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Introduction – Optimization Programming Scenario

Nonlinear Optimization needs derivatives, for example:

Gradients, Jacobians, Hessians
Truncated Newton needs Jacobian-Vector-Products and
Vector-Jacobian-Products or Hessian-Vector-Products

Readily available in GAMS/AMPL. But how about the real world?

NLP - solver usually ask for

Subroutine to compute function value F

Subroutine to evaluate constraints
Sparsity patterns of Values, Jacobian, Hessian

Often there is an interface to provide derivatives

Subroutines for gradients, Jacobians-Vector-Products,
Hessians-Vector-Products

Default: Differencing

Use Automatic Differentiation to obtain derivatives

write a wrapper to plug generated derivative into NLP - interface (NEOS)
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Introduction

www.autodiff.org

AD - Tools for Fortran and C

ADOL-C, REVOLVE: C, C++, Open Source

ADIFOR 2.0 / 3.0: Fortran 77/90/95, Licensed, Closed Source

Tapenade: Fortran 77/90/95, (some) C, free, Closed Source

TAF / TAC (FastOpt GbR):Fortran 77/90/95, (some) C, commercial,
maybe free for educational

NAGWare Fortran 95, NAG Ltd., Oxford, UK: AD-enabled version in beta
status, not available for the public

OpenAd: Fortran 77/90/95, (some) C, Open Source

Other tools
for Fortran,C, C++ for Matlab for ADA for . . .
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Main Properties of Automatic Differentiation:

No Truncation Errors !!!!

Chain Rule applied to Numbers

Applicability to ”Arbitrary Programs”.

A priori bounded and/or adjustable costs:

Total Operations Count

Maximal Memory Requirement

Total Memory Traffic

always relative to original function.
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Geometric Interpretation – Forward Mode

PSfrag replacements

x(t) y(t)

ẋ

ẏ
F

Ḟ

F . . . Original program F

ẋ . . . Tangent direction for input x

Ḟ . . . Tangent version of F ( generated by Forward Mode AD)

ẏ . . . Tangent of output y :

ẏ = Ḟ(x, ẋ) = F′(x) · ẋ
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Geometric Interpretation – Reverse Mode

PSfrag replacements

ȳ F (x) =
c

x

x̄ ȳ

y
ȳ y

=
c

F

F̄

F . . . Original program F

ȳ . . . Adjoint direction for output y

F̄ . . . Adjoint version of F (generated by Reverse Mode AD)

x̄ . . . Adjoint of input x :

x̄ = F̄(x, ȳ) = ȳ · F′(x)

Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs
June 1, 2005 Matheon Workshop – Optimization Software 6

/ 25

Practical Execution of Forward and Reverse Differentiation

x1

d1

d2

bx

y4

Obj

y1

y2

PSfrag replacements

Sourcecode

y = F (x) ∈ R
m
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Practical Execution of Forward and Reverse Differentiation

d2
PSfrag replacements

Sourcecode

Object Code

y = F (x)

y = F (x) ∈ R
m

ẏ = F ′(x) ẋ ∈ R
m

∂−
forw

ard

(x , ẋ) ∈ R
2n

Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs
June 1, 2005 Matheon Workshop – Optimization Software 8

/ 25



Practical Execution of Forward and Reverse Differentiation

PSfrag replacements

Sourcecode

Object Code Object Code

y = F (x)

y = F (x) ∈ R
m

ẏ = F ′(x) ẋ ∈ R
m

∂−
forw

ard
∂−reverse

(x , ẋ) ∈ R
2n

Intermediate
values

Stack (Tape)

x̄ = ȳ F ′(x) ∈ R
n

˙̄x = ȳF ′′(x) ẋ ∈ R
n

(x , ȳ ) ∈ R
n+m
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Practical Execution of Forward and Reverse Differentiation
PSfrag replacements

Sourcecode

Object Code Object Code

y = F (x)

y = F (x) ∈ R
m

ẏ = F ′(x) ẋ ∈ R
m

∂−
forw

ard
∂−reverse

(x , ẋ) ∈ R
2n

Intermediate
values

Stack (Tape)

x̄ = ȳ F ′(x) ∈ R
n

˙̄x = ȳF ′′(x) ẋ ∈ R
n

(x , ȳ ) ∈ R
n+m

Programexecution

OPS ∗ = Constant
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Derivatives in Optimization Scenario

F (x) =

[

f (x)
c(x)

]

