

Flow Simulation and Shape Optimization for Aircraft Design

DLR (German Aerospace Center) Institute of Aerodynamics and Flow Technology Braunschweig

Workshop Optimization in Aerodynamics 9th May 2005, HU Berlin

Flow Simulation and Shape Optimization for Aircraft Design

Outline

- Introduction
- Flow Solvers
- Validation & Applications
- Shape Design and Optimization
- Perspectives

Aerodynamic Design Cycle

Use of CFD in Aerodynamic Aircraft Design

Objectives of CFD

- detailed analysis of complex flow fields
- cost efficient configuration studies
- extrapolation of wind tunnel results to free flight conditions
- shape optimization

Impact of CFD on Wind Tunnel Testing

DLR

Effect of CFD on Configuration Lines Wind Tunnel Development Testing

Source: Boeing (Rubberts, 1994; Johnson et al., 2003, Ball)

Use of CFD in Aerodynamic Aircraft Design

Requirements on CFD

- high level of physical modeling
 - compressible flow
 - transonic flow
 - laminar turbulent flow
 - high Reynolds numbers (60 million)
 - large flow regions with flow separation
 - steady / unsteady flows
- complex geometries
- short turn around time

Use of CFD in Aerodynamic Aircraft Design

Consequences

- solution of 3D compressible Reynolds averaged Navier-Stokes equations
- turbulence models based on transport equations (2 6 eqn)
- models for predicting laminar-turbulent transition
- flexible grid generation techniques with high level of automation (block structured grids, overset grids, unstructured/hybrid grids)
- Ink to CAD-systems
- efficient algorithms (multigrid, grid adaptation, parallel algorithms...)
- large scale computations (~ 10 25 million grid points)

National CFD Sotwrae MEGAFLOW

Main Goal

Development/validation of a national CFD software for complete aircraft applications which

- allows Navier-Stokes computations for 3D complex configurations at cruise and high-lift conditions
- establishes numerical flow simulation as a routinely used tool at DLR and in German aircraft industry
- CFD kernel for multidisciplinary simulation and optimization
- serves as a development platform for universities

National CFD Software MEGAFLOW

Approach

- common effort of aircraft industry, DLR, several universities
- development activities driven by industrial requirements
- single software platform for research and industrial application
- early implementation of software components in industry
- validation based on industrial relevant applications
- links to other disciplines for multidisciplinary simulations
- quality assurance of software system
- open source policy
- coordination and software support by DLR

MEGAFLOW Software

Structured RANS solver FLOWer

- block-structured grids
- moderate complex configurations
- fast algorithms (unsteady flows)
- design option

Unstructured RANS solver TAU

- hybrid grids
- very complex configurations
- grid adaptation
- fully parallel software

Reynolds-Averaged Navier-Stokes Solver FLOWer

Physical model

- → 3D compressible Navier-Stokes equations
- $\rightarrow~$ arbitrarily moving bodies
- $\rightarrow~$ steady and time accurate flows
- \rightarrow state-of-the-art turbulence models (RSM)

Grid strategy

- \rightarrow block-structured grids
- → discontinuous block boundaries
- → overset grids (Chimera)
- \rightarrow deforming grids

Numerical algorithms

- → 2nd order finite volume discretization (cell centered & cell vertex option)
- \rightarrow central and upwind schemes
- → multigrid
- → implicit treatment of turbulence equations
- \rightarrow implicit schemes for time accurate flows
- $\rightarrow\,$ preconditioning for low speed flow
- → vectorization & parallelization
- \rightarrow adjoint solver

FLOWer - Overset Grids (Chimera)

Reynolds-Averaged Navier-Stokes Solver TAU

Physical model

- → 3D compressible Navier-Stokes equations
- $\rightarrow~$ arbitrarily moving bodies
- \rightarrow steady and time accurate flows
- → state-of-the-art turbulence models

Grid strategy

- $\rightarrow~$ unstructured/hybrid grids
- \rightarrow semi-structured sublayers
- \rightarrow overset grids (Chimera)
- $\rightarrow~$ deforming grids
- \rightarrow grid adaptation (refinement, de-refinement)

Numerical algorithms

- → 2nd order finite volume discretization based on dual grid approach
- $\rightarrow~$ central and upwind schemes
- → multigrid based on agglomeration
- → implicit schemes for time accurate flows
- $\rightarrow~$ preconditioning for low speed flow
- $\rightarrow~$ optimized for cash and vector processors
- → MPI parallelization

Hybrid Navier-Stokes Solver TAU

Dual grid approach

- solver independent of cell types of primary grid
- efficient edge-based data structure
- agglomeration of dual cells for coarser meshes (multigrid)

