
Mondriaan partitioning for faster parallel
integer factorisation

Rob Bisseling and Ildikó Flesch

Mathematical Institute

Utrecht University, the Netherlands

Computing by the Numbers, Berlin, July 20, 2006 – p. 1

Outline

1. Attacking cryptosystems:
integer factorisation attack on RSA
sparse binary matrix
block Lanczos algorithm

2. Mondriaan partitioning
sparse matrix–vector multiplication
matrix partitioning (joint with Brendan Vastenhouw)
vector partitioning (joint with Wouter Meesen)

3. Experimental results

4. Another application: PageRank
Ranking web pages (joint with Tristan van Leeuwen,
Ümit Çatalyürek)

5. Conclusions and future work

Computing by the Numbers, Berlin, July 20, 2006 – p. 2

Cracking RSA

RSA cryptosystem is based on difficulty of integer
factorisation.

Aim: given large n, find primes p, q such that pq = n.

Recent record: May 9, 2005. RSA-200 with 200 decimal
digits by Bahr, Böhm, Franke, Kleinjung.

55 CPU years of sieving (on 2.2 GHz Opterons) gives
many pairs (a, b) with a ≡ b (mod n). Each a and b is
composed of small primes.

Example for n = 33:
a1 = 22 · 7 , b1 = −1 · 5
a2 = 73 , b2 = −1 · 22 · 5.

Note: a1 · a2 = (2 · 72)2 and b1 · b2 = (−1 · 2 · 5)2.

Computing by the Numbers, Berlin, July 20, 2006 – p. 3

Solving sparse linear systems in GF(2)

In general, desired subset S of pairs (aj, bj) such that
∏

j∈S aj and
∏

j∈S bj are both square.

Translate into linear algebra. Bitmatrix A:
aij = exponent of prime pi in aj (mod 2), where pi is the
ith prime, i.e., p1 = 2, p2 = 3, p3 = 5, etc. and p0 = −1.

A is sparse, since not all primes are represented in an aj.

Ax is linear combination of columns in A.
Solving Ax = 0 in GF(2) gives S = {j : xj = 1}.

Computing by the Numbers, Berlin, July 20, 2006 – p. 4

Example: matrix A

a 25 32 1 28 40 35 2560 128 125 343

p = 2 0 5 0 2 3 0 9 7 0 0

p = 5 2 0 0 0 1 1 1 0 3 0

p = 7 0 0 0 1 0 1 0 0 0 3

Take the entries modulo 2:

A =

0 1 0 0 1 0 1 1 0 0
0 0 0 0 1 1 1 0 1 0
0 0 0 1 0 1 0 0 0 1

 .

Computing by the Numbers, Berlin, July 20, 2006 – p. 5

Example: matrix C

Also generate B. Solve Ax = 0 and Bx = 0 together. Let
Cx = 0 be the larger simultaneous system:

C =

0 1 0 0 1 0 1 1 0 0
0 0 0 0 1 1 1 0 1 0
0 0 0 1 0 1 0 0 0 1
1 1 1 1 0 0 1 1 1 1
1 0 1 0 0 1 1 0 0 0
0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 1 0 1 0

.

For RSA-200, solution took 3 months on a cluster of 80
processors. Sparse matrix C has 64 million rows and
columns and 11 × 109 nonzeros.

Computing by the Numbers, Berlin, July 20, 2006 – p. 6

Quadratic sieving matrix MPQS30

Size 210 × 179, 1916 nonzeros, 30 decimal digits.
Partitioned for 4 processors (red, black, blue, orange) by the
Mondriaan package

Matrix: courtesy of Richard Brent, 2001

Computing by the Numbers, Berlin, July 20, 2006 – p. 7

Left upper corner of MPQS30

Computing by the Numbers, Berlin, July 20, 2006 – p. 8

Block Lanczos algorithm by Montgomery (1995)

Use Lanczos for symmetric systems: solve CTCx = 0.

Find 32 different solutions by the block Lanczos
algorithm, solving a system CT CX = 0.
X has 32 columns (word size of the computer) and can
be viewed as an integer vector.

C and CT are not explicitly multiplied.
Only C is stored: rectangular sparse bitmatrix.

