Computing Derivatives of Programs Algorithmic Differentiation by Example

Andreas Griewank* Jan Riehme

* DFG Research Center Matheon

Institute for Applied Mathematics Humboldt Universität zu Berlin {riehme,griewank}@math.hu-berlin.de

 $June \ 1, \ 2005$ Matheon Workshop – Optimization Software

Derivatives of Programs

・ロト ・御 ト ・注 ト ・注 ・ うへの

But how about the real world?

Introduction – Optimization Programming Scenario

- Nonlinear Optimization needs derivatives, for example:
 - Gradients, Jacobians, Hessians
 - Truncated Newton needs Jacobian-Vector-Products and Vector-Jacobian-Products or Hessian-Vector-Products
- Readily available in **GAMS/AMPL**.
- NLP solver usually ask for

Riehme, Griewank (Matheon, HU Berlin)

- Subroutine to compute function value F
- Subroutine to evaluate constraints
- Sparsity patterns of Values, Jacobian, Hessian
- Often there is an interface to provide derivatives
 - Subroutines for gradients, Jacobians-Vector-Products, Hessians-Vector-Products

Default: Differencing

iehme,Griewank (Matheon, HU Berlin)

Use Automatic Differentiation to obtain derivatives

• write a wrapper to plug generated derivative into NLP - interface (NEOS)

Derivatives of Programs

→御▶ <注▶ →注▶ 二注 - のへ

Introduction

www.autodiff.org

AD - Tools for Fortran and C

- ADOL-C, REVOLVE: C, C++, Open Source
- ADIFOR 2.0 / 3.0: Fortran 77/90/95, Licensed, Closed Source
- Tapenade: Fortran 77/90/95, (some) C, free, Closed Source
- TAF / TAC (FastOpt GbR):Fortran 77/90/95, (some) C, commercial, maybe free for educational
- NAGWare Fortran 95, NAG Ltd., Oxford, UK: AD-enabled version in beta status, not available for the public
- OpenAd: Fortran 77/90/95, (some) C, Open Source

Other tools

for Fortran,C, C++ for Matlab for ADA for ...

Main Properties of Automatic Differentiation:

No Truncation Errors !!!!

Riehme,Griewank (Matheon, HU Berlin)

Chain Rule applied to Numbers

Applicability to "Arbitrary Programs".

A priori bounded and/or adjustable costs:

- Total Operations Count
- Maximal Memory Requirement
- Total Memory Traffic

always relative to original function.

es of Progra

Geometric Interpretation - Forward Mode

Practical Execution of Forward and Reverse Differentiation

Practical Execution of Forward and Reverse Differentiation

Sourcecode $y = F(x) \in \mathbb{R}^m$ ∂_reverse a-forward Object Code **Object** Code $\bar{x} = \bar{y}F'(x) \in \mathbb{R}^n$ y = F(x)Intermediate values $\dot{y} = F'(x)\dot{x} \in \mathbb{R}^m$ Stack (Tape) $(x, \overline{y}) \in \mathbb{R}^{n+m}$ $(x, \dot{x}) \in \mathbb{R}^{2n}$ ◆□▶ ◆御▶ ◆注▶ ◆注▶ 「注」の久で Riehme, Griewank (Matheon, HU Berlin) Derivatives of Programs

Practical Execution of Forward and Reverse Differentiation

Derivatives of Programs

Derivatives in Optimization Scenario

$$F(x) = \begin{bmatrix} f(x) \\ c(x) \end{bmatrix}$$
 : $\mathbb{R}^n \mapsto \mathbb{R}^m$

with Lagrangian function

$$L(x) = \lambda^T F(x)$$
 for fixed $\lambda \in \mathbb{R}^m$

Product	Derivative	Cost-Factor			
Jac_mat	$F'(x)S \in \mathbb{R}^{m \times p}$	3 * <i>p</i>			
Jacobian	$F'(x) \in \mathbb{R}^{m \times n}$	$\min\left\{\#[F'],\#[F'(x)^T]\right\}$			
mat_Jac	$WF'(x) \in \mathbb{R}^{q \times n}$	5 * <i>q</i>			
gradient	$\nabla L(x) \in \mathbb{R}^n$	5 ⇐			
Hess_mat	$ abla^2 L(x)S \in \mathbb{R}^{n imes p}$	5 * <i>p</i> <==			
Hessian	$ abla^2 L(x) \in \mathbb{R}^{n imes n}$	$5*\#[\nabla^2 L(x)]$			
where $s \in \mathbb{R}^n$, $S \in \mathbb{R}^{n imes p}$, $W \in \mathbb{R}^{q imes m}$, and					
$\#[A] \equiv \max_{i} \left\{ nonzeros \left(e_{i}^{T} A \right) \right\}$					