Hybrid Navier-Stokes Solver TAU

wing

Local Mesh Adaptation

- local grid refinement and de-refinement depending flow solution
- reduction of total number of grid points
- efficient simulation of complex flow phenomena

Overlapping grid technique

- efficient approach for simulation of complex configurations with movable control surfaces (maneuvering aircraft)
- separate grids for movable surfaces
- parallel implementation

Fluid / Structure Coupling

- Aerodynamic performance of wing/body configuration in cruise condition
- Engine/airframe integration installation drag

- M_∞=0.85, Re=32.5x10⁶
- coupled CFD/structural analysis for wing deformation at $\alpha \approx$ 1.5°
- FLOWer, $k\omega$ turbulence model, fully turbulent

Krumbein, Rakowitz

Engine-Airframe Installation Drag – TAU-Code

Objective:Drag prediction for different nacelle positions & shapesConfiguration:DLR F6 wing/body/pylon/nacelle configuration

Complex High-Lift Configurations

Airbus A380/800 landing configuration

TAU computations

Brodersen

Complex High-Lift Configurations

Megaliner landing configuration Influence of nacelle strakes

one calculation: 80hrs on 4 proc. NEC SX5

TAU computations

Brodersen

Military Transport Aircraft

TAU computation

- hybrid mesh (CENTAUR™)
- 30 prism layers
- 440000 surface points
- Re = 1.3 x 10⁶
- 12.9x10⁶ field points

G

Helicopter EC BO 105 – Influence of Skids

Chimera grid system 345 blocks, 5.8 mio. grid points

FLOWer Chimera calculation

Shape design and optimization

Design studies by

- analysis of different geometries
- inverse design
- numerical shape optimization

Inverse Design (FLOWer option)

Inverse method (Bartelheimer/Takanashi)

- pressure difference ΔC_P converted to ΔZ by solving transonic small perturbation equation (TSP)
- robustness improvement for transonic flow by adding additional damping term
- smoothing of geometry differences ∆Z using Bézier curves
- specification of target pressure using GUI (TpEdit)

Applications

- airfoil
- isolated wing
- isolated nacelle
- wing/body

Inverse Wing Design

Integrated Inverse Design System using Tau

Applications

- isolated nacelle
- integrated nacelle
- integrated empennage design

Integrated Inverse Nacelle Design

Aerodynamic Shape Optimization

Numerical Optimization of High-Lift 3-Element Airfoil

single point, single discipline, single objective

Application

- drag optimization for 3-element airfoil
- take-off configuration (M_∞=0.2, Re=3.52x10⁶)

Cost function:

 minimum drag with constant lift and constraint pitching moment

Design parameters (12)

- element position & deflection
- element-size variations

Requirements

- multi-point design, multi-objective optimization, multi-disciplinary optimization
- Iarge number of design variables
- physical and geometrical constraints
- complex configurations
- parametrization based on CAD model
- meshing & mesh deformation techniques ensuring grid quality
- compressible Navier-Stokes equations with accurate models for turbulence and transition
- validated and efficient CFD codes
- efficient & reliable optimization algorithms

Aerodynamic Shape Optimization

Key elements

- Geometry parametrization
- Meshing & mesh movements methods
- Flow solver efficiency & accuracy
- Optimization techniques
- Multi-disciplinary optimization
- Optimization process chain
- Verification & Validation

Main objectives

- Improvement of aircraft shape optimization tools
- Establishment of numerical shape optimization within industrial aircraft design process
- Concentration of activities & resources from DLR, universities, aeronautical industry & SMEs

Partners

- Airbus-G, EADS-M
- DLR
- CLE, FastOpt, Synaps
- Universities of Aachen, Berlin, Braunschweig, Darmstadt, Trier

Shape-Parameterization Using

Freeform Deformation

Freeform Deformation (FFD)

parameterization of complex non parametric CAD-based shapes

- high flexibility in combination with grid generation techniques
- widely used for "Soft-Object Animation"

Idea:

use FFD as geometry modeler within aerodynamic shape optimization

Ronzheimer

Freeform Deformation Technique (Sederberg, Parry)

B-Spline Base Functions: $N_{i,m_u}(u), N_{j,m_v}(v), N_{k,m_w}(w)$ B-Spline Control Poins: $\overline{Q}_{i,j,k}, \overline{R}_{i,j,k}$

