auch globales Minimum (Maximum). Ist f sogar streng konvex oder konkav so gibt es nur einen einizgen Minimalpunkt bzw. Minimalwert.

Bemerkung:

Satz C.126 gilt auch in der Ebene \mathbb{R}^2 und ganz allgemeinen Räumen beliebiger Dimension. Er ist von grundlegender Bedeutung in der Optimierung.

Der Satz von Taylor

Motivation:

Für eine differenzierbare Funktion f(x) stellt die Tangente

$$t(x) = f(\xi) + (x - \xi)f'(\xi)$$

eine lokale Approximation der Funktion im Punkt ξ durch ein Polynom 1. Grades dar.

Es stellt sich die Frage, ob es möglich ist f(x) durch Polynome höheren Grades (besser) zu approximieren, wenn f eine höhere Differenzierbarkeitsordnung besitzt.

Mathematik für Informatik

Differenzierbarkeit

Der Satz von Taylo

Satz C.127 (Taylorsche Formel)

Sei $I \subseteq \mathbb{R}$ ein offenes Intervall, $\xi, x \in I$, $f: I \to \mathbb{R}$ sei (n+1)-mal stetig differenzierbar. Dann besitzt f die folgende Taylorentwicklung um ξ :

$$f(x) = T_n(x,\xi) + R_n(x,\xi)$$

mit dem Taylorpolynom n-ten Grades

$$T_n(x,\xi) = \sum_{k=0}^n \frac{(x-\xi)^k}{k!} f^{(k)}(\xi)$$

und dem Restglied nach Lagrange

$$R_n(x,\xi) = \frac{(x-\xi)^{n+1}}{(n+1)!} f^{(n+1)} (\xi + \vartheta(x-\xi)).$$

Dabei ist ϑ eine von f, n, x, ξ abhängige Zahl mit $0 < \vartheta < 1$ und $\xi + \vartheta(x - \xi)$ eine Stelle zwischen x und ξ .

Bemerkung:

- 1. Für n=0 liefert die Taylorsche Formel den Mittelwertsatz C.109.
- 2. Man kann zeigen, dass $T_n(x,\xi)$ das einige Polynom vom $\operatorname{Grad} \leq n$ ist, das die Approximationsgüte $O((x-\xi)^{n+1}) = o((x-\xi)^n)$ besitzt.
- 3. Neben der Restglieddarstellung von Lagrange gibt es weitere Darstellungen des Restgliedes; z.B. die Darstellung nach Cauchy

$$R_n(x,\xi) = \frac{(1-\vartheta)^n (x-\xi)^{n+1}}{n!} f^{(n+1)} (\xi + \vartheta(x-\xi)).$$

Satz C.128 Jede auf einem offenen Intervall I (n+1)-mal differenzierbare Funktion f $mit\ f^{(n+1)}(x)=0$ für alle $x\in I$ ist ein Polynom vom $Grad\leq n$.

Beispiel C.129

1. Sei $f(x)=e^x$, $\xi=0$; dann ist $f^{(n)}(0)=e^0=1$ für alle $n\in\mathbb{N}$. Das n-te Taylorpolynom von f in ξ ist

$$T_n(x,0) = \sum_{k=0}^n \frac{x^k}{k!}.$$

Für das Restglied

$$R_n(x,0) = e^{\vartheta x} \frac{x^{n+1}}{(n+1)!} \qquad (0 < \vartheta < 1)$$

 $\mathrm{gilt}\; \mathrm{f} \mathrm{\ddot{u}r}\; |x| < c$

$$|R_n| \le e^c \frac{|c|^{n+1}}{(n+1)!} \xrightarrow[n \to \infty]{} 0.$$

2. Sei f(x) = p(x) (Polynom vom Grad $\leq n$). Dann folgt $R_n(x,0) = 0$ für alle x, also ist $T_n(x,0) = p(x)$ für alle x.

Potenzreihen

Definition C.130 Es seien $x_0 \in \mathbb{R}$ und $\{a_n\}$ eine reelle Zahlenfolge. Reihen der Gestalt

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

heißen Potenzreihen, x_0 ihr Entwicklungspunkt und a_n ihre Koeffizienten.

Bemerkung:

Jede Potenzreihe konvergiert für $x=x_0$ mit dem Wert a_0 .

Beispiel C.131

1. Die Potenzreihen

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \qquad \cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, \qquad \sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

haben den Entwicklungspunkt $x_0 = 0$ und konvergieren für alle $x \in \mathbb{R}$.

2. Die Potenzreihe

$$\sum_{n=0}^{\infty} (1-x)^n = \sum_{n=0}^{\infty} (-1)^n (x-1)^n$$

hat den Enwicklungspunkt $x_0=1$. Sie konvergiert (geometrische Reihe!) für |1-x|<1, also für 0< x<2 mit dem Wert $\frac{1}{1-(1-x)} = \frac{1}{x}$

(D) (B) (E) (E) E 900

Satz C.132 Zu jeder Potenzreihe $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ existiert eine Zahl $r \geq 0$ oder $r=\infty$, so daß die Reihe für alle $x \in \mathbb{R}$ mit $|x-x_0| < r$ absolut konvergiert und für alle $x \in \mathbb{R}$ mit $|x-x_0| > r$ divergiert. Dabei heißt r=0, daß sie nur für $x=x_0$ konvergiert, $r=\infty$ heißt, daß sie für alle $x \in \mathbb{R}$ konvergiert. Mann nennt r den Konvergenzradius der Potenzreihe, das Intervall

 (x_0-r,x_0+r) heißt Konvergenzintervall (für $r \neq \infty$). Für den Konvergenzradius gilt die Cauchy-Hadamardsche Formel

$$r = \frac{1}{\lim(\sqrt[n]{|a_n|})},$$

wobei $\frac{1}{\infty}=0$ und $\frac{1}{0}=\infty$ gesetzt wird

Bemerkung:

Über die Konvergenz in den Randpunkten des Konvergenzintervalls, also für $|x - x_0| = r$, ist keine allgemeine Aussage möglich.