Spectral asymptotics of Robin Laplacians on polygonal domains

Magda Khalile

Laboratoire de Mathématiques d'Orsay, Univ. Paris-Sud, 91405 Orsay, France

Abstract

Let $\Omega \subset \mathbb{R}^2$ be a curvilinear polygon and Q_{Ω}^{γ} be the Laplacian in $L^2(\Omega)$, $Q_{\Omega}^{\gamma}\psi = -\Delta\psi$, with the Robin boundary condition $\partial_{\nu}\psi = \gamma\psi$, where ∂_{ν} is the outer normal derivative and $\gamma > 0$. We are interested in the behavior of the eigenvalues of Q_{Ω}^{γ} as γ becomes large. We prove that there exists $N_{\Omega} \in \mathbb{N}$ such that the asymptotics of the N_{Ω} first eigenvalues of Q_{Ω}^{γ} is determined at the leading order by those of model operators associated with the vertices: the Robin Laplacians acting on the tangent sectors associated with $\partial\Omega$. In the particular case of a polygon with straight edges the N_{Ω} first eigenpairs are exponentially close to those of the model operators. Moreover, if the polygon admits only *non-resonant* or concave corners, we prove that, for any fixed $j \in \mathbb{N}$, the $N_{\Omega} + j$ eigenvalue $E_{N_{\Omega}+j}(Q_{\Omega}^{\gamma})$ behaves as

$$E_{N_{\Omega}+j}(Q_{\Omega}^{\gamma}) = -\gamma^2 + \mu_j^D + o(1), \text{ as } \gamma \to +\infty,$$

where μ_j^D stands for the *j*th eigenvalue of the operator $D_1 \oplus ... \oplus D_M$ and D_n denotes the onedimensional Laplacian $f \mapsto -f''$ on $(0, l_n)$, where l_n is the length of the *n*th side of Ω , with the Dirichlet boundary condition. Finally, we prove a Weyl asymptotics for the eigenvalue counting function of Q_{Ω}^{γ} for a threshold depending on γ , and show that the leading term is the same as for smooth domains.