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~ Abstract. Nowadays one of the main problems in the theory of ultracold neutrons (UCN)
is that the actual time of their storage in closed vessels (the so-called “Zeldovich bottles”)
is by more than an order of magnitude smaller than the time predicted in the theory [1-3].
‘We model the neutron-nuclei interaction by using the point potentials and thus analyze the
process of passing to the so-called “optical potential” [2, 4, 5] and the corrections. arising
as the result of this passage. We show that, in the case of many scatterers, the difference
between the reciprocal scattering length o~ ! at the jth scatterer and the same value at an
isolated nucleus can be ~ R™! ", where R is the minimal distance between the scatterers. The
optical potential is derived with the same accuracy. For the case in which the correction is
assumed to be a random variable, the omltted terms can apparently be taken into account
by adding an imaginary correction ~ R~ to the reciprocal scattering length in the optical
potential. We consider a model in which the reciprocal scattermg length is assumed to be a

" Lorentz distributed random variable. Using the so-called “supersymmetric trick” [6, 7], we =
-explicitly obtain the averaged optical potential (the Féermi pseudopotential). The averaged
optical potential turns out to be dissipative, and the imaginary correction to it comc1des with
the Lorentz parameter of the distribution.

1. INTRODUCTION

In 1959, Zeldovich [8] theoretically predicted that very slow neutrons can be stored in material
traps, the so-called “Zeldovich bottles.” It was shown that the interaction between slow neutrons
and an ensemble of identical fixed point-like scatterers can be described by mtroducmg the effective
~ “optical potential”! » :

V= 27rh2na/m L o (Y

Where B is the Planck constant, n is the number of scatterers per unit volume, a is the so-called
“scattering length” (a char acterlstm of the scatterer), and m is the neutron mass. This description

is valid if the neutron wavelength is much greater than the distance n~1/3 between neighboring
scatterers. For the majority of matters, we have a > 0 and hence the optical potential is a positive
potential of height ~ 100neV, i.e., it is an effective potential barrier for incident particles. The
incident neutrons with energies less than the barrier height are completely reﬂected The neutrons
with energies ~ V' were called ultracold neutrons (UCN). '

The optical potential simplifies significantly the initial scattering problem for the the very slow
neutron which interacts with the ensemble of fixed nuclei. The initial statement of the problem is
the following.

‘One considers the statlonary scattermg problem for the slow particle, which interacts with the
ensemble of the N fixed nuclei. We assume that jth nucleus with the centrum in the point R;

IThe idea of the “optical potential’; was appeared earlier in the rather different physical situation (see e.g. [9]).
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" is described by the potential U;. For s1mpl1c1ty we assume U to be spherically symmetric, i.e.
U; = U;(r —R;). The scattermg state ¥(r,k) is the solut1on of the statlonary Schrédinger equation
Wlth Hamlltoman H: B2

Hy = By, H——-——A+ZU(|r— R;)) (2

"with the radiation condition on the infinity of the form ¢}r_+oo — e 1 f(kr)e™*" /r. There are two
explicit parameters in this problem, namely krg and kR, where rg is the characteristic radius of the
nucleus and R is the characteristic distance between the nuclei. We want to construct asymptotlc
solution of the problem when kro <« kR <1 (“ultracold” limit). It was shown in [2, 4, 5] that in-

~ this limit to calculate the asymptotic behavior of the wavefunction 1 (r, k) when r — oo one can

_ replace nuclei, i.e. Z LUj in (2), by the optlcal potential V given by (1).

So far the elastic and nonelastic ‘interaction of UCN with matter has intensively been studied
both experimentally and theoret1cally The keen interest in this problem is motivated by the fact
that the time of storage of neutrons in traps is much less than its theoretical estimates [1-3, 11].

