− T (y)− (y − x)S(ξ, 0)).

Now note that by definition for any x, y ∈ [0, 1] we have

T (y)− T (x) ≤ T (y) ≤ 1

2(1− γ)
.

Recall from Corollary 3.7 that for ξ ∈ [0, 1] we have S(ξ, 0) ≥ 1
2γ−1 . Hence for y > 1

2 + x

(y−x)S(ξ, 0)−(T (y)−T (x)) ≥ 1

2

1

2γ − 1
− 1

2(1− γ)
=

1

2
[

1

2γ − 1
− 1

γ − 1
] =

1

2

2− 3γ

(2γ − 1)(1− γ)
,

which is positive for γ < 2
3 . If the roles of x and y are switched, a similar argument applies.�

Let us give a geometric interpretation of the local time we just obtained. For this purpose
let l(ξ,x,v) be the motion through (ξ, x, T (ξ, x)) along the stable fiber described by S(ξ, x),
given by the solutions of the family of ODE

d

dr
l(ξ,x,v)(r) = S(ξ, r), with l(ξ,x,v)(x) = v, v ∈ R2.
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Then for ξ, x, y ∈ [0, 1], x < y, the vertical distance between the stable fibers through the
points (ξ, y, T (y)) and (ξ, x, T (x)) is given by

l(ξ,y,T (y))(y)− l(ξ,x,T (x))(y) = T (y)− l(ξ,x,T (x))(y)

= T (y)− T (x)−
(
l(ξ,x,T (x))(y)− l(ξ,x,T (x))(x)

)
= T (y)− T (x)−

∫ y

x
S(ξ, z)dz

= H(ξ, y)−H(ξ, x).

Therefore Theorem 5.9 just expresses that measuring occupation by the position of the dif-
ferent displacements on the stable fibers of our dynamical system leads to smooth measures.
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