Introduction

www.autodiff.org

Computing Derivatives of Programs

Algorithmic Differentiation by Example

AD - Tools for Fortran and C
o ADOL-C, REVOLVE: C, C++, Open Source

Andreas Griewank™ Jan Riehme ADIFOR 2.0 / 3.0: Fortran 77/90/95, Licensed, Closed Source

©

* DFG Research Center Matheon o Tapenade: Fortran 77/90/95, (some) C, free, Closed Source
Institute for Applied Mathematics o TAF / TAC (FastOpt GbR):Fortran 77/90/95, (some) C, commercial,
Humboldt Universitat zu Berlin DX f d q |

{riehme,griewank}@math.hu-berlin.de maybe free for e ucationa

@ NAGWare Fortran 95, NAG Ltd., Oxford, UK: AD-enabled version in beta
status, not available for the public

@ OpenAd: Fortran 77/90/95, (some) C, Open Source

June 1, 2005
MATHEON Workshop — Optimization Software

Other tools
for Fortran,C, C++ for Matlab for ADA for ...

Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs

Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs

Introduction — Optimization Programming Scenario Main Properties of Automatic Differentiation:

@ Nonlinear Optimization needs derivatives, for example:
@ Gradients, Jacobians, Hessians No Truncation Errors !l J
@ Truncated Newton needs Jacobian-Vector-Products and
Vector-Jacobian-Products or Hessian-Vector-Products

Chain Rule applied to Numbers J
@ Readily available in GAMS/AMPL. But how about the real world?
@ NLP - solver usually ask for Applicabil " Arbi p .
@ Subroutine to compute function value F pplicability to ~ Arbitrary Frograms. J

@ Subroutine to evaluate constraints
@ Sparsity patterns of Values, Jacobian, Hessian
@ Often there is an interface to provide derivatives A priori bounded and/or adjustable costs:

@ Subroutines for gradients, Jacobians-Vector-Products,
Hessians-Vector-Products

o Total Operations Count

. . @ Maximal Memory Requirement
Default: Differencing

@ Total Memory Traffic

Use Automatic Differentiation to obtain derivatives always relative to original function.

@ write a wrapper to plug generated derivative into NLP - interface (NEQOS)

Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs

Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs

www.autodiff.org

Geometric Interpretation — Forward Mode Practical Execution of Forward and Reverse Differentiation

A Sourcecode
y=F(x)eRm
\\\‘_77_,/'
F

Original program F
Tangent direction for input x
Tangent version of F (generated by Forward Mode AD)

Tangent of output y:

< Texe T

y = F(x,x) = F'(x)-%

Derivatives of Programs

Riehme, Griewank (Matheon, HU Berlin)

Derivatives of Programs

Riehme,Griewank (Matheon, HU Berlin)

Geometric Interpretation — Reverse Mode Practical Execution of Forward and Reverse Differentiation

Sourcecode
y=F(x)eR™

F
A&

F a/&o
Object Code
y=F(x)
y=F(x)x ¢ R

Original program F
Adjoint direction for output y
Adjoint version of F (generated by Reverse Mode AD) (x, %) € R2"

Adjoint of input x:

XTIl ™M

Derivatives of Programs

Riehme,Griewank (Matheon, HU Berlin)

Derivatives of Programs

Riehme,Griewank (Matheon, HU Berlin)

Practical Execution of Forward and Reverse Differentiation

Sourcecode

y=F(x) e R™

Object Code

y=F(x)
y=F(x)x € R™

(x, X) € R

Riehme,Griewank (Matheon, HU Berlin)

A
\
e
Object Code g
y =F(x)
y=F(x)x € R

(x, X) € R

Riehme,Griewank (Matheon, HU Berlin)

/ Intermediate \ X

Object Code

values

= yF(x) € R

Stack (Tape)

Derivatives of Programs

Practical Execution of Forward and Reverse Differentiation

Sourcecode

y=F(x)eR™

7 Sk
| Sl re

_ - f~

(x,y) € R™™

Object Code

Derivatives in Optimization Scenario

with Lagrangian function

R" — R™

L(x) =ATF(x) forfixed \ecR™

Product

Derivative

Cost-Factor

Jac_mat
Jacobian

F'(x)S € RmxP
F'(x) e RM>n

3%p
min {#[F']7 #[F’(X)T]}

mat_Jac
gradient

WF'(x) € RI*"
VL(x) € R”

5%xq
5 <«

Hess_mat
Hessian

V2L(x)S € R™*P
V2L(x) € R™<"

5%xp <=
5% #[V2L(x)]

X1

Intermediate
values

x1-

= yF(x) € R”
= yF"(x)x € R

Stack (Tape)

Derivatives of Programs

(x,y) € R™™

where s ¢ R", S € R"™P, W € R9*™ and

#[A] = max {nonzeros (e/ A) }

Riehme,Griewank (Matheon, HU Berlin)

Derivatives of Programs

y = [sin(x1/x2) + x1/x2 — exp(x2)] * [x1/x2 — exp(x2)]