Principle Steps of Freeform Deformation

Ronzheimer

Parametric CAD in Aerodynamic Shape Optimization

© Ronzheimer

Example fro Freeform Deformation

Ronzheimer

Optimization algorithms

Problem

- shape optimization in 3D requires large number N of design parameters
- high computational costs for each flow equations (Navier-Stokes)
- noisy cost functions
- constraints

Optimization strategies

- evolutionary strategies
- deterministic strategies
- gradient based strategies

Adjoint based Optimization

Parameterisation (10 design parameters)

Flap position and angle

- Flap gap (∆y)
- Flap overlap (∆x)
- Flap angle (θ)

Shape via Free Form Deformation

- 5 design at the upper side
- 1 design at the lower side
- Nose position

- 1000 generations, 10 individuals per generation (10.000 evaluations)
- Best solution after 964 generations (η=9.649)
 - 7.3% improvement
 - CD=0.940*CD(baseline) ; CL = CL(baseline) ; Cm<Cm(baseline)

- 8 cycles (549 evaluations)
- Best solution after 8 cycles (η=514)
 - 6.4% improvement
 - CD=0.947*CD(baseline); CL = CL(baseline); Cm<Cm(baseline)

- 14 cycles (195 evaluations)
- Best solution after 12 cycles (η=180)
 - 6.0% improvement
 - CD=0.951*CD(baseline); CL = 0.997*CL(baseline); Cm<Cm(baseline)

- MFD and Simplex provide close results
- DE provides an other design

Flap Design - position and geometry

- With DE, flap mainly retracted (x direction)
- MFD and Simplex provide same gap (y direction)

- MFD and Simplex provide quite same shape
- Sharp nose obtained in all cases

Synthesis from the flap design with 10 design variables on the coarse mesh

Differential Evolution

- provide the best optimum
- easy to use, robust, no extra operation from the user
- provide a complete database
- rather long to converge but easily scalable (180 wall clock hours on cluster of 5 computers)

Simplex

- easy to use and robust to noise
- faster than DE (61 wall clock hours on 1 pc)
- trap to local minimum

MFD

- extremely fast (25 wall clock hours on 1 pc)
- lot of "try and error" to get a good optimization (scaling of the design variables)
- not robust (need accurate solution)
- trap to local minimum

Multi-Objective Optimization - Example

Shape optimization of wing plan form

- flow condition: M = 0.85, a = 1°
- inviscid flow (Euler)

EAD

- computational mesh: 630.000 nodes
- multi objective optimization:
 - maximize lift and minimize drag
- design parameters:
 - sweep angle (range: -60° to +60°)
 - half span (range: 0.750 [m] to 1.250 [m])
 - aspect ratio (defined by const. wing plan area constraint)
 - taper ratio (range: 0.2 to 0.8)
- design constraints:
 - pitching moment restricted to range –0.025 to +0.0001

Wing plan form optimization

EADS

Genetic algorithm

Pareto Front

Multi-Objective Optimization - Example

EADS

Shape optimization of wing plan form

Computational effort:

EAC

- for one design evaluation:
 50 min (4 XEON 2.6 GHz processors)
 - complete mesh generation time: approx. 15 min.
 - complete flow simulation time: 35 min.
- 12 concurrent design evaluations using 4 processors each
- 30 design generations
- all together 360 design evaluations in less than 25 h

but just 5 design variables and inviscid flow !

alternative strategies ?

Academic test case: 2 objectives

Multi-objective optimisation using Genetic Algorithm

- Latin Square DOE
- Population size of 64 individuals
 (i.e. 64 concurrent evaluations could be performed in parallel)
- 6 generations
- 383 evaluations

Almost the complete Pareto front is captured within a single run !

- CFD mature tool for aerodynamic analysis of complex aircraft configurations
- aerodynamic optimization based on high fidelity CFD not yet fully exploited
 - Iarge scale applications
 - lack of efficient and reliable optimization strategies
 - Iack of suitable algorithms for geometric modeling
- new innovative CFD algorithms and optimization strategies required
- focus on multi-objective optimization

DG(1) **Discontinuous Galerkin methods** DG(2 DG(3 higher order methods • (h,p) refinement 0.01 drag Example 0.001 NACA0012, subsonic inviscid computation 0.0001 100 1000 10000 # cells

grid convergence

Perspectives (2)

Innovative grid adaptation

- goal-oriented
- dual-weighted residual indicators (adjoint solution)

Example

- BAC3-11 airfoil
- M = 1.2, α = 5^o
- target: find pressure at leading edge to best accuracy J(u) = p(x₁)
- Reference value: J(u)=2.393

residual indicator 13719 cells J(u) - J(u_h) = 0.035

dual-weighted residual indicator 1803 cells $J(u) - J(u_h) = 0.003$