Significant losses of neutrons in traps are caused by numerous collisions of neutrons with the
trap walls, and in this case the coefficient of losses “per an impact” is a sufﬁciently small quantity.
Phenomenologically, the losses can be taken into account by introducing an 1mag1nary correction .
to the potential V' — V' 4 iV", but the problem of justifying such a correction is still open. In [3,

5, 12, 13], it is assumed that the optical potential always contains a small imaginary correction,
Wh1le in [2] it is stated that the optical potential is real if there is no absorption of neutrons by'
,nuclel These statements concern the case of fixed nuclei. Physically, the existence or absence of

“imaginary terms” in the optical potential may depend on whether all the processes (channels) or
~some of them describe the optical potential.

We want to check two questions: 1) what is the accuracy of the derivation of the optical potential -
and 2) whether the optical potential concludes small imaginary part. These two questions are closely
connected. Actually, if the accuracy of the derivation is insufficient, we can always include small
imaginary part in the potential. Thus to answer this question one has to obtain, in principle, all
- terms of the expansion with respect to k. But the problem (2) is extremely complicated. So, at
first, we are going to replace it by the explicitly solvable model, which is a good approximation of
(2) When k — 0. We show later that to this end one can cons1der the problem with point potentials
as the model problem satisfying above conditions. |

In the present paper, we consider apparently a new aspect of the problem of interaction between
‘the neutron and an ensemble of identical fixed scatterers. Namely, we first show that even for
- identical scatterers, the scattering length cannot be assumed to be constant. The reciprocal of the
scattering length is determined up to the order of the inverse distance between the neighboring
scatterers. The fact that the crystal is nonideal and there are boundaries, heat motion of nuclei,
impurities, etc. allows one to assume that this correction is a random variable. We show that, for
. the Lorentz distributed scattering lengths, the usual derivation procedure allows one to obtam the
optical potential containing an imaginary correction dependmg on the parameter of the Lorentz
distribution.

We point out that the usual description of interaction by using the optical potential is based
on the replacement of nuclei by point-like scatterers. The effects of scattering of the momenta,
I # 0, cannot, in principle, be taken into account under this approach. Since this problem has been
" discussed many times, we present several mathematically rigorous formulas and their proofs on the

“physical” level of rigor and refer to accurate mathematical studies if necessary.
- In conclusion we would hke to discuss the relation between the low energy scattering (k — 0)-
on the potentials U;(|r — R;|) (nuclei) with finite radii of action and point potentials. Seeming
-contradiction between the scattermg of neutrons on the nuclei and the scattering on the system
of point potentials consists in the observation that the radius of nuclei forces action is finite and,
moreover, has the same order as the scattering length. It leads to the difference of the dlscrete :
spectrum of the “physical” nuclei and point potent1al But the conclusion that point potentials are.

“nonphysical” is the mistake.

The contradiction is explained by the fact that in the low energy limit in the scattermg on the -
alone potent1al the contribution of the s-wave is dominant, moreover two leading terms of the Taylor . -
expansion of the scattermg amphtude with respect to k are independent of the nucleus radius rq:

A f(kr) = —a+ika® +O(K?). - : (3)
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We will show below that for point potential two leading terms of the Taylor expansion of the

. scattering amplitude with respect to k coincide with given above?. Hence, point potential is a good

approx1matlon for the initial physical problem. Moreover, the problem with point potential is self-
adjoint. It is important since we want to check the “losses”, we have to choose self-adjoint problem
~ as zero approximation, otherwise we can obtain “parasitic losses » which connected only with the
improper choice of the approximation.

Followmg consideration given above we assume that pomt potential is the good zero approxi- -

“mation in.the problem of the low energy neutron scattering on the nuclei. Actually, the approach
based on the point potentials was used in [3, 10].

2. GENERAL FORMULAS OF THE THEORY OF POINT POTENTIALS

For the scattering of ‘a neutron wave with a rather small energy on a ensemble of nuclei, it is
natural to replace the nuclei by point-like scatterers, i.e. to replace the potentials U; in (2) by the

perturbations with zero effective radius. Following [4, 10, 3] we call the scattering theory based

on the point potentlals “Multiple Scattering Theory”. One can find the detail discussion of the
questions concerning the theory of point potentials, 1nclud1ng all formulas of this section, in [4, 10,
14].