Baby Example

)

Evaluation of Baby Example with

n=dim(x)=2 and m=dim(y)=1

Vo = Xxq = 1.5000

Vo = X = 0.5000

vi = v_i/vy = 15000/0.5000 = 3.0000
v, = sin(vy) = sin(3.0000) = 0.1411
vs = exp(wy) = exp(0.5000) = 1.6487
vs = wvi—vz = 3.0000-16487 = 1.3513
vs = w+v = 01411413513 = 1.4924
ve = wsxws = 14924%1.3513 = 20167
y = % = 2.0167

Riehme,Griewank (Matheon, HU Berlin)

Derivatives of Programs

Forward Derived Evaluation Trace of Baby Example Fortran Example — Tapenade, Forward mode

Vo1 =X = 1.5000 @ Automatic Differentiation of FORTRAN77, F90/F95 partial
vor=x1 = 1.0000 @ Automatic Differentiation by Source Transformation

Voo =X = 0.5000 @ Takes Fortran source code

W =X = 0.0000 o Converting to internal representation

vi =voi/w = 1.5000/0.5000 = 3.0000 o Augment internal representation with AD-instructions

v = (Vo1 — v *)/vo = 1.0000/0.5000 — 2.0000 o Generate target source code

va =sin(vq) = sin(3.0000) = 0.1411 @ Freely available from

vy, =cos(vy) * v = —0.9900 * 2.0000 = —1.9800 http://www-sop.inria.fr/tropics/tapenade.html

vs = exp(vp) = exp(0.5000) = 1.6487

V3 = V3%V, = 1.6487 % 0.0000 = 0.0000 l l T

i =wv—v3 = 3.0000 — 1.6487 = 1.3513 SUBROUTINE baby(x1, x2, y)

Vi =V — w3 = 2.0000 — 0.0000 = 2.0000

Vs =w -+ =0.1411+ 1.3513 = 1.4924 \U/ Tapenade Forward

Vs =W+ v = —1.9800 + 2.0000 = 0.0200

Ve = Vg x Vg = 1.4924 % 1.3513 = 2.0167 SUBROUTINE baby d(x1, =x1d, x2, x2d, v, yd)
Ve =Vsxvy+vskvy = 0.0200%1.3513 4 1.4924 %2.0000 = 3.0118 1 T T T ! !
y =V = 2.0100

y =% = 3.0110 @ Driver program needed!

Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs Riehme, Griewank (Matheon, HU Berlin) Derivatives of Programs

Reverse Derived Trace of Baby Example Fortran Example — Tapenade

Vol = X1 = 1.5000
vi = v_1/v = 1.5000/0.5000 = 3.0000
v2 = sin(v1) = sin(3.0000) = 0.1411 _
vs = exp(vo) — exp(05000) — 1.6487) given by the suffic (2 Fortran?7 @ Fortran95
vs = v1 — v3 = 3.0000 — 1.6487 = 1.3513
vs = vo + v4 = 0.1411 4 1.3513 = 1.4924

Select the Fortran dialect:

~Top Routine ;; Select Files :

fhomefrichme /TALKS/0S06-01-BERLIN/BABY /babyexample f35

Ve = V5 * V4 = 1.4924 % 1.3513 = 2.0167 | A
Y=V = 20167 baby W remove
76 = y = 1.0000
Vs = U * va = 1.0000 * 1.3513 = 1.3513 | e
V4 = VG * Vs = 1.0000 * 1.4924 = 1.4924 Input Variables : Output Variables :
V4 = Vs + Vs = 1.4924 + 1.3513 = 2.8437 . - —
% = v = 1.3513 3 S [Ed
V3 = —vy = —2.8437 remoue remove
V1 =y = 2.8437

o = V3% v3 = —2.8437 * 1.6487 = —4.6884
Vi = V1 + ¥ % cos(vi) = 2.8437 + 1.3513 x (—0.9900) = 1.5059

‘Select the differentiate method :

Vo= Vo — W1 % V1/V0 = —4.6884 — 1.5059 * 3000/05000 = —13.7239 (@ Tangent Mode) Tangent Wectorial Mode () Rewerse Mode
Vo1 = /v = 1.5059/0.5000 = 3.0118
)_(2 = VO = 7137239 [HTML view Differentiate H Advanced Mode

X1 = v_1 =3.0118

Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs

http://www-sop.inria.fr/tropics/tapenade.html

Fortran Example — Tapenade, Driver, Forward Mode Fortran Example — Tapenade, Driver, Forward Mode

PROGRAM BABYEXAMPLE.B
IMPLICIT NONE

PROGRAM BABYEXAMPLE.D
IMPLICIT NONE

REAL :: x1, x2, y REAL :: x1, x2, y

REAL x1d, x2d, yd REAE xlb, x2b, yb

x1 =1.5 x1 : 1.5

x2 = 0.5 x2 = 0.5

xid = 1.0 yb = 1.0

x2d = 0.0 call baby b(x1, x1b, x2, x2b, y, yb)

print *,x1, x1b
print *,x2, x2b
END PROGRAM BABYEXAMPLE B

call babyd(x1, x1d, x2, x2d, y, yd)
print *,y, yd
END PROGRAM BABYEXAMPLE D

Output: Output:

1.500000 3.011843
0.5000000 -13.72396

2.016647 3.011843

Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs

Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs

Fortran Example — Tapenade, Reverse mode Checkpointing — Evolutions, time dependent problem

Adjoint calculation
F
F F F. F, F,
-2 =il
SUBROUTINE baby b(x1, x1b, x2, x2b, ¥y, yb)

(R N AR SR :ox oz EF F

Fo F1 Fz Frfz Ft—l
) ——C

| ! T
SUBROUTINE baby(x1, x2, y)

\U/ Tapenade Reverse

@ Driver program needed!

@ !l Function value y not computed in adjoint mode !! (Tapenade specific)

Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs

Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs

Checkpointing — Runtime-Memory-Tradeoff Checkpointing — Implementation

ADOL-C - C++-tool, based on Overloading

o Full language support (work is done at runtime)

500 + Discritization of Burgers Equation
5000 Timesteps @ records function evaluation on a several TAPEs
Runtime ratioc TMECT) o o #Checkpoints o Activate Sourcecode — replace double by active datatype adouble
TIME(f) # Timesteps @ special syntax for tape creation, initialization of independents, etc.

@ Freely available from http://www.math.tu-dresden.de/ adol-c/

o o 200
Checkpoints*100/ TimeSteps

Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs

Checkpointing — Runtime-Memory-Tradeoff Checkpointing — Implementation

ADOL-C - C++-tool, based on Overloading

Riehme, Griewank (Matheon, HU Berlin) Derivatives of Programs

w00 & Discritization of Burgers Equation o Full language support (work is done at runtime)
5000 Timesteps @ records function evaluation on a several TAPEs
Runtime ratio. TMECYN) o #Checkpoints @ Activate Sourcecode — replace double by active datatype adouble
TIME(f) # Timesteps @ special syntax for tape creation, initialization of independents, etc.
o Freely available from http://www.math.tu-dresden.de/ adol-c/
00T Philosophy: ’
Accept slight increase in operation Question: Where to place checkpoints optimally?
count for drastic reduction in memor . .
y REVOLVE - Program-Reversals for (pseudo)- Time-stepping Procedures

@ Freely available from
http://www.math.tu-dresden.de/wir/project/revolve/

@ revolve tells what to do next inside main loop:
o Store / restore state

o Advance k states } provide user routines for these steps!

0.1 1.0 20.0

o Adjoint state
Checkpoints*100/TimeSteps y

Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs

Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs

http://www.math.tu-dresden.de/~adol-c/
http://www.math.tu-dresden.de/wir/project/revolve/
http://www.math.tu-dresden.de/~adol-c/
http://www.math.tu-dresden.de/wir/project/revolve/

Software for Automatic Differentiation

www.autodiff.org

AD - Tools for Fortran and C
e ADOL-C, REVOLVE: C, C++, Open Source Tha n k you I J
o ADIFOR 2.0 / 3.0: Fortran 77/90/95, Licensed, Closed Source)
@ Tapenade: Fortran 77/90/95, (some) C, free, Closed Source

@ TAF / TAC (FastOpt GbR):Fortran 77/90/95, (some) C, commercial,
maybe free for educational

o NAGWare Fortran 95, NAG Ltd., Oxford, UK: AD-enabled version in beta
status, not available for the public

@ OpenAd: Fortran 77/90/95, (some) C, Open Source

Other tools
for Fortran,C, C++ for Matlab for ADA for

Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs

Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs

Bibliography

[@ A. Griewank: Evaluating Derivatives: principles and techniques of algorithmic
differentiation. SIAM, Frontiers in Applied Mathematics, Number 19, 2000.

[@ A. Griewank and A. Walther: Revolve: An Implementation of Checkpointing
for the Reverse or Adjoint Mode of Computational Differentiation. ACM
Trans. Math. Software 26, 2000, 19-45.

[@ A. Griewank and A. Walther: Applying the Checkpointing Routine treeverse
to Discretizations of Burgers' Equation. Lect. Notes Comput. Sci.and Engin.
8: H.-J. Bungartz, F. Durst, C. Zenger, (eds.), High Performance Scientific
and Engineering Computing, Springer Berlin Heidelberg, 1999.

Riehme,Griewank (Matheon, HU Berlin) Derivatives of Programs

www.autodiff.org

	Introduction
	Optimization Programming Scenario
	Software for Automatic Differentiation
	Automatic Differentiation
	Geometric Interpretation

	Automatic Differentiation by example
	Checkpointing
	Evolutions, time dependent problem
	Runtime-Memory-Tradeoff
	Implementation

	Software for Automatic Differentiation