Computing by the Numbers, Berlin, July 20, 2006 – p. 9

Main loop of block Lanczos algorithm

input: C = sparse n1 × n2 bitmatrix,
Y = dense random n2 × 32 bitmatrix.

output: X = dense n2 × 32 bitmatrix such that CT CX = CTCY .
while Condi 6= 0 do

[W inv
i , SST

i] = . . . ; {32 × 32}
X = X + Vi ∗ (W inv

i ∗ (V T
i ∗ V0));

CT CVi = CT
⊛CVi; {matvec}

Ki = (V T CT
i ∗ (C⊛(CT CVi))) ∗ SST

i + Condi;

Di+1, Ei+1, Fi+1 = . . .; {32 × 32}
Vi+1 = CTCVi ∗ SST

i + Vi ∗ Di+1 + Vi−1 ∗ Ei+1 + Vi−2 ∗ Fi+1;
V T CT

i+1 = V T
i+1⊛CT ;

CVi+1 = C⊛Vi+1;
Condi+1 = V T CT

i+1 ∗ CVi+1;
i = i + 1

Computing by the Numbers, Berlin, July 20, 2006 – p. 10

Parallel sparse matrix–vector multiplication y := Cx

C sparse n1 × n2 matrix, y dense n1-vector, x dense n2-vector

yi :=

n2−1
∑

j=0

aijxj

C

0 11111 1110 x

Vertical communication. p = 2

Computing by the Numbers, Berlin, July 20, 2006 – p. 11

Parallel sparse matrix–vector multiplication (cont’d)

11

0
1 1

0
1 0

1 1

C
0

0

1

0
0
0

0

y

Horizontal communication. p = 2

Algorithm has 4 supersteps: communicate, compute,
communicate, compute

Computing by the Numbers, Berlin, July 20, 2006 – p. 12

Cartesian matrix partitioning

Block distribution of 59 × 59 matrix impcol_b with 312
nonzeros, for p = 4

#nonzeros per processor: 126, 28, 128, 30

Computing by the Numbers, Berlin, July 20, 2006 – p. 13

Non-Cartesian matrix partitioning

Block distribution of 59 × 59 matrix impcol_b with 312
nonzeros, for p = 4

#nonzeros per processor: 76, 76, 80, 80

Computing by the Numbers, Berlin, July 20, 2006 – p. 14

Composition with Red, Yellow, Blue and Black

Piet Mondriaan 1921

Computing by the Numbers, Berlin, July 20, 2006 – p. 15

Mondriaan painted here

Richard, Erin, Rona, Sarai (Abcoude, NL, 2001)

Computing by the Numbers, Berlin, July 20, 2006 – p. 16

Mill in Sunlight

Piet Mondriaan 1908

Computing by the Numbers, Berlin, July 20, 2006 – p. 17

Matrix prime60

Block distribution of 60 × 60 matrix prime60 with 462
nonzeros, for p = 4

aij 6= 0 ⇐⇒ i|j or j|i (1 ≤ i, j ≤ 60)

Computing by the Numbers, Berlin, July 20, 2006 – p. 18

Communication volume for partitioned matrix

V (A0, A1, A2, A3) = V (A0, A1, A2 ∪ A3) + V (A2, A3)

Here, V (A0, A1, A2, A3) is the global matrix–vector
communication volume corresponding to the partitioning
A0, A1, A2, A3

Computing by the Numbers, Berlin, July 20, 2006 – p. 19

Recursive, adaptive bipartitioning algorithm

MatrixPartition(A, p, ǫ)
input: ǫ = allowed load imbalance, ǫ > 0.
output: p-way partitioning of A with imbalance ≤ ǫ.

if p > 1 then
q := log2 p;
(Ar

0, A
r
1) := h(A, row, ǫ/q); hypergraph splitting

(Ac
0, A

c
1) := h(A, col, ǫ/q);

if V (Ar
0, A

r
1) ≤ V (Ac

0, A
c
1) then

(A0, A1) := (Ar
0, A

r
1)

else (A0, A1) := (Ac
0, A

c
1)

maxnz := nz (A)
p

(1 + ǫ);
ǫ0 := maxnz

nz (A0)
· p

2
− 1; MatrixPartition(A0, p/2, ǫ0);

ǫ1 := maxnz

nz (A1)
· p

2
− 1; MatrixPartition(A1, p/2, ǫ1);

else output A;

Computing by the Numbers, Berlin, July 20, 2006 – p. 20

Hypergraph

0

4

2

1

3

6

8

5

7

Hypergraph with 9 vertices and 6 hyperedges (nets),
partitioned over 2 processors

Computing by the Numbers, Berlin, July 20, 2006 – p. 21

The h-function

0
1
2
3
4
5

0 1 2 3 4 5 6
vertices

nets

Column bipartitioning of m × n matrix

Hypergraph H = (V ,N) ⇒ exact communication volume.

Columns ≡ Vertices: 0, 1, 2, 3, 4, 5, 6.
Rows ≡ Hyperedges (nets, subsets of V):

n0 = {1, 4, 6}, n1 = {0, 3, 6}, n2 = {4, 5, 6},
n3 = {0, 2, 3}, n4 = {2, 3, 5}, n5 = {1, 4, 6}.

