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Computing Derivatives of Programs

Algorithmic Differentiation by Example

AD - Tools for Fortran and C
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Introduction — Optimization Programming Scenario Main Properties of Automatic Differentiation:

@ Nonlinear Optimization needs derivatives, for example:
@ Gradients, Jacobians, Hessians No Truncation Errors !l J
@ Truncated Newton needs Jacobian-Vector-Products and
Vector-Jacobian-Products or Hessian-Vector-Products

Chain Rule applied to Numbers J
@ Readily available in GAMS/AMPL. But how about the real world?
@ NLP - solver usually ask for Applicabil " Arbi p .
@ Subroutine to compute function value F pplicability to ~ Arbitrary Frograms. J

@ Subroutine to evaluate constraints
@ Sparsity patterns of Values, Jacobian, Hessian
@ Often there is an interface to provide derivatives A priori bounded and/or adjustable costs:

@ Subroutines for gradients, Jacobians-Vector-Products,
Hessians-Vector-Products

o Total Operations Count

. . @ Maximal Memory Requirement
Default: Differencing

@ Total Memory Traffic

Use Automatic Differentiation to obtain derivatives always relative to original function.

@ write a wrapper to plug generated derivative into NLP - interface (NEQOS)
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Geometric Interpretation — Forward Mode Practical Execution of Forward and Reverse Differentiation

A Sourcecode
y=F(x)eRm
\\\‘_77_,/'
F

Original program F
Tangent direction for input x
Tangent version of F ( generated by Forward Mode AD)

Tangent of output y:

< Texe T

y = F(x,x) = F'(x)-%
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Geometric Interpretation — Reverse Mode Practical Execution of Forward and Reverse Differentiation

Sourcecode
y=F(x)eR™

F
A&

F a/&o
Object Code
y=F(x)
y=F(x)x ¢ R

Original program F
Adjoint direction for output y
Adjoint version of F (generated by Reverse Mode AD) (x, %) € R2"

Adjoint of input x:

XTIl ™M
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Practical Execution of Forward and Reverse Differentiation

Sourcecode

y=F(x) e R™

Object Code

y=F(x)
y=F(x)x € R™

(x, X) € R
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A
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e
Object Code g
y =F(x)
y=F(x)x € R

(x, X) € R
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/ Intermediate \ X

Object Code

values

= yF(x) € R

Stack (Tape)
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Practical Execution of Forward and Reverse Differentiation

Sourcecode

y=F(x)eR™

7 Sk
| Sl re

_ - f~

(x,y) € R™™

Object Code

Derivatives in Optimization Scenario

with Lagrangian function

R" — R™

L(x) =ATF(x) forfixed \ecR™

Product

Derivative

Cost-Factor

Jac_mat
Jacobian

F'(x)S € RmxP
F'(x) e RM>n

3%p
min {#[F']7 #[F’(X)T]}

mat_Jac
gradient

WF'(x) € RI*"
VL(x) € R”

5%xq
5 <«

Hess_mat
Hessian

V2L(x)S € R™*P
V2L(x) € R™<"

5%xp <=
5% #[V2L(x)]

X1

Intermediate
values

x1-

= yF(x) € R”
= yF"(x)x € R

Stack (Tape)

Derivatives of Programs

(x,y) € R™™

where s ¢ R", S € R"™P, W € R9*™ and

#[A] = max {nonzeros (e/ A) }
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y = [sin(x1/x2) + x1/x2 — exp(x2)] * [x1/x2 — exp(x2)]

Baby Example

)

Evaluation of Baby Example with

n=dim(x)=2 and m=dim(y)=1

Vo = Xxq = 1.5000

Vo = X = 0.5000

vi = v_i/vy = 15000/0.5000 = 3.0000
v, = sin(vy) = sin(3.0000) = 0.1411
vs = exp(wy) = exp(0.5000) = 1.6487
vs = wvi—vz = 3.0000-16487 = 1.3513
vs = w+v = 01411413513 = 1.4924
ve = wsxws = 14924%1.3513 = 20167
y = % = 2.0167
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Forward Derived Evaluation Trace of Baby Example Fortran Example — Tapenade, Forward mode

Vo1 =X = 1.5000 @ Automatic Differentiation of FORTRAN77, F90/F95 partial
vor=x1 = 1.0000 @ Automatic Differentiation by Source Transformation

Voo =X = 0.5000 @ Takes Fortran source code

W =X = 0.0000 o Converting to internal representation

vi =voi/w = 1.5000/0.5000 = 3.0000 o Augment internal representation with AD-instructions

v = (Vo1 — v * )/vo = 1.0000/0.5000 —  2.0000 o Generate target source code

va =sin(vq) = sin(3.0000) = 0.1411 @ Freely available from

vy, =cos(vy) * v = —0.9900 * 2.0000 = —1.9800 http://www-sop.inria.fr/tropics/tapenade.html

vs = exp(vp) = exp(0.5000) = 1.6487

V3 = V3%V, = 1.6487 % 0.0000 = 0.0000 l l T

i =wv—v3 = 3.0000 — 1.6487 = 1.3513 SUBROUTINE baby( x1, x2, y)

Vi =V — w3 = 2.0000 — 0.0000 = 2.0000

Vs =w -+ =0.1411+ 1.3513 = 1.4924 \U/ Tapenade Forward

Vs =W+ v = —1.9800 + 2.0000 = 0.0200

Ve = Vg x Vg = 1.4924 % 1.3513 = 2.0167 SUBROUTINE baby d( x1, =x1d, x2, x2d, v, yd)
Ve =Vsxvy+vskvy = 0.0200%1.3513 4 1.4924 %2.0000 = 3.0118 1 T T T ! !
y =V = 2.0100

y =% = 3.0110 @ Driver program needed!
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Reverse Derived Trace of Baby Example Fortran Example — Tapenade

