Mondriaan partitioning for faster parallel integer factorisation

Rob Bisseling and Ildikó Flesch

Mathematical Institute
Utrecht University, the Netherlands

Outline

1. Attacking cryptosystems:

- integer factorisation attack on RSA
- sparse binary matrix
- block Lanczos algorithm

2. Mondriaan partitioning

- sparse matrix-vector multiplication
- matrix partitioning (joint with Brendan Vastenhouw)
- vector partitioning (joint with Wouter Meesen)

3. Experimental results
4. Another application: PageRank

- Ranking web pages (joint with Tristan van Leeuwen, Ümit Çatalyürek)

5. Conclusions and future work

Cracking RSA

- RSA cryptosystem is based on difficulty of integer factorisation.
- Aim: given large n, find primes p, q such that $p q=n$.
- Recent record: May 9, 2005. RSA-200 with 200 decimal digits by Bahr, Böhm, Franke, Kleinjung.
- 55 CPU years of sieving (on 2.2 GHz Opterons) gives many pairs (a, b) with $a \equiv b(\bmod n)$. Each a and b is composed of small primes.
- Example for $n=33$:

$$
\begin{aligned}
& a_{1}=2^{2} \cdot 7, b_{1}=-1 \cdot 5 \\
& a_{2}=7^{3}, b_{2}=-1 \cdot 2^{2} \cdot 5 .
\end{aligned}
$$

- Note: $a_{1} \cdot a_{2}=\left(2 \cdot 7^{2}\right)^{2}$ and $b_{1} \cdot b_{2}=(-1 \cdot 2 \cdot 5)^{2}$.

Solving sparse linear systems in GF(2)

- In general, desired subset S of pairs $\left(a_{j}, b_{j}\right)$ such that $\prod_{j \in S} a_{j}$ and $\prod_{j \in S} b_{j}$ are both square.
- Translate into linear algebra. Bitmatrix A : $a_{i j}=$ exponent of prime p_{i} in $a_{j}(\bmod 2)$, where p_{i} is the i th prime, i.e., $p_{1}=2, p_{2}=3, p_{3}=5$, etc. and $p_{0}=-1$.
- A is sparse, since not all primes are represented in an a_{j}.
- $A \mathrm{x}$ is linear combination of columns in A. Solving $A \mathrm{x}=0$ in GF(2) gives $S=\left\{j: x_{j}=1\right\}$.

Example: matrix A

a	25	32	1	28	40	35	2560	128	125	343
$p=2$	0	5	0	2	3	0	9	7	0	0
$p=5$	2	0	0	0	1	1	1	0	3	0
$p=7$	0	0	0	1	0	1	0	0	0	3

Take the entries modulo 2 :

$$
A=\left[\begin{array}{llllllllll}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Example: matrix C

- Also generate B. Solve $A \mathbf{x}=0$ and $B \mathbf{x}=0$ together. Let $C \mathrm{x}=0$ be the larger simultaneous system:

$$
C=\left[\begin{array}{llllllllll}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}\right] .
$$

- For RSA-200, solution took 3 months on a cluster of 80 processors. Sparse matrix C has 64 million rows and columns and 11×10^{9} nonzeros.

Quadratic sieving matrix MPQS30

Size 210×179, 1916 nonzeros, 30 decimal digits. Partitioned for 4 processors (red, black, blue, orange) by the Mondriaan package

Matrix: courtesy of Richard Brent, 2001
Universiteit Utrecht

Left upper corner of MPQs30

Universiteit Utrecht

Block Lanczos algorithm by Montgomery (1995)

- Use Lanczos for symmetric systems: solve $C^{T} C \mathbf{x}=0$.
- Find 32 different solutions by the block Lanczos algorithm, solving a system $C^{T} C X=0$. X has 32 columns (word size of the computer) and can be viewed as an integer vector.
- C and C^{T} are not explicitly multiplied.

