$\lceil W\rceil \Gamma_{A}$

Weierstraß-Institut für Angewandte Analysis und Stochastik

Matheon MF 1 Workshop
Optimisation Software

J. Elschner, A. Rathsfeld, G. Schmidt Optimisation of diffraction gratings with DIPOG

Leibniz
Gemeinschaft

Mohrenstr 39, 10117 Berlin rathsfeld@wias-berlin.de http://www.wias-berlin.de June 1, 2005

Outline

- Diffractive Optical Elements
- Finite Element Simulation
- Inverse Problems
- Optimization of Optical Gratings
- Examples
- Summary

Outline

- Diffractive Optical Elements
- Finite Element Simulation
- Inverse Problems
- Optimization of Optical Gratings
- Examples
- Summary

Outline

- Diffractive Optical Elements
- Finite Element Simulation
- Inverse Problems
- Optimization of Optical Gratings
- Examples
- Summary

Outline

- Diffractive Optical Elements
- Finite Element Simulation
- Inverse Problems
- Optimization of Optical Gratings
- Examples
- Summary

Outline

- Diffractive Optical Elements
- Finite Element Simulation
- Inverse Problems
- Optimization of Optical Gratings
- Examples
- Summary

Outline

- Diffractive Optical Elements
- Finite Element Simulation
- Inverse Problems
- Optimization of Optical Gratings
- Examples
- Summary

Outline

- Diffractive Optical Elements
- Finite Element Simulation
- Inverse Problems
- Optimization of Optical Gratings
- Examples
- Summary

Diffractive Optical Elements

periodical grating (details of surface geometry in order of wavelength)

Diffractive Optical Elements

Diffractive Optical Elements

non-periodic grating, manufactured at BIFO

Diffractive Optical Elements

Microoptical and Other Diffractive Elements:
\triangleright realize old and new optical functions of optical devices
\triangleright e.g. by diffraction at surfaces and interfaces: forming and splitting of laser beams, diffraction and absorption
\triangleright smallest size resp. smallest details
\triangleright manufactured by means of semi-conductor industry, thin layer technology (photo resist exposition, try and wet etching, ion beam etching, vapor deposition)
more pictures from B. Kleemann (Carl Zeiss Oberkochen):

Diffractive Optical Elements

Einsatz des Laser-Gitters (Schema) in Littrow-Anwendung

Diffractive Optical Elements

Diffraktive Linse in einem Projektionsobjektiv

ZAEINK

Objektiv mit Diffraktiver Linse (DL)

$$
\begin{aligned}
& \lambda=248 \mathrm{~nm}+/-0.5 \mathrm{pm} \\
& \mathrm{NA}=0.7 \\
& \text { Feld }=26 \times 8 \mathrm{~mm}^{2} \\
& \beta^{\prime}=-0.25 \\
& \text { Material: Quarz } \\
& \mathrm{CHL}=0.2 \mu \mathrm{~m} / \mathrm{pm} \\
& \text { Bandbreite } \sim 0.7 \mathrm{pm} \\
& \hline
\end{aligned}
$$

Diffractive Optical Elements

Applications:
\triangleright Microscopy
\triangleright Spectroscopy
\triangleright Interferometry
\triangleright Correction of image abberations
\triangleright Wave forming elements (CGH)
Used in:
\triangleright Objectives for photography, microscopes, projectors
\triangleright Microelectronic circuits
\triangleright Solar technique
\triangleright Optical image processing
\triangleright Laser technique (data storage)
\triangleright Document security

Finite Element Simulation

Simplest example:
TM polarization (magnetic field orthogonal to cross section plane) classical diffraction (incoming wave in cross section plane)

Finite Element Simulation

Maxwell's equations \longrightarrow problem reduces to scalar Helmholtz equation for transversal component v of amplitude of time harmonic magnetic field vector $v\left(x_{1}, x_{2}\right) \exp (-\mathbf{i} \omega t)$

$$
\Delta v\left(x_{1}, x_{2}\right)+k^{2} v\left(x_{1}, x_{2}\right)=0, \quad k:=\omega \sqrt{\mu \varepsilon}
$$

where: $\quad \varepsilon$ electric permitivity
μ magnetic permeability
ω circular frequency of incoming light
k wavenumber