Vol = X1 = 1.5000
vi = v_1/v = 1.5000/0.5000 = 3.0000
v2 = sin(v1) = sin(3.0000) = 0.1411 _
vs = exp(vo) — exp(05000) — 1.6487 ) given by the suffic (2 Fortran?7 @ Fortran95
vs = v1 — v3 = 3.0000 — 1.6487 = 1.3513
vs = vo + v4 = 0.1411 4 1.3513 = 1.4924

Select the Fortran dialect:

~Top Routine ;; Select Files :

fhomefrichme /TALKS/0S06-01-BERLIN/BABY /babyexample f35

Ve = V5 * V4 = 1.4924 % 1.3513 = 2.0167 | A
Y=V = 20167 baby W remove
76 = y = 1.0000
Vs = U * va = 1.0000 * 1.3513 = 1.3513 | e
V4 = VG * Vs = 1.0000 * 1.4924 = 1.4924 Input Variables : Output Variables :
V4 = Vs + Vs = 1.4924 + 1.3513 = 2.8437 . - —
% = v = 1.3513 3 S [ Ed
V3 = —vy = —2.8437 remoue remove
V1 =y = 2.8437

o = V3% v3 = —2.8437 * 1.6487 = —4.6884
Vi = V1 + ¥ % cos(vi) = 2.8437 + 1.3513 x (—0.9900) = 1.5059

‘Select the differentiate method :

Vo= Vo — W1 % V1/V0 = —4.6884 — 1.5059 * 3000/05000 = —13.7239 (@ Tangent Mode ) Tangent Wectorial Mode () Rewerse Mode
Vo1 = /v = 1.5059/0.5000 = 3.0118
)_(2 = VO = 7137239 [ HTML view Differentiate H Advanced Mode

X1 = v_1 =3.0118
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Fortran Example — Tapenade, Driver, Forward Mode Fortran Example — Tapenade, Driver, Forward Mode

PROGRAM BABYEXAMPLE.B
IMPLICIT NONE

PROGRAM BABYEXAMPLE.D
IMPLICIT NONE

REAL :: x1, x2, y REAL :: x1, x2, y

REAL x1d, x2d, yd REAE xlb, x2b, yb

x1 =1.5 x1 : 1.5

x2 = 0.5 x2 = 0.5

xid = 1.0 yb = 1.0

x2d = 0.0 call baby b( x1, x1b, x2, x2b, y, yb )

print *,x1, x1b
print *,x2, x2b
END PROGRAM BABYEXAMPLE B

call babyd( x1, x1d, x2, x2d, y, yd )
print *,y, yd
END PROGRAM BABYEXAMPLE D

Output: Output:

1.500000 3.011843
0.5000000 -13.72396

2.016647 3.011843
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Fortran Example — Tapenade, Reverse mode Checkpointing — Evolutions, time dependent problem

Adjoint calculation
F
F F F. F, F,
-2 =il
SUBROUTINE baby b( x1, x1b, x2, x2b, ¥y, yb)

(R N AR SR :ox oz EF F

Fo F1 Fz Frfz Ft—l
) ——C

| ! T
SUBROUTINE baby( x1, x2, y)

\U/ Tapenade Reverse

@ Driver program needed!

@ !l Function value y not computed in adjoint mode !! (Tapenade specific)
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Checkpointing — Runtime-Memory-Tradeoff Checkpointing — Implementation

ADOL-C - C++-tool, based on Overloading

o Full language support (work is done at runtime)

500 + Discritization of Burgers Equation
5000 Timesteps @ records function evaluation on a several TAPEs
Runtime ratioc TMECT) o o #Checkpoints o Activate Sourcecode — replace double by active datatype adouble
TIME(f) # Timesteps @ special syntax for tape creation, initialization of independents, etc.

@ Freely available from http://www.math.tu-dresden.de/ adol-c/

o o 200
Checkpoints*100/ TimeSteps
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Checkpointing — Runtime-Memory-Tradeoff Checkpointing — Implementation

ADOL-C - C++-tool, based on Overloading
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w00 & Discritization of Burgers Equation o Full language support (work is done at runtime)
5000 Timesteps @ records function evaluation on a several TAPEs
Runtime ratio. TMECYN) o #Checkpoints @ Activate Sourcecode — replace double by active datatype adouble
TIME(f) # Timesteps @ special syntax for tape creation, initialization of independents, etc.
o Freely available from http://www.math.tu-dresden.de/ adol-c/
00T Philosophy: ’
Accept slight increase in operation Question: Where to place checkpoints optimally?
count for drastic reduction in memor . .
y REVOLVE - Program-Reversals for (pseudo)- Time-stepping Procedures

@ Freely available from
http://www.math.tu-dresden.de/wir/project/revolve/

@ revolve tells what to do next inside main loop:
o Store / restore state

o Advance k states } provide user routines for these steps!

0.1 1.0 20.0

o Adjoint state
Checkpoints*100/TimeSteps y
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Software for Automatic Differentiation
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AD - Tools for Fortran and C
e ADOL-C, REVOLVE: C, C++, Open Source Tha n k you I J
o ADIFOR 2.0 / 3.0: Fortran 77/90/95, Licensed, Closed Source )
@ Tapenade: Fortran 77/90/95, (some) C, free, Closed Source

@ TAF / TAC (FastOpt GbR):Fortran 77/90/95, (some) C, commercial,
maybe free for educational

o NAGWare Fortran 95, NAG Ltd., Oxford, UK: AD-enabled version in beta
status, not available for the public

@ OpenAd: Fortran 77/90/95, (some) C, Open Source

Other tools
for Fortran,C, C++ for Matlab for ADA for
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