Only C is stored: rectangular sparse bitmatrix.

Main loop of block Lanczos algorithm

input: $C=$ sparse $n_{1} \times n_{2}$ bitmatrix, $Y=$ dense random $n_{2} \times 32$ bitmatrix.
output: $X=$ dense $n_{2} \times 32$ bitmatrix such that $C^{T} C X=C^{T} C Y$. while $\operatorname{Cond}_{i} \neq 0$ do

$$
\begin{aligned}
& {\left[W_{i}^{\text {inv }}, S S_{i}^{T}\right]=\ldots ; \quad\{32 \times 32\}} \\
& X=X+V_{i} *\left(W_{i}^{\text {inv }} *\left(V_{i}^{T} * V_{0}\right)\right) ; \\
& C^{T} C V_{i}=C^{T} \circledast C V_{i} ; \quad\left\{\mathrm{matvect}^{T}\right\} \\
& K_{i}=\left(V^{T} C_{i}^{T} *\left(C \circledast\left(C^{T} C V_{i}\right)\right)\right) * S S_{i}^{T}+\text { Cond }_{i} ; \\
& D_{i+1}, E_{i+1}, F_{i+1}=\ldots ; \quad\{32 \times 32\} \\
& V_{i+1}=C^{T} C V_{i} * S S_{i}^{T}+V_{i} * D_{i+1}+V_{i-1} * E_{i+1}+V_{i-2} * F_{i+1} \\
& V^{T} C_{i+1}^{T}=V_{i+1}^{T} \circledast C^{T} ; \\
& C V_{i+1}=C \circledast V_{i+1} ; \\
& C o n d_{i+1}=V^{T} C_{i+1}^{T} * C V_{i+1} ; \\
& i=i+1
\end{aligned}
$$

Parallel sparse matrix-vector multiplication y $:=C \mathrm{x}$

C sparse $n_{1} \times n_{2}$ matrix, y dense n_{1}-vector, \mathbf{x} dense n_{2}-vector

$$
y_{i}:=\sum_{j=0}^{n_{2}-1} a_{i j} x_{j}
$$

Vertical communication. $p=2$

Parallel sparse matrix-vector multiplication (cont’d)

Horizontal communication. $p=2$

- Algorithm has 4 supersteps: communicate, compute, communicate, compute

Cartesian matrix partitioning

- Block distribution of 59×59 matrix impcol_b with 312 nonzeros, for $p=4$
- \#nonzeros per processor: 126, 28, 128, 30

Universiteit Utrecht

Non-Cartesian matrix partitioning

- Block distribution of 59×59 matrix impcol_b with 312 nonzeros, for $p=4$
- \#nonzeros per processor: 76, 76, 80, 80

Universiteit Utrecht

Composition with Red, Yellow, Blue and Black

Piet Mondriaan 1921

Mondriaan painted here

Richard, Erin, Rona, Sarai (Abcoude, NL, 2001)

Mill in Sunlight

Universiteit Utrecht
Piet Mondriaan 1908

Matrix prime60

- Block distribution of 60×60 matrix prime 60 with 462 nonzeros, for $p=4$
- $a_{i j} \neq 0 \Longleftrightarrow i \mid j$ or $j \mid i \quad(1 \leq i, j \leq 60)$

Universiteit Utrecht

Communication volume for partitioned matrix

$$
V\left(A_{0}, A_{1}, A_{2}, A_{3}\right)=V\left(A_{0}, A_{1}, A_{2} \cup A_{3}\right)+V\left(A_{2}, A_{3}\right)
$$

Here, $V\left(A_{0}, A_{1}, A_{2}, A_{3}\right)$ is the global matrix-vector communication volume corresponding to the partitioning $A_{0}, A_{1}, A_{2}, A_{3}$