In the physical literature, the point- “like scatterers are usually modeled by “é-like” potentlals S0

that the corresponding Hamiltonian H has the formal form® [4, 10]
27rh :
H=Hy+ Y =S (-Fic—Ry), @

; : ‘
where Hy = —Hk%/(2m)A is the Hamiltonian of a free particle of mass m and the sum is taken
over all the positions R; of the point-like scatterers. In fact, this formal formula corresponds to the

limit*of deep spherically symmetric potential wells of small radius ro for which the characteristic

“depth Up of the well and the radius are assumed to be related as Up{ro} ~ i?/(2mr3) (the braces:

denote the dependence on & parameter). In the limit as 79 — 0, the action of each such potential
well is characterized only by a single parameter, i.e., the scattermg length a;. We point out that

the scattering length a; is assumed to be constant as 79 — 0. A specific realization of the passage

to the limit from potential wells of constant depth to zero- O-Tange potentlals is given in Appendlx B
(see also [14]).

In fact, the “point potentials” are equivalent to the boundary condition
: S | : .
‘ ¢1|r—R-|—~>o G [1 - —"_"J’“‘—] ; ' ' ()
Ir — Ry :
where ¢; are some constants. The bound state in the ﬁeld of N pomt—hke scatterers correspondlng

to the energy E = —Fi%52/(2m) has the form . ' | R |
‘—J‘{ r— %

Slmﬂarly, the scattering state’ correspondlng to the incident plane wave with energy E F2k%/(2m).

is described as follows:
zk[r Rl

¥(r; k) = exp(ikr) -I—‘Z:FJ Ey— ' o (7)

Substituting (6) and (7) into (5), we see that, in the case of bound states, the levels are obtained
from the compatlblhty condition .

det Q(ix) =0 : , (8)

and, in the case of scattering states, the constants F are determined as follows:

where the matrix Q(k) has the form g

20ne can prove analogous results for rhultlple scatterers when kro < kR < 1 (see e.g. [2])
3In a'litéral sense, this formula is not correct.
4In what sense the limit is understood from the mathematlcal v1ewp01nt is discussed in Appendlx A.
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_ [ IR Ry, i
Qij(k) = ot , o

: + ik, 1=
Clearly, in the case of a single scatterer, We have x=a ~1 for a > 0. For a < 0, there aré no bound
states. o

" The Green’s function of the Hamiltonian (4) (i.e., the integral kernel of the operator (H -k~
Imk > 0) is determined by M. G. Krein’s formula for the resolvents :

G(x,y;k) = Go(x,¥: k) — Y Q(k)55' Go(x, Ri; k) Go (R, y; k). 1
i
Here Go(x,y; k) = exp(ik|x — y|)/(4m|x — y|) is the free Green’s function.
‘Considering the asymptotics of the wave function as r — oo, we find the scattering amplitude
F®) at a system of point potentials '

F®(n; k) = ZF —iRy - ZQ py ZkRa—%kRz K=kn, n=r/r  (12)

(10)

The scattering length a(N ) at the system of N centers is determined as

o =.—F<N>n0) ZQ(O) A BENGT:)

' 3.ONE-CENTER PROBLEM. PASSAGE TO THE ZERO-RANGE POTENTIAL

- We consider the scattermg of a neutron with small energy at a spherlcally symmetric potential
U(r) with a finite radius r¢ of range (a fixed center) located at the or1g1n The scattering state
¥(r; k) is described by the Schrédinger equation :

~(/@m)) Ay + U (r)ep = B, - - (19
where % is the Planck constant, m is the neutron mass, E is the neutron energy, k is the wave
vector of the incident particle, and E = B2k2 /(2m). As T — oo, the scatterlng state satisfies the

radlatlon condition
P(r; k) — o (r; k) +f(k n) ”"/7’ ‘ r — 00. (15)

. The function '(,bg(r k) determines the lmtlal state of the partlcle, to be definite, we assume that
Po(r; k) = e’ :

We consider the original problem in the followmg limit. We let the radius ro of the potential
