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Exercise 2.1 Consider an evaluation procedure that contains no additions and subtractions, so
that none of the elemental partials cij = ∂φi/∂vj with j ≺ i has one of the special values
in {−1, 0,+1}. Moreover, assume that there are no dead ends in that all intermediates vk
with 1 ≤ k ≤ l − m depend on at least one independent variable xj and impact at least
one dependent variable yi. Finally, assume that no dependent is directly calculated from an
independent, so that none of the cij itself is an element of the Jacobian. Then each value cij
affects the value of the Jacobian element ∂yi/∂xj and must therefore enter somehow into any
procedure for evaluating F ′(x) at least once. Let the gradient ∇f(x) = F (x, 1) of a scalar-
valued function f = F with m = 1 be calculated by the adjoint procedure with y1 = 1. Then
each elemental partial cij enters exactly once, namely, as a factor in a multiplication. In the
incremental form each one of these multiplications is followed by an addition.

a. Conclude that the number of arithmetic operations used to accumulate ∇f from the
elemental partials in the reverse mode cannot exceed the minimal number needed to
calculate ∇f by a factor of more than 4.
For some d� 1 and positive constants wi, zi, bi for i = 1 . . . d, consider the function

f(x) = ln
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We might think of sin(x) as a parameter restricted to [−1, 1] that should be chosen to
minimise the discrepancies between the values exp(zi ∗ sin(x)) and the bi as measured
by the logarithm of a suitably weighted sum. To optimise such an exponential fit, one
obviously needs the scalar-valued derivative f ′(x). To satisfy the special assumptions
made above, let us consider the ψi(u) ≡ (u − bi)2 and the weighted sum ψ0(v) =
∑d
i=1 wivi as elemental functions.

b. Write a procedure for evaluating f using elementaries ψi for i = 0, 1, 2, . . . , d and draw
the computational graph.

c. Derive the corresponding adjoint procedure for accumulating ∇f from the elemental
partials. Count the number of multiplications and additions used in the incremental
form. Verify that the number of multiplications corresponds exactly to the number of
edges, which is 4d+O(1).

d. Rewrite the formula for f(x) using ψi, and differentiate it by hand. Show that by
keeping the common factors cos(x) and 1/ψ0 out of the internal sum, the number of
multiplications needed for the calculation can be kept to 3d+O(1).
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e. Show that the tangent procedure for calculating f ′(x) = ḟ(x, ẋ) with ẋ = 1 involves
exactly as many multiplications as the reverse mode and is therefore also less economical
than the procedure derived by hand in part d.

Exercise 2.2 Consider the function f(X) ≡ ln |det(X)|, where X ∈ Rn̂×n̂ is a square matrix
whose n ≡ n̂× n̂ entries Xij are considered as independent variables. This function f(X) has
been used as a penalty term for maintaining positive definiteness of X when it is restricted
to being symmetric.

a. Show that, provided det(X) 6= 0 so that f(X) can be evaluated, the matrix G ∈ Rn̂×n̂
of corresponding gradient components Gij = Gij(X) ≡ ∂f(X)/∂Xij is the transpose of
the inverse X−1. Hence the cheap gradient principle guarantees that any finite algorithm
for evaluating the determinant of a general square matrix can be transformed into an
algorithm for computing the inverse with essentially the same temporal complexity.

b. Examine whether the last assertion is still true when X is restricted to having a certain
sparsity pattern (for example, tridiagonal). Explain your conclusion.

c. Assume that f(X) can be evaluated on some neighbourhood of a particular matrix
by performing LU factorisation without pivoting. Write this algorithm as an evaluation
procedure that overwrites the original matrix elements with intermediate quantities and
finally with the non-trivial entries of the two triangular factors. Derive the corresponding
adjoint procedure with tape and compare it to standard methods for computing matrix
inverses.

d. For a constant matrix A ∈ Rn×n and a vector b ∈ Rn, determine the gradient of

f(x) ≡ ln |det(A+ bxT )| at x = 0 .

e. Write an evaluation procedure that evaluates f(x) for n = 2 by first computing the
entries A+ bxT , then applying the explicit determinant formula for 2× 2 matrices and
finally taking the logarithm of the determinant’s modulus. Show that the resulting
adjoint procedure for evaluating ∇f is not optimal.

f. Suppose that A + bxT has for all x near the origin n simple non-zero real eigenvalues
λj(x) so that f(x) =

∑

j ln |λj(x)|. Determine ∇xλj at x = 0 by implicit differentiation
of the identities (A+bxT )vj = λjvj and (A+bxT )Twj = λjwj . Here vj , wj ∈ Rn denote
the corresponding left and right eigenvectors normalised such that vTj wj = 1 for j =
1, 2, . . . , n. Write an evaluation procedure for f(x) treating the λj as elemental functions.
Derive and interpret the corresponding adjoint procedure for evaluating ∇f(0).
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