Recursive, adaptive bipartitioning algorithm

MatrixPartition (A, p, ϵ)
input: $\quad \epsilon=$ allowed load imbalance, $\epsilon>0$. output: p-way partitioning of A with imbalance $\leq \epsilon$. if $p>1$ then

```
\(q:=\log _{2} p ;\)
\(\left(A_{0}^{\mathrm{r}}, A_{1}^{\mathrm{r}}\right):=h(A\), row, \(\epsilon / q)\); hypergraph splitting
\(\left(A_{0}^{\mathrm{c}}, A_{1}^{\mathrm{c}}\right):=h(A, \mathrm{col}, \epsilon / q)\);
if \(V\left(A_{0}^{\mathrm{r}}, A_{1}^{\mathrm{r}}\right) \leq V\left(A_{0}^{\mathrm{c}}, A_{1}^{\mathrm{c}}\right)\) then
    \(\left(A_{0}, A_{1}\right):=\left(A_{0}^{\mathrm{r}}, A_{1}^{\mathrm{r}}\right)\)
else \(\left(A_{0}, A_{1}\right):=\left(A_{0}^{\mathrm{c}}, A_{1}^{\mathrm{c}}\right)\)
```

maxnz : $=\frac{n z(A)}{p}(1+\epsilon)$;
$\epsilon_{0}:=\frac{\operatorname{maxnz}}{n z\left(A_{0}\right)} \cdot \frac{p}{2}-1$; MatrixPartition $\left(A_{0}, p / 2, \epsilon_{0}\right)$;
$\epsilon_{1}:=\frac{\operatorname{maxnz}}{n z\left(A_{1}\right)} \cdot \frac{p}{2}-1$; MatrixPartition $\left(A_{1}, p / 2, \epsilon_{1}\right)$; else output A;

Hypergraph

Hypergraph with 9 vertices and 6 hyperedges (nets), partitioned over 2 processors

The h-function

nets
Column bipartitioning of $m \times n$ matrix

- Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{N}) \Rightarrow$ exact communication volume.
- Columns \equiv Vertices: $0,1,2,3,4,5,6$. Rows \equiv Hyperedges (nets, subsets of \mathcal{V}):

$$
\begin{array}{lll}
n_{0}=\{1,4,6\}, & n_{1}=\{0,3,6\}, & n_{2}=\{4,5,6\}, \\
n_{3}=\{0,2,3\}, & n_{4}=\{2,3,5\}, & n_{5}=\{1,4,6\} .
\end{array}
$$

Local view of Mondriaan distribution for 8 processors

- Imbalance $\epsilon=3 \%$
- First split is vertical
- Empty blocks collect empty row/column parts

Vector partitioning

Broadway Boogie Woogie, Piet Mondriaan 1943

- No extra communication if:
$v_{j} \mapsto$ one of the owners of a nonzero in matrix column j
$u_{i} \mapsto$ owner in matrix row i
- This creates a separate vector partitioning problem.

Balance the communication!

Reduce the cost by the bulk synchronous parallel (BSP) model

$$
\max _{0 \leq s<p} h(s)
$$

where

$$
h(s)=\max \left(h_{\mathrm{send}}(s), h_{\mathrm{recv}}(s)\right)
$$

for processor s

Vector partitioning for prime60

Universiteit Utrecht

Vector partitioning for MPQS30

One-dimensional column partitioning of matrix fixes input vector partitioning. Much freedom for output vector.

Vector partitioning for parallel block Lanczos

- Matrix C, vector X, and vector $Y=C X$ are distributed by Mondriaan.
- C^{T} multiplication is reverse of C : swap input/output vectors, sends/receives.
- $C^{T} * C * X$: Output of $C=$ Input of C^{T}. Hence: independent vector distributions, full freedom for communication balancing.

Vector inner products

- $V^{T} * V$ with V an $n_{2} \times 32$ bitmatrix, i.e., an integer vector of length n_{2}.
- Easy if all vectors of the same length are partitioned in the same way.