Computing by the Numbers, Berlin, July 20, 2006 – p. 22

Local view of Mondriaan distribution for 8 processors

Imbalance ǫ = 3%

First split is vertical

Empty blocks collect empty row/column parts

Computing by the Numbers, Berlin, July 20, 2006 – p. 23

Vector partitioning

u A

v

Broadway Boogie Woogie, Piet Mondriaan 1943

No extra communication if:
vj 7→ one of the owners of a nonzero in matrix column j
ui 7→ owner in matrix row i

This creates a separate vector partitioning problem.

Computing by the Numbers, Berlin, July 20, 2006 – p. 24

Balance the communication!

Reduce the cost by the bulk synchronous parallel

(BSP) model

max
0≤s<p

h(s),

where

h(s) = max(hsend(s), hrecv(s))

for processor s

Computing by the Numbers, Berlin, July 20, 2006 – p. 25

Vector partitioning for prime60

Computing by the Numbers, Berlin, July 20, 2006 – p. 26

Vector partitioning for MPQS30

One-dimensional column partitioning of matrix fixes input
vector partitioning. Much freedom for output vector.

Computing by the Numbers, Berlin, July 20, 2006 – p. 27

Vector partitioning for parallel block Lanczos

Matrix C, vector X, and vector Y = CX are distributed by
Mondriaan.

CT multiplication is reverse of C: swap input/output
vectors, sends/receives.

CT ∗ C ∗ X: Output of C = Input of CT . Hence:
independent vector distributions,
full freedom for communication balancing.

Computing by the Numbers, Berlin, July 20, 2006 – p. 28

Vector inner products

V T ∗ V with V an n2 × 32 bitmatrix,
i.e., an integer vector of length n2.

Easy if all vectors of the same length are partitioned in
the same way.

Computing by the Numbers, Berlin, July 20, 2006 – p. 29

Global-local indexing mechanism

Processor owning matrix nonzero aij knows that it needs
vector component xj, but does not know where it is.

Processor owning vector component xj does not know
where to send it.

Solution: use a notice board (or data directory).

xj has global index j. Its address (its owner and local
index) is first stored at a place that everyone can inspect,
in processor j mod p at location j div p.

Before getting xj, the owner of aij obtains its address in a
preprocessing step.

Computing by the Numbers, Berlin, July 20, 2006 – p. 30

Experimental results on SGI Origin 3800

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14 16

T
im

e(
s)

Number of processors

Speedup of Block Lanczos for c82 and c98a

matrix c82
matrix c98a

Name n1 n2 nz (C)

c82 16307 16338 507716

c98a 56243 56274 2075889 Source: Richard Brent

Computing by the Numbers, Berlin, July 20, 2006 – p. 31

Timings of main algorithm parts for matrix c82

p Input Lanczos PP Total
1 1.15 78.27 0.47 79.90
2 1.12 48.98 0.25 50.36
4 1.13 28.57 0.15 29.85
8 1.15 14.80 0.08 16.02

16 1.30 9.94 0.07 11.31

Time (in s) of input phase, block Lanczos algorithm,
postprocessing (PP), and total run time.

Average over three runs.

Computing by the Numbers, Berlin, July 20, 2006 – p. 32

Timings of main algorithm parts for matrix c98a

p Input Lanczos PP Total
1 4.1 1186.4 4.0 1194.5
2 4.0 755.8 1.9 761.7
4 3.9 575.5 0.6 580.0
8 4.0 285.8 0.5 290.3

16 4.1 163.5 0.2 167.8

Computing by the Numbers, Berlin, July 20, 2006 – p. 33

BSP cost for Mondriaan partitioning of c82

p Comp Comm Sync V/p

1 1015432
2 522926 6277g l 6277
4 261462 8078g 2l 7154
8 130730 7911g 2l 5778

16 65366 8298g 2l 4296

Compare with cost for 2D square partitioning

TMatvec ≈ 2nz (C)

p
+

n1 + n2√
p

g + 2l

= 63464 + 8161g + 2l for c82, p = 16.

Here, g = time for communicating one data word;
l = global synchronisation time

Computing by the Numbers, Berlin, July 20, 2006 – p. 34

Web searching: which page ranks first?

Computing by the Numbers, Berlin, July 20, 2006 – p. 35

The link matrix A

Given n web pages with links between them.
We can define the sparse n × n link matrix A by

aij =

{

1 if there is a link from page j to page i

0 otherwise.

Let e = (1, 1, . . . , 1)T , representing an initial uniform
importance (rank) of all web pages. Then

(Ae)i =
∑

j

aijej =
∑

j

aij

is the total number of links pointing to page i.

The vector Ae represents the importance of the pages;
A2e takes the importance of the pointing pages into
account as well; and so on.