: R
n 7→ R

m

with Lagrangian function

L(x) = λTF (x) for fixed λ ∈ R
m

Product Derivative Cost-Factor

Jac mat F ′(x)S ∈ R
m×p 3 ∗ p

Jacobian F ′(x) ∈ R
m×n

min
{

#[F ′], #[F ′(x)T ]
}

mat Jac WF ′(x) ∈ R
q×n 5 ∗ q

gradient ∇L(x) ∈ R
n 5 ⇐=

Hess mat ∇2L(x)S ∈ R
n×p 5 ∗ p ⇐=

Hessian ∇2L(x) ∈ R
n×n 5 ∗ #[∇2L(x)]

where s ∈ R
n, S ∈ R

n×p, W ∈ R
q×m, and

#[A] ≡ max
i

{

nonzeros
(

eT
i A

)}
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Baby Example

y = [sin(x1/x2) + x1/x2 − exp(x2)] ∗ [x1/x2 − exp(x2)]

Evaluation of Baby Example with

n = dim(x) = 2 and m = dim(y) = 1

v−1 = x1 = 1.5000

v0 = x2 = 0.5000

v1 = v−1/v0 = 1.5000/0.5000 = 3.0000

v2 = sin(v1) = sin(3.0000) = 0.1411

v3 = exp(v0) = exp(0.5000) = 1.6487

v4 = v1 − v3 = 3.0000− 1.6487 = 1.3513

v5 = v2 + v4 = 0.1411 + 1.3513 = 1.4924

v6 = v5 ∗ v4 = 1.4924 ∗ 1.3513 = 2.0167

y = v6 = 2.0167

Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs
June 1, 2005 Matheon Workshop – Optimization Software 12

/ 25



Forward Derived Evaluation Trace of Baby Example

v−1 = x1 = 1.5000
v̇−1 = ẋ1 = 1.0000
v0 = x2 = 0.5000
v̇0 = ẋ2 = 0.0000
v1 = v−1/v0 = 1.5000/0.5000 = 3.0000
v̇1 = (v̇−1 − v1 ∗ v̇0)/v0 = 1.0000/0.5000 = 2.0000
v2 = sin(v1) = sin(3.0000) = 0.1411
v̇2 = cos(v1) ∗ v̇1 = −0.9900 ∗ 2.0000 = −1.9800
v3 = exp(v0) = exp(0.5000) = 1.6487
v̇3 = v3 ∗ v̇o = 1.6487 ∗ 0.0000 = 0.0000
v4 = v1 − v3 = 3.0000− 1.6487 = 1.3513
v̇4 = v̇1 − v̇3 = 2.0000− 0.0000 = 2.0000
v5 = v2 + v4 = 0.1411 + 1.3513 = 1.4924
v̇5 = v̇2 + v̇4 = −1.9800 + 2.0000 = 0.0200
v6 = v5 ∗ v4 = 1.4924 ∗ 1.3513 = 2.0167
v̇6 = v̇5 ∗ v4 + v5 ∗ v̇4 = 0.0200 ∗ 1.3513 + 1.4924 ∗ 2.0000 = 3.0118
y = v6 = 2.0100
ẏ = v̇6 = 3.0110
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Reverse Derived Trace of Baby Example

v
−1 = x1 = 1.5000

v0 = x2 = 0.5000
v1 = v

−1/v0 = 1.5000/0.5000 = 3.0000
v2 = sin(v1) = sin(3.0000) = 0.1411

v3 = exp(v0) = exp(0.5000) = 1.6487
v4 = v1 − v3 = 3.0000 − 1.6487 = 1.3513

v5 = v2 + v4 = 0.1411 + 1.3513 = 1.4924
v6 = v5 ∗ v4 = 1.4924 ∗ 1.3513 = 2.0167

y = v6 = 2.0167
v̄6 = ȳ = 1.0000

v̄5 = v̄6 ∗ v4 = 1.0000 ∗ 1.3513 = 1.3513
v̄4 = v̄6 ∗ v5 = 1.0000 ∗ 1.4924 = 1.4924

v̄4 = v̄4 + v̄5 = 1.4924 + 1.3513 = 2.8437
v̄2 = v̄5 = 1.3513

v̄3 = −v̄4 = −2.8437
v̄1 = v̄4 = 2.8437

v̄0 = v̄3 ∗ v3 = −2.8437 ∗ 1.6487 = −4.6884
v̄1 = v̄1 + v̄2 ∗ cos(v1) = 2.8437 + 1.3513 ∗ (−0.9900) = 1.5059

v̄0 = v̄0 − v̄1 ∗ v1/v0 = −4.6884 − 1.5059 ∗ 3.000/0.5000 = −13.7239
v̄
−1 = v̄1/v0 = 1.5059/0.5000 = 3.0118

x̄2 = v̄0 = −13.7239
x̄1 = v̄

−1 = 3.0118
Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs

June 1, 2005 Matheon Workshop – Optimization Software 14
/ 25

Fortran Example – Tapenade, Forward mode

Automatic Differentiation of FORTRAN77, F90/F95 partial

Automatic Differentiation by Source Transformation
Takes Fortran source code
Converting to internal representation
Augment internal representation with AD-instructions
Generate target source code