Global-local indexing mechanism

- Processor owning matrix nonzero $a_{i j}$ knows that it needs vector component x_{j}, but does not know where it is.
- Processor owning vector component x_{j} does not know where to send it.
- Solution: use a notice board (or data directory).
- x_{j} has global index j. Its address (its owner and local index) is first stored at a place that everyone can inspect, in processor $j \bmod p$ at location $j \operatorname{div} p$.
- Before getting x_{j}, the owner of $a_{i j}$ obtains its address in a preprocessing step.

Experimental results on SGI Origin 3800

Universiteit Utrecht

Timings of main algorithm parts for matrix c82

p	Input	Lanczos	PP	Total
1	1.15	78.27	0.47	79.90
2	1.12	48.98	0.25	50.36
4	1.13	28.57	0.15	29.85
8	1.15	14.80	0.08	16.02
16	1.30	9.94	0.07	11.31

- Time (in s) of input phase, block Lanczos algorithm, postprocessing (PP), and total run time.
- Average over three runs.

Timings of main algorithm parts for matrix c98a

p	Input	Lanczos	PP	Total
1	4.1	1186.4	4.0	1194.5
2	4.0	755.8	1.9	761.7
4	3.9	575.5	0.6	580.0
8	4.0	285.8	0.5	290.3
16	4.1	163.5	0.2	167.8

BSP cost for Mondriaan partitioning of c82

p	Comp	Comm	Sync	V / p
1	1015432			
2	522926	$6277 g$	l	6277
4	261462	$8078 g$	$2 l$	7154
8	130730	$7911 g$	$2 l$	5778
16	65366	$8298 g$	$2 l$	4296

Compare with cost for 2D square partitioning

$$
\begin{aligned}
T_{\text {Matvec }} & \approx \frac{2 n z(C)}{p}+\frac{n_{1}+n_{2}}{\sqrt{p}} g+2 l \\
& =63464+8161 g+2 l \text { for c82, } p=16 .
\end{aligned}
$$

Here, $g=$ time for communicating one data word;
$l=$ global synchronisation time
Universiteit Utrecht

Web searching: which page ranks first?

$\bigcirc \bigcirc$ richard brent - Google zoeken					
	Ohttp://www.google.com/search?hl=nl\&client=safari\& - Q- brent				
[1] Apple (127) *	Amazon eBay Yahool Nieuws (338) \%				
	Het Internet richard brent Het web	Afbeeldinge doorzoeken	Discussiegroepen oeken in pagina's in	Gids Nieuws Zoeken $\frac{\text { Gea }}{\text { Voo }}$ Net Nederlands	melden meer x ceerd $z 0$ ren

Het Internet Resultaten 1-10 van circa $\mathbf{1 9 . 6 0 0 . 0 0 0}$ voor richard brent ($\mathbf{0 , 0 3}$ seconden)

Brent, Richard

University of Oxford. Computational number theory; Computational complexity and analysis of algorithms;...
web.comlab.ox.ac.uk/oucl/people/richard.brent.html - 6 k - In cache - Gelijkwaardige pagina's

Richard Brent - Work

Richard P. Brent. Professor of Computing Science 1998-2005. Fellow of St Hugh's College 1998-2005. This page is obsolete and is no longer being updated. ...
web.comlab.ox.ac.uk/oucl/work/richard.brent/ -9k - In cache - Gelilkwaardige pagina's [Meer resultaten van web.comlab.ox.ac.uk]