Finite Element Simulation

Maxwell's equations \longrightarrow problem reduces to scalar Helmholtz equation for transversal component v of amplitude of time harmonic magnetic field vector $v\left(x_{1}, x_{2}\right) \exp (-\mathbf{i} \omega t)$

$$
\Delta v\left(x_{1}, x_{2}\right)+k^{2} v\left(x_{1}, x_{2}\right)=0, \quad k:=\omega \sqrt{\mu \varepsilon}
$$

where: $\quad \varepsilon$ electric permitivity
μ magnetic permeability
ω circular frequency of incoming light
k wavenumber

Helmholtz equation fulfilled in domains with constant (contin.) wavenumber k transmission condition through interfaces between different materials (continuous function, jump of derivative)

Finite Element Simulation

Floquet's theorem: Incoming plane wave of the form $\exp \left(\mathbf{i} \alpha x_{1}-\mathbf{i} \beta x_{2}\right)$ leads to a quasi-periodic solution.

$$
v\left(x_{1}+d, x_{2}\right)=v\left(x_{1}, x_{2}\right) \exp (\mathbf{i} \alpha d)
$$

where: $\quad d$ period of grating

$$
\alpha:=k^{+} \sin \theta, \quad \theta \text { angle of incidence }
$$

$$
\beta:=k^{+} \cos \theta
$$

k^{+}wavenumber of cover material (air)

Finite Element Simulation

Floquet's theorem: Incoming plane wave of the form $\exp \left(\mathbf{i} \alpha x_{1}-\mathbf{i} \beta x_{2}\right)$ leads to a quasi-periodic solution.

$$
v\left(x_{1}+d, x_{2}\right)=v\left(x_{1}, x_{2}\right) \exp (\mathbf{i} \alpha d)
$$

where: $\quad d$ period of grating

$$
\begin{aligned}
& \alpha:=k^{+} \sin \theta, \quad \theta \text { angle of incidence } \\
& \beta:=k^{+} \cos \theta \\
& k^{+} \text {wavenumber of cover material (air) }
\end{aligned}
$$

$$
\begin{aligned}
& v\left(x_{1}, x_{2}\right) \exp \left(-\mathbf{i} \alpha x_{1}\right)=\sum_{j=-\infty}^{\infty} c_{j}\left(x_{2}\right) \exp \left(\mathbf{i} j \frac{2 \pi}{d} x_{1}\right), \\
& v\left(x_{1}, x_{2}\right)=\sum_{j=-\infty}^{\infty} A_{j}^{+} \exp \left(\mathbf{i} \alpha_{j} x_{1}+\mathbf{i} \beta_{j}^{+} x_{2}\right)+\exp \left(\mathbf{i} \alpha x_{1}-\mathbf{i} \beta x_{2}\right) \\
& x_{2}>x_{\max }
\end{aligned}
$$

Finite Element Simulation

$$
\begin{aligned}
v\left(x_{1}, x_{2}\right)= & \sum_{j=-\infty}^{\infty} A_{j}^{-} \exp \left(\mathbf{i} \alpha_{j} x_{1}-\mathbf{i} \beta_{j}^{-} x_{2}\right), \quad x_{2}<x_{\text {min }} \\
& \alpha_{j}:=k^{+} \sin (\theta)+\frac{2 \pi}{d} j, \quad \beta_{j}^{ \pm}:=\sqrt{\left[k^{ \pm}\right]^{2}-\left[\alpha_{j}\right]^{2}}
\end{aligned}
$$

Rayleigh series with Rayleigh coefficients $A_{j}^{ \pm}$
Efficiency $e_{j}^{ \pm}$of $j^{\text {th }}$ mode: rate of energy radiated into direction of mode

boundary condition for Helmholtz equation:
left and right boundary line: quasi-periodicity
upper and lower boundary line: derivative of solution in x_{2} direction equals
x_{2} derivative of Rayleigh expansion