Computing by the Numbers, Berlin, July 20, 2006 – p. 36

The Google matrix

A web surfer chooses each of the outgoing Nj links from
page j with equal probability. Define the n × n diagonal
matrix D with djj = 1/Nj.

Let α be the probability that a surfer follows an outlink of
the current page. Typically α = 0.85. The surfer jumps to
a random page with probability 1 − α.

The Google matrix is defined by (Brin and Page 1998)

G = αAD + (1 − α)eeT /n.

The PageRank of a set of web pages is obtained by
repeated multiplication by G, involving sparse
matrix–vector multiplication by A, and some vector
operations.

Computing by the Numbers, Berlin, July 20, 2006 – p. 37

Comparing 1D, 2D fine-grain, and 2D Mondriaan

The following 1D and 2D fine-grain communication
volumes for PageRank matrices are published results
from the parallel program Parkway v2.1 (Bradley, de
Jager, Knottenbelt, Trifunović 2005).

The fine-grain method has been proposed by Çatalyürek
and Aykanat in 2001.

The 2D Mondriaan volumes are results with our recent
improvements (to be incorporated in version 2.0), using
only row/column partitioning, not the fine-grain option.

Computing by the Numbers, Berlin, July 20, 2006 – p. 38

Communication volume: PageRank matrix Stanford

Parkway 1D Parkway fine−grained Mondriaan 2D
0

1

2

3

4

5

6

7

8
x 10

4

p = 4, 8, 16

n = 281, 903 (pages), nz (A) = 2, 594, 228 nonzeros (links).

Represents the Stanford WWW subdomain, obtained by
a web crawl in September 2002 by Sep Kamvar.

Computing by the Numbers, Berlin, July 20, 2006 – p. 39

Communication volume: Stanford_Berkeley

Parkway 1D Parkway fine−grained Mondriaan 2D
0

5

10

15
x 10

4

p = 4, 8, 16

n = 683, 446, nz (A) = 8, 262, 087 nonzeros.

Represents the Stanford and Berkeley subdomains,
obtained by a web crawl in Dec. 2002 by Sep Kamvar.

Computing by the Numbers, Berlin, July 20, 2006 – p. 40

Meaning of PageRank results

Both 2D methods save an order of magnitude in
communication volume compared to 1D.

Parkway fine-grain is slightly better than Mondriaan, in
terms of partitioning quality. This may be due to a better
implementation, or due to the fine-grain method itself.
Further investigation is needed.

2D Mondriaan is much faster than fine-grain, since the
hypergraphs involved are much smaller:
7 × 105 vs. 8 × 106 vertices for Stanford_Berkeley.

Computing by the Numbers, Berlin, July 20, 2006 – p. 41

Conclusion

We have identified 3 main building blocks for parallel
integer factorisation:

sparse matrix–vector multiplication:
most intensive computation
sparse matrix partitioning:
reduces communication volume
vector partitioning:
balances communication load

Integer factorisation matrices remain a challenge for
partitioners.

Partitioning must be two-dimensional, both for integer
factorisation and PageRank matrices.

Computing by the Numbers, Berlin, July 20, 2006 – p. 42

	Outline
	Cracking RSA
	Solving sparse linear systems in GF(2)
	Example: matrix A
	Example: matrix C
	Quadratic sieving matrix 	exttt {MPQS30}
	Left upper corner of 	exttt {MPQS30}
	Block Lanczos algorithm by Montgomery (1995)
	Main loop of block Lanczos algorithm
	Parallel sparse matrix--vector multiplication $mathbf {y}:= C mathbf {x}$
	Parallel sparse matrix--vector multiplication (cont'd)
	Cartesian matrix partitioning
	Non-Cartesian matrix partitioning
	Composition with Red, Yellow, Blue and Black
	Mondriaan painted here
	Mill in Sunlight
	Matrix 	exttt {prime60}
	Communication volume for partitioned matrix
	Recursive, adaptive bipartitioning algorithm
	Hypergraph
	The h-function
	Local view of Mondriaan distribution for 8 processors
	Vector partitioning
	Balance the communication!
	Vector partitioning for 	exttt {prime60}
	Vector partitioning for 	exttt {MPQS30}
	Vector partitioning for parallel block Lanczos
	Vector inner products
	Global-local indexing mechanism
	Experimental results on SGI Origin 3800
	Timings of main algorithm parts for matrix 	exttt {c82}
	Timings of main algorithm parts for matrix 	exttt {c98a}
	BSP cost for Mondriaan partitioning of 	exttt {c82}
	Web searching: which page ranks first?
	The link matrix A
	The Google matrix
	Comparing 1D, 2D fine-grain, and 2D Mondriaan
	Communication volume: PageRank matrix 	exttt {Stanford}
	Communication volume: 	exttt {Stanford_Berkeley}
	Meaning of PageRank results
	Conclusion