ANU - Mathematical Sciences Institute (MSI) - People

Richard Brent. ARC Federation Fellow. Federation Fellowship - Publications - Recent Talks and Lectures - Research interests - Students and supervisors ...
wwwmaths.anu.edu.au/-brent/ - 25 k - In cache - Gelijkwaardige pagina's
Richard Brent (scientist) - Wikipedia, the free encyclopedia
Richard Brent's home page. This article or section does not cite its references or sources.
You can help Wikipedia by introducing appropriate citations. ...
en.wikipedia.org/wiki/Richard_Brent_(scientist) - 18k - In cache - Geliikwaardige pagina's
Richard Brent (Virginia) - Wikipedia, the free encyclopedia
Richard Brent (Virginia) ... Richard Brent (1757- December 30, 1814) was an American planter, lawyer, and politician from Stafford County, Virginia. ...
en.wikipedia.org/wiki/Richard_Brent_(Virginia) - 12 k - In cache - Gelijkwaardige pagina's

www.rpbrent.com/

$3 k$ - In cache - Geliikwaardige pagina's

Titan Biographies: Richard Brent

Welcome to the Prover Database for the List of Largest Known Primes. These pages contain
Universiteit Utrec

The link matrix A

- Given n web pages with links between them. We can define the sparse $n \times n$ link matrix A by

$$
a_{i j}= \begin{cases}1 & \text { if there is a link from page } j \text { to page } i \\ 0 & \text { otherwise }\end{cases}
$$

- Let $\mathbf{e}=(1,1, \ldots, 1)^{T}$, representing an initial uniform importance (rank) of all web pages. Then

$$
(A \mathbf{e})_{i}=\sum_{j} a_{i j} e_{j}=\sum_{j} a_{i j}
$$

is the total number of links pointing to page i.

- The vector A e represents the importance of the pages; $A^{2} \mathbf{e}$ takes the importance of the pointing pages into account as well; and so on.
Universiteit Utrecht

The Google matrix

- A web surfer chooses each of the outgoing N_{j} links from page j with equal probability. Define the $n \times n$ diagonal matrix D with $d_{j j}=1 / N_{j}$.
- Let α be the probability that a surfer follows an outlink of the current page. Typically $\alpha=0.85$. The surfer jumps to a random page with probability $1-\alpha$.
- The Google matrix is defined by (Brin and Page 1998)

$$
G=\alpha A D+(1-\alpha) \mathbf{e e}^{T} / n .
$$

- The PageRank of a set of web pages is obtained by repeated multiplication by G, involving sparse matrix-vector multiplication by A, and some vector operations.

Comparing 1D, 2D fine-grain, and 2D Mondriaan

- The following 1D and 2D fine-grain communication volumes for PageRank matrices are published results from the parallel program Parkway v2.1 (Bradley, de Jager, Knottenbelt, Trifunović 2005).
- The fine-grain method has been proposed by Çatalyürek and Aykanat in 2001.
- The 2D Mondriaan volumes are results with our recent improvements (to be incorporated in version 2.0), using only row/column partitioning, not the fine-grain option.

Communication volume: PageRank matrix stanford

- $n=281,903$ (pages), $n z(A)=2,594,228$ nonzeros (links).
- Represents the Stanford WWW subdomain, obtained by a web crawl in September 2002 by Sep Kamvar.
Universiteit Utrecht

Communication volume: Stanford_Berkeley

- $n=683,446, n z(A)=8,262,087$ nonzeros.
- Represents the Stanford and Berkeley subdomains, obtained by a web crawl in Dec. 2002 by Sep Kamvar.
Universiteit Utrecht

Meaning of PageRank results

- Both 2D methods save an order of magnitude in communication volume compared to 1D.
- Parkway fine-grain is slightly better than Mondriaan, in terms of partitioning quality. This may be due to a better implementation, or due to the fine-grain method itself. Further investigation is needed.
- 2D Mondriaan is much faster than fine-grain, since the hypergraphs involved are much smaller:
7×10^{5} vs. 8×10^{6} vertices for Stanford_Berkeley.

Conclusion

- We have identified 3 main building blocks for parallel integer factorisation:
- sparse matrix-vector multiplication: most intensive computation
- sparse matrix partitioning: reduces communication volume
- vector partitioning:
balances communication load
- Integer factorisation matrices remain a challenge for partitioners.
- Partitioning must be two-dimensional, both for integer factorisation and PageRank matrices.