Finite Element Simulation

Finite Element Simulation

Triangulation (Shevchuk):

Finite Element Simulation

red: Air
green: resist
blue: SiO_{2}
Wavel.: 633 nm
Polariz.: TM
Angle inc.: 40°
Period: $1.7 \mu \mathrm{~m}$

Finite Element Simulation

Finite Element Simulation

DIPOG:

\triangleright Program package for numerical solution of direct and inverse problems for optical gratings

Finite Element Simulation

DIPOG:

\triangleright Program package for numerical solution of direct and inverse problems for optical gratings
\triangleright FEM based on program package PDELIB of our institute

Finite Element Simulation

DIPOG:

\triangleright Program package for numerical solution of direct and inverse problems for optical gratings
\triangleright FEM based on program package PDELIB of our institute
\triangleright Rigorous treatment of outgoing wave condition by coupling with boundary elements
\triangleright Treatment of large wavelength (i.e.: many wavelengths λ over period d) by generalized FEM
-Generalized FEM due to Babuška/lhlenburg/Paik/Sauter over uniform rectangular grids
-special combination of local Helmholtz solution as trial functions (cf. Partition of Unity Method by Babuška/Melenk or ultra-weak approach by Cessenat/Despres)
\triangleright Optimization

Finite Element Simulation

Efficiency (energy percentage) in dependence of DOF in one dim. simple binary grating discretized by uniform rectangular partition, comparison of conventional FEM with generalized GFEM

Inverse Problems (Reconstruction of gratings)

Application: quality check

Inverse Problems (Reconstruction of gratings)

Application: quality check
given:
measured farfield data = energy ratio and phase shifts (i.e. Rayleigh coefficients) of propagating reflected and transmitted modes under different angles of incidence resp. under different wavelengths

Inverse Problems (Reconstruction of gratings)

Application: quality check
given:
measured farfield data = energy ratio and phase shifts (i.e. Rayleigh coefficients) of propagating reflected and transmitted modes under different angles of incidence resp. under different wavelengths
sought:
Grating (represented e.g. by profile curve or by space dependent function of refractive index) which realizes the prescribed farfield data

Inverse Problems (Reconstruction of gratings)

Application: quality check
given:
measured farfield data = energy ratio and phase shifts (i.e. Rayleigh coefficients) of propagating reflected and transmitted modes under different angles of incidence resp. under different wavelengths
sought:
Grating (represented e.g. by profile curve or by space dependent function of refractive index) which realizes the prescribed farfield data
challenging mathematical problem: severely ill posed inverse problem theoretical investigations: Uniqueness, Stability of Solution, Convergence of numerical algorithms

Inverse Problems

$$
\begin{aligned}
& \mathcal{F}\left(k, u_{1}, \ldots, u_{L} ; \gamma\right):=c_{1} \sum_{l=1}^{L}\left\|\widetilde{B}^{-1}\left[B\left(k, \theta_{l}\right) u_{l}-w_{l}\right]\right\|_{L^{2}(\Omega)}^{2}+ \\
& c_{2} \sum_{l=1}^{L}\left\|F\left(\theta_{l}\right) u_{l}-A_{\text {meas }}\left(\theta_{l}\right)\right\|_{\ell^{2}}^{2}+\gamma\left\{c_{3}\left\|k^{2}\right\|_{H_{p e r}^{1 /(\Omega)}}^{2}+c_{4} \sum_{l=1}^{L}\left\|u_{l}\right\|_{H_{p e r}^{1}(\Omega)}^{2}\right\}
\end{aligned}
$$

arguments of obj.functional: Wavenumber function k and field functions $u_{l}, l=1, \ldots, L$ for different angles of incidence
Regularization parameter: precond.Helmholtz equ.:

$$
\begin{aligned}
& \widetilde{B}^{-1}\left[B\left(k, \theta_{l}\right) u_{l}-w_{l}\right]
\end{aligned}
$$

