Representation equivalence and p-spectrum of constant curvature space forms

Emilio Lauret (Universidad Nacional de Córdoba, Argentina)

Let X = G/K be a symmetric Riemannian space where G is its isometry group. We shall consider discrete cocompact subgroups Γ of G acting without fixed points on X. For a finite dimensional unitary representation τ of K there are two notions that come from harmonic analysis:

- Γ_1 and Γ_2 are called τ -isospectral if the Laplace operators acting on the sections of the vector bundle E_{τ} of $\Gamma_i \setminus X$ associated to τ have the same spectrum;
- Γ_1 and Γ_2 are called τ -representation equivalent if $n_{\Gamma_1}(\pi) = n_{\Gamma_2}(\pi)$ for every unitary representation π of G that its restriction on K contains τ .

Here $n_{\Gamma}(\pi)$ denotes the multiplicity of π in the representation $L^2(\Gamma \setminus G)$.

We shall study the relations and differences between these two notions in the particular case of constant curvature space forms (i.e. $X = S^n, \mathbb{R}^n, H^n$) and $\tau = \tau_p$ the complexified *p*-exterior representation of O(n). We will first review Pesce's work. He proved that τ -representation equivalence implies τ -isospectrality and the converse is true for the trivial representation $\tau = 1_K$ in constant curvature space forms. We extend this last result in the spherical case for $\tau = \tau_p$. For nonpositive curvature space forms, we will give examples showing that τ_p -isospectrality is far from implying τ_p -equivalence, but a variant of Pesce's result remains true.

This is a joint work with Roberto Miatello and Juan Pablo Rossetti.