SoPlex

and

Zimpl

Thorsten Koch, ZIB

$\min c^{\top} x$

subject to $A x \geqslant b$

with $\quad c \in \mathbb{R}^{n}$
$x \in \mathbb{R}^{n}$
$A \in \mathbb{R}^{k \times n}$
$b \in \mathbb{R}^{k}$
and $k \geqslant n$ and A has full rank

$\max c^{\top} x$

subject to $A x \leqslant b$

with $c \in \mathbb{R}^{n}, x \in \mathbb{R}^{n}, A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$.

Linear program example

(4)

$$
\min -x-y
$$

subject to

$$
\begin{align*}
x_{1}-2 x_{2} & \geqslant-2 \tag{1}\\
-6 x_{1}-2 x_{2} & \geqslant-9 \tag{2}\\
-x_{1}+2 x_{2} & \geqslant-1 \\
x_{1} & \geqslant 0 \tag{4}\\
x_{2} & \geqslant 0
\end{align*}
$$

The Sequential object-oriented simplex class library

- Implementation of the revised simplex algorithm
- Primal and dual solving routines
- Row and column based basis representation
- Can solve instances with a million non-zero elements
- C++ class library and standalone program
- Very portable: compiles with C++ compilers from

GNU, Compaq, Intel, SUN, HP, SGI, IBM, and even M\$

- Licensed to several commercial companies
- Free for non commercial academic use

SoPlex is a linear program solver.

It can not solve integer programs,

 i.e. $x \in \mathbb{Z}^{n}$.For this we have SCIP, please wait for the next talk.

- Currently one of the top free LP-Solvers
- Initially developed in 1996 by Roland Wunderling, as part of his PhD thesis Paralleler und Objektorientierter Simplex-Algorithmus
- SoPlex is under continous development
- While slower than, for example, CPLEX, adaquate for many tasks

Available at
http://www.zib.de/Optimization/Software/Soplex

Zuse Institute Mathematical Programming Language

- Algebraic modeling language, like AMPL, GAMS, etc.
- Transforms mathematical descriptions of linear mixed integer models into solver input
- Easy to use
- Has been used in several industry projects and lectures
- Can generate models with more than 10 million variables
- Released under GNU GPL

A Zimpl model consists of

- Sets
- Parameters
- Variables
- Objective
- Constraints

Let $G=(V, E)$ be a complete graph, with V being the set of cities and E being the set of links between the cities. Introducing binary variables $x_{i j}$ for each $(i, j) \in E$ indicating if edge (i, j) is part of the tour, the TSP can be written as:

$$
\begin{array}{cl}
\min \sum_{(i, j) \in E} d_{i j} x_{i j} & \text { subject to } \\
\sum_{(i, j) \in \delta_{v}} x_{i j}=2 & \text { for all } v \in V \\
\sum_{(i, j) \in E(U)} x_{i j} \leqslant|U|-1 & \text { for all } U \subseteq V, \emptyset \neq U \neq V \\
x_{i j} \in\{0,1\} & \text { for all }(i, j) \in E
\end{array}
$$

Zimpl example: data

The data is read in from a file that lists for each city the name and the x and y coordinates. Distances between cities are assumed Euclidean.

\# City	X	Y
Berlin	5251	1340
Frankfurt	5011	864
Leipzig	5133	1237
Heidelberg	4941	867
Karlsruhe	4901	840
Hamburg	5356	998
Bayreuth	4993	1159
Trier	4974	668
Hannover	5237	972

Stuttgart	4874	909
Passau	4856	1344
Augsburg	4833	1089
Koblenz	5033	759
Dortmund	5148	741
Bochum	5145	728
Duisburg	5142	679
Wuppertal	5124	715
Essen	5145	701
Jena	5093	1158

The resulting linear program has
171 variables,
239,925 constraints, and
22,387,149 non-zero entries
in the constraint matrix, giving an MPS-file size of 936 mb .
An optimal tour for the data on the previous slide is Berlin, Hamburg, Hannover, Dortmund, Bochum, Wuppertal, Essen, Duisburg, Trier, Koblenz, Frankfurt, Heidelberg, Karlsruhe, Stuttgart, Augsburg, Passau, Bayreuth, Jena, Leipzig, Berlin.

- Modeling languages make it much easier to rapidly experiment with models and ideas
- The reproducibility of the results is increased
- Higher solver independency
- Solver dependent transformation of special functions are possible

For $a, b, c \in \mathbb{Z}, a \in[-15,15], b \in[-10,20], c \in[-20,10]$, maximize $5 a+3 b+c$ subject to:

$$
\text { if }(a \neq b \text { and }(|a-b|=3 c \text { or } c-a \geqslant 0))
$$

then $a+b+c \geqslant 7$
else $a+b \leqslant 1$
can be formulated as an IP. But it is rather difficult...

For $a, b, c \in \mathbb{Z}, a \in[-15,15], b \in[-10,20], c \in[-20,10]$, maximize $5 a+3 b+c$ subject to:

$$
\text { if }(a \neq b \text { and }(|a-b|=3 c \text { or } c-a \geqslant 0))
$$

then $a+b+c \geqslant 7$
else $a+b \leqslant 1$
var a integer >= -15 <= 15;
var b integer >= -10 <= 20;
var c integer >= -20 <= 10;
maximize obj: 5 * a + 3 * b + c;
subto ci: vif (a!=b and (vabs(a-b) == $3 * c$ or $c-a \quad>=0)$)
then $a+b+c>=7$
else $a+b<=1$ end;

Extended functions: result

www.zib.de/koch/zimpl

THANK YOU!

QUESTIONS?