Difference of farfield data: $\quad F\left(\theta_{l}\right) u_{l}-A_{\text {meas }}\left(\theta_{l}\right)$ with measured data $A_{\text {meas }}\left(\theta_{l}\right)$ and data $F\left(\theta_{l}\right) u_{l}$ corresponding to u_{l}

Inverse Problems

Discretization by FEM \longrightarrow finite dimensional problem
Method of conjugate gradients for optimization (resp. SQP method for a modified object.function)

Inverse Problems

Discretization by FEM \longrightarrow finite dimensional problem
Method of conjugate gradients for optimization (resp. SQP method for a modified object.function)

Example:
Number of angles of incidence: $L=25$
Degr.of Freedom of FEM: $\quad L$ times 1600
Degr.of Freedom for k :
400

Inverse Problems

prescribed function k over cross section of grating

Inverse Problems

prescribed function k over cross section of grating and reconstructed function k

Optimization of Optical Gratings (Optimal design)

\triangleright Inverse problems with a restricted number of geometry parameters (difficult ill posed problem turns into "simple" well posed problem)
\triangleright Design problem: design grating to realize a desired farfield pattern

Optimization of Optical Gratings (Optimal design)

\triangleright Inverse problems with a restricted number of geometry parameters (difficult ill posed problem turns into "simple" well posed problem)
\triangleright Design problem: design grating to realize a desired farfield pattern

Objective functional:

$$
\Phi\left(e_{j}^{ \pm}\left(\lambda_{m}, \theta_{n}\right), A_{j}^{ \pm}\left(\lambda_{m}, \theta_{n}\right)\right) \longrightarrow \inf
$$

$$
\Phi\left(e_{j}^{ \pm}\left(\lambda_{m}, \theta_{n}\right), A_{j}^{ \pm}\left(\lambda_{m}, \theta_{n}\right)\right) \stackrel{\text { e.g. }}{=} \sum_{\lambda_{m}, \theta_{n}}\left|e_{j}^{ \pm}\left(\lambda_{m}, \theta_{n}\right)-e_{j \text {,desired }}^{ \pm}\left(\lambda_{m}, \theta_{n}\right)\right|^{2}
$$

Optimization of Optical Gratings

Optimization parameters:
\triangleright Widths, heights, and position of rectangles in (multi-layered) binary grating
\triangleright Coordinates of polygonal profile (interface of two material regions)
\triangleright Refractive indices of material

Optimization of Optical Gratings

Optimization parameters:
\triangleright Widths, heights, and position of rectangles in (multi-layered) binary grating
\triangleright Coordinates of polygonal profile (interface of two material regions)
\triangleright Refractive indices of material
Mathematical properties of problem:
\triangleright objective functional: non-linear and smooth (FEM discretization even discont.)
\triangleright domain: lower dimensional box
\triangleright constraints: eventually many non-linear smooth functionals
\triangleright computation of function and gradient: time consuming

Optimization of Optical Gratings

Optimization parameters:
\triangleright Widths, heights, and position of rectangles in (multi-layered) binary grating
\triangleright Coordinates of polygonal profile (interface of two material regions)
\triangleright Refractive indices of material
Mathematical properties of problem:
\triangleright objective functional: non-linear and smooth (FEM discretization even discont.)
\triangleright domain: lower dimensional box
\triangleright constraints: eventually many non-linear smooth functionals
\triangleright computation of function and gradient: time consuming
Optimization methods:
\triangleright global method (Simulated annealing)
\triangleright gradient based methods (Interior point method, Method of conjugate gradients, Augmented Lagrangian method)
\triangleright gradients: integral representation including solution of dual problem or representation by solution of original variational equ. with new right-hand side \triangleright discretization of gradient via FEM

Optimization of Optical Gratings

$$
\begin{gathered}
\mid \mathbf{a}(\tilde{u}, \varphi)=\mathbf{F}_{u, \chi}(\varphi), \quad \varphi \in H_{p e r}^{1}(\Omega) \\
\mathbf{F}_{u, \chi}(\varphi):=\frac{1}{k^{2}} \int_{\Omega}\left\{\begin{array}{l}
k^{2} \nabla \chi u \bar{\varphi}+\partial_{x} \chi_{y}\left[\left(\partial_{x} u+\mathbf{i} \alpha u\right) \overline{\partial_{y} \varphi}+\partial_{y} u \overline{\left(\partial_{x} \varphi+\mathbf{i} \alpha \varphi\right)}\right] \\
\\
+\partial_{y} \chi_{x}\left[\partial_{x} u \overline{u_{y} \varphi}+\partial_{y} u \overline{\partial_{x} \varphi}\right] \\
\\
-\partial_{x} \chi_{x}\left[\partial_{y} u \partial_{y} \varphi\right. \\
\\
-\partial_{x} u \chi_{y}\left[\left(\partial_{x} u+\mathbf{i} \alpha u\right) \overline{\left(\partial_{x} \varphi\right.}+\alpha^{2} u \bar{\varphi}\right] \\
\hline \frac{\partial A_{j}^{ \pm}(u)}{\partial p}=A_{j}^{ \pm}(\tilde{u})
\end{array}\right. \\
\end{gathered}
$$

where p is a coordinate of a corner point c at the polygonal interface and where χ is some cut off function of corner point c (piecewise linear at interface, one at c, zero over $\Gamma_{ \pm}$)

Optimization of Optical Gratings

simple polygonal grating: $3^{\text {rd }}$ and $4^{\text {th }}$ component of gradient (conical illumination) $\Phi=0.004\left(e_{0}^{\mathrm{tr}}-43.645\right)^{2}+0.004\left(e_{-1}^{\mathrm{tr}}-43.247\right)^{2}+2.1\left(e_{-1}^{\mathrm{re}}-2.141\right)^{2}+50\left(p_{0}^{\mathrm{tr}}-48.10\right)^{2}$ $+1200\left(p_{-1}^{\mathrm{tr}}-44.36\right)^{2}+25\left(p_{-1}^{\mathrm{re}}-17.29\right)^{2}$

Optimization of Optical Gratings

Examples

Simple example
wavelength: $\lambda=625 \mathrm{~nm}$
period: $0 \mu \mathrm{~m} \leq \mathrm{x} \leq 1.5 \mu \mathrm{~m}$
bounds for y -coordinates: $-0.65 \mu \mathrm{~m} \leq \mathrm{y} \leq 0.65 \mu \mathrm{~m}$
cover material: Air
refractive index of substrate: $\mathrm{n}=1.45$
grating: polygonal profile grating with four corners
direction of illumination: $D=(\sin \theta \cos \phi,-\cos \theta, \sin \theta \sin \phi), \theta=48^{\circ}, \phi=10^{\circ}$
TE polarization: incident electric field \perp wavevector and normal of grating plane refl.efficiencies and phase shifts: TE polarized, i.e. projections onto $D \times(0,1,0)$ number of finite elements (DOF) at level 3: ≈ 8000

Examples

Simple example
wavelength: $\lambda=625 \mathrm{~nm}$
period: $0 \mu \mathrm{~m} \leq \mathrm{x} \leq 1.5 \mu \mathrm{~m}$
bounds for y-coordinates: $-0.65 \mu \mathrm{~m} \leq \mathrm{y} \leq 0.65 \mu \mathrm{~m}$
cover material: Air
refractive index of substrate: $\mathrm{n}=1.45$
grating: polygonal profile grating with four corners
direction of illumination: $D=(\sin \theta \cos \phi,-\cos \theta, \sin \theta \sin \phi), \theta=48^{\circ}, \phi=10^{\circ}$
TE polarization: incident electric field \perp wavevector and normal of grating plane refl.efficiencies and phase shifts: TE polarized, i.e. projections onto $D \times(0,1,0)$ number of finite elements (DOF) at level $3: \approx 8000$

$$
\Phi=\left|e_{0}^{r e}-45.87\right|^{2}+0.01\left|e_{-1}^{r e}-35.83\right|^{2}+1.5\left|p_{0}^{r e}-49.04\right|^{2}+3\left|p_{-1}^{r e}-74.08\right|^{2}
$$