Freely available from
http://www-sop.inria.fr/tropics/tapenade.html

↓ ↓ ↑

SUBROUTINE baby( x1, x2, y)

⇓ Tapenade Forward

SUBROUTINE baby d( x1, x1d, x2, x2d, y, yd)

↑ ↑ ↑ ↑ ↓ ↓

Driver program needed! Hurry
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Fortran Example – Tapenade
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Fortran Example – Tapenade, Driver, Forward Mode

PROGRAM BABYEXAMPLE D

IMPLICIT NONE

REAL :: x1, x2, y

REAL x1d, x2d, yd

x1 = 1.5

x2 = 0.5

x1d = 1.0

x2d = 0.0

call baby d( x1, x1d, x2, x2d, y, yd )

print *,y, yd

END PROGRAM BABYEXAMPLE D

Output:

2.016647 3.011843
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Fortran Example – Tapenade, Reverse mode

↓ ↓ ↑

SUBROUTINE baby( x1, x2, y)

⇓ Tapenade Reverse

SUBROUTINE baby b( x1, x1b, x2, x2b, y, yb)

↑ ↓ ↑ ↓ ↓X ↑

Driver program needed!

!! Function value y not computed in adjoint mode !! (Tapenade specific)

Hurry
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Fortran Example – Tapenade, Driver, Forward Mode

PROGRAM BABYEXAMPLE B

IMPLICIT NONE

REAL :: x1, x2, y

REAL x1b, x2b, yb

x1 = 1.5

x2 = 0.5

yb = 1.0

call baby b( x1, x1b, x2, x2b, y, yb )

print *,x1, x1b

print *,x2, x2b

END PROGRAM BABYEXAMPLE B

Output:

1.500000 3.011843

0.5000000 -13.72396
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Checkpointing – Evolutions, time dependent problem

Adjoint calculation

PSfrag replacements

F

F0 F1 F2 Ft−2 Ft−1

F̄

F̄0 F̄1 F̄2 F̄t−2 F̄t−1

x0 x1 x2 xt−1 xt

x̄0 x̄1 x̄2 x̄t−1 x̄t

Hurry
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Checkpointing – Runtime-Memory-Tradeoff

Discritization of Burgers Equation
5000 Timesteps

Runtime ratio TIME(∇f )
TIME(f ) versus #Checkpoints

#Timesteps

P
S
frag

rep
lacem

en
ts

50.0

20.0

20.0

10.0

5.0

1.00.1

Checkpoints*100/TimeSteps

Philosophy:

Accept slight increase in operation
count for drastic reduction in memory
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Checkpointing – Implementation

ADOL-C – C++-tool, based on Overloading

Full language support (work is done at runtime)

records function evaluation on a several TAPEs

Activate Sourcecode – replace double by active datatype adouble

special syntax for tape creation, initialization of independents, etc.

Freely available from http://www.math.tu-dresden.de/~adol-c/

Question: Where to place checkpoints optimally?

REVOLVE – Program-Reversals for (pseudo)- Time-stepping Procedures

Freely available from
http://www.math.tu-dresden.de/wir/project/revolve/

revolve tells what to do next inside main loop:
Store / restore state

Advance k states

Adjoint state

}

provide user routines for these steps!
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Software for Automatic Differentiation

www.autodiff.org

AD - Tools for Fortran and C

ADOL-C, REVOLVE: C, C++, Open Source

ADIFOR 2.0 / 3.0: Fortran 77/90/95, Licensed, Closed Source

Tapenade: Fortran 77/90/95, (some) C, free, Closed Source

TAF / TAC (FastOpt GbR):Fortran 77/90/95, (some) C, commercial,
maybe free for educational

NAGWare Fortran 95, NAG Ltd., Oxford, UK: AD-enabled version in beta
status, not available for the public

OpenAd: Fortran 77/90/95, (some) C, Open Source

Other tools
for Fortran,C, C++ for Matlab for ADA for . . .
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Thank you!
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