Derivatives of Programs

Baby Example

Riehme, Griewank (Matheon, HU Berlin)

 $y = [\sin(x_1/x_2) + x_1/x_2 - \exp(x_2)] * [x_1/x_2 - \exp(x_2)]$

Evaluation of Baby Example with

 $n = \dim(x) = 2$ and $m = \dim(y) = 1$

ι	/ _1	=	<i>x</i> ₁	=	1.5000		
L	0	=	<i>x</i> ₂	=	0.5000		
L	′1	=	v_{-1}/v_{0}	=	1.5000/0.5000	=	3.0000
ι	' 2	=	$sin(v_1)$	=	sin(3.0000)	=	0.1411
ι	′ 3	=	$\exp(v_0)$	=	exp(0.5000)	=	1.6487
ι	′ 4	=	$v_1 - v_3$	=	3.0000 - 1.6487	=	1.3513
ι	′ 5	=	$v_2 + v_4$	=	0.1411 + 1.3513	=	1.4924
ι	6	=	<i>V</i> ₅ * <i>V</i> ₄	=	1.4924 * 1.3513	=	2.0167
y	/	=	v ₆	=	2.0167		

Derivatives of Progra

◆□▶ ◆御▶ ◆注▶ ◆注▶ 「注」の文で

Forward Derived Evaluation Trace of Baby Example

[1 5000		
$v_{-1} = x_1$	= 1.5000		
$\dot{v}_{-1} = \dot{x}_1$	= 1.0000		
$v_0 = x_2$	= 0.5000		
$\dot{v}_0 = \dot{x}_2$	= 0.0000		
$v_1 = v_{-1}/v_0$	= 1.5000/0.5000	=	3.0000
$\dot{v}_1 = (\dot{v}_{-1} - v_1 * \dot{v}_0)/v$	$r_0 = 1.0000/0.5000$	=	2.0000
$v_2 = \sin(v_1)$	= sin(3.0000)	=	0.1411
$\dot{v}_2 = \cos(v_1) * \dot{v}_1$	= -0.9900 * 2.0000	= -	-1.9800
$v_3 = \exp(v_0)$	$= \exp(0.5000)$	=	1.6487
$\dot{v}_3 = v_3 * \dot{v}_o$	= 1.6487 * 0.0000	=	0.0000
$v_4 = v_1 - v_3$	= 3.0000 - 1.6487	=	1.3513
$\dot{v}_4 = \dot{v}_1 - \dot{v}_3$	= 2.0000 - 0.0000	=	2.0000
$v_5 = v_2 + v_4$	= 0.1411 + 1.3513	=	1.4924
$\dot{v}_5 = \dot{v}_2 + \dot{v}_4$	= -1.9800 + 2.0000	=	0.0200
$v_6 = v_5 * v_4$	= 1.4924 * 1.3513	=	2.0167
$\dot{v}_6 = \dot{v}_5 * v_4 + v_5 * \dot{v}_4$	= 0.0200 * 1.3513 + 1.4924	4 * 2.0000 =	3.0118
$y = v_6$	= 2.0100		
$\dot{y} = \dot{v}_6$	= 3.0110		
	4	▲間▼ ≪ 間▼ ▲ 3	●▶ 唐 の
me,Griewank (Matheon, HU Berlin)	Derivatives of Programs		

Fortran Example – Tapenade, Forward mode

- Automatic Differentiation of FORTRAN77, F90/F95 partial
- Automatic Differentiation by **Source Transformation**
 - Takes Fortran source code
 - Converting to internal representation
 - Augment internal representation with AD-instructions
 - Generate target source code
- Freely available from
 - http://www-sop.inria.fr/tropics/tapenade.html

Reverse Derived Trace of Baby Example

$v_{-1} = x_1 = 1.5000$	
$v_0 = x_2 = 0.5000$	
$v_1 = v_{-1}/v_0 = 1.5000/0.5000 = 3.0000$	
$v_2 = \sin(v_1) = \sin(3.0000) = 0.1411$	
$v_3 = \exp(v_0) = \exp(0.5000) = 1.6487$	
$v_4 = v_1 - v_3 = 3.0000 - 1.6487 = 1.3513$	
$v_5 = v_2 + v_4 = 0.1411 + 1.3513 = 1.4924$	
$v_6 = v_5 * v_4 = 1.4924 * 1.3513 = 2.0167$	
$v = v_6 = 2.0167$	
$\bar{v}_6 = \bar{v} = 1,0000$	
$\bar{v}_{e} = \bar{v}_{e} * v_{e} = 1,0000 * 1,3513 = 1,3513$	
$\overline{v}_3 = \overline{v}_6 * v_4 = 10000 * 10010 = 10010$ $\overline{v}_4 = \overline{v}_6 * v_5 = 10000 * 14924 = 14924$	
$\vec{v}_4 = \vec{v}_6 + \vec{v}_5 = 10000 + 1102 + 10000 + 1102 + 100000 + 100000 + 1000000 + 1000000 + 1000000 + 1000000 + 1000000 + 1000000 + 1000000 + 100000000$	
$v_4 = v_4 + v_5 = 1.4924 + 1.5513 = 2.0457$ $v_6 = v_6 = 1.3513$	
$v_2 - v_5 - 1.5515$	
$v_3 = -v_4 = -2.0437$ $v_4 = -2.0437$	
$v_1 - v_4 - 2.0437$	
$v_0 = v_3 * v_3 = -2.0457 * 1.0407 = -4.0004$	
$V_1 = V_1 + V_2 * \cos(V_1) = 2.8437 + 1.3513 * (-0.9900) = 1.5059$	
$v_0 = v_0 - v_1 * v_1 / v_0 = -4.0884 - 1.5059 * 3.000 / 0.5000 = -13.7239$	
$v_{-1} = v_1 / v_0 = 1.5059 / 0.5000 = 3.0118$	
$x_2 = v_0 = -13.7239$	
$\bar{x}_1 = \bar{v}_{-1} = 3.0118 \qquad $	996
Riehme Griewank (Matheon HIL Berlin) Derivatives of Programs	25

Fortran Example – Tapenade

PROGRAM BABYEXAMPLE_D
IMPLICIT NONE
REAL :: x1, x2, y
REAL x1d, x2d, yd
x1 = 1.5
x2 = 0.5
x1d = 1.0
x2d = 0.0
call baby_d(x1, x1d, x2, x2d, y, yd)
print *,y, <mark>yd</mark>
END PROGRAM BABYEXAMPLE_D

Output:

Riehme, Griewank (Matheon, HU Berlin)

3.011843 2.016647

Derivatives of Programs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ →臣 ● のへの

Fortran Example – Tapenade, Reverse mode

• Driver program needed!

ehme,Griewank (Matheon, HU Berlin)

• !! Function value y not computed in adjoint mode !! (Tapenade specific)

Derivatives of Programs

➤ Hurry

Fortran Example – Tapenade, Driver, Forward Mode

PROGRAM BABYEXAMPLE_B
IMPLICIT NONE
REAL :: x1, x2, y
REAL x1b, x2b, yb
x1 = 1.5
x2 = 0.5
yb = 1.0
call baby_b(x1, x1b, x2, x2b, y, yb)
print *,x1, <mark>x1b</mark>
print *,x2, <mark>x2b</mark>
END PROGRAM BABYEXAMPLE_B

Output:

Riehme, Griewank (Matheon, HU Berlin)

ehme,Griewank (Matheon, HU Berlin

1.500000	3.011843	
0.5000000	-13.72396	

Derivatives of Program

```
◆□▶ ◆御▶ ◆注▶ ◆注▶ 「注」の文で
```

Checkpointing – Evolutions, time dependent problem

➡ Hurry

Checkpointing – Runtime-Memory-Tradeoff

Checkpointing – Runtime-Memory-Tradeoff

Checkpointing – Implementation

Software for Automatic Differentiation

www.autodiff.org

AD - Tools for Fortran and C

- ADOL-C, REVOLVE: C, C++, Open Source
- ADIFOR 2.0 / 3.0: Fortran 77/90/95, Licensed, Closed Source
- Tapenade: Fortran 77/90/95, (some) C, free, Closed Source
- TAF / TAC (FastOpt GbR):Fortran 77/90/95, (some) C, commercial, maybe free for educational
- NAGWare Fortran 95, NAG Ltd., Oxford, UK: AD-enabled version in beta status, not available for the public
- OpenAd: Fortran 77/90/95, (some) C, Open Source

Other tools	5				
	for Fortran,	C, C++	for Matlab	for ADA	for
					2 - 3 C
Riehme Griewank (M	latheon, HU Berlin)		Derivatives of Programs		

Bibliography

- A. Griewank: *Evaluating Derivatives: principles and techniques of algorithmic differentiation.* SIAM, Frontiers in Applied Mathematics, Number 19, 2000.
- A. Griewank and A. Walther: Revolve: An Implementation of Checkpointing for the Reverse or Adjoint Mode of Computational Differentiation. ACM Trans. Math. Software 26, 2000, 19–45.
- A. Griewank and A. Walther: Applying the Checkpointing Routine treeverse to Discretizations of Burgers' Equation. Lect. Notes Comput. Sci.and Engin.
 8: H.-J. Bungartz, F. Durst, C. Zenger, (eds.), High Performance Scientific and Engineering Computing, Springer Berlin Heidelberg, 1999.

Derivatives of Programs