Examples

$\Phi=0$ for high level simulation and for grating (which is to be reconstructed?):

Examples

Simulated annealing cooling factor: 0.95 size of neighbourhood: 0.03 cooling steps: 150 restarts: 100 computing time: 3.75 h value for solution: $\Phi=0.5969$

Examples

Simulated annealing
cooling factor: 0.95
size of neighbourhood: 0.03
cooling steps: 150
restarts: 100
computing time: 3.75 h
value for solution: $\Phi=0.5969$
Conjugate gradients
initial solution: ($0.3,0.1$), ($0.6,0.2$), ($0.9,0.2$), ($1.2,0.1$)
iterations: 138
number of computed gradients: 385
computing time: 5 min
value for solution: $\Phi=0.2597<397.2$

Examples

Conjugate gradients
initial solution: solution of simulated annealing
iterations: 23
number of computed gradients: 89
value for solution: $\Phi=0.5338<0.5969$

Examples

Conjugate gradients
initial solution: solution of simulated annealing
iterations: 23
number of computed gradients: 89
value for solution: $\Phi=0.5338<0.5969$
Conjugate gradients initial solution: exact sol.of higher level iterations: 8
number of computed gradients: 51
value for solution: $\Phi=0.002679<0.03467$

Examples

Conjugate gradients
initial solution: solution of simulated annealing
iterations: 23
number of computed gradients: 89
value for solution: $\Phi=0.5338<0.5969$
Conjugate gradients initial solution: exact sol.of higher level iterations: 8
number of computed gradients: 51
value for solution: $\Phi=0.002679<0.03467$
Conjugate gradients initial solution: exact sol. $+\mathcal{O}(0.05)$
iterations: 23
number of computed gradients: 89
value for solution: $\Phi=0.08845<120.77$
solution not recovered!

Examples

Conjugate gradients
level: 2
initial solution: exact sol.+ $\mathcal{O}(0.05)$
value for solution after 10 iterations: $\Phi=0.20538<143.62$
level: 3
initial solution: solution of level 2
value for solution after 10 iterations: $\Phi=0.31607<4.5271$
level: 4
initial solution: solution of level 3
value for solution after 10 iterations: $\Phi=0.31607<4.4242$
level: 5
initial solution: solution of level 4
value for solution after 10 iterations: $\Phi=0.29093<0.3301$
value for solution after 100 iterations: $\Phi=0.14013<0.3301$

Examples

Initial and optimal solution for polarization grating

Examples

Polarization grating: TE light reflected, TM light transmitted

Examples

Optimization of 20 layers for maximization of transmitted energy

Examples

Optimization of additional binary grating over the 20 layers

Summary

\triangleright Optical gratings can be simulated by standard FEM.

Summary

\triangleright Optical gratings can be simulated by standard FEM.
\triangleright Advantage:
-This is a rigorous method.

Summary

\triangleright Optical gratings can be simulated by standard FEM.
\triangleright Advantage:
-This is a rigorous method.
-Complex geometries can be treated.

Summary

\triangleright Optical gratings can be simulated by standard FEM.
\triangleright Advantage:
-This is a rigorous method.
-Complex geometries can be treated.
-Relatively large wavenumbers can be treated by "generalized" FEMs.

Summary

\triangleright Optical gratings can be simulated by standard FEM.
\triangleright Advantage:
-This is a rigorous method.
-Complex geometries can be treated.
-Relatively large wavenumbers can be treated by "generalized" FEMs.
\triangleright Algorithms useful for reconstruction problems and design of gratings. The corresponding DIPOG routines are still under development.

Summary

\triangleright Optical gratings can be simulated by standard FEM.
\triangleright Advantage:
-This is a rigorous method.
-Complex geometries can be treated.
-Relatively large wavenumbers can be treated by "generalized" FEMs.
\triangleright Algorithms useful for reconstruction problems and design of gratings. The corresponding DIPOG routines are still under development.
\triangleright Thank you for your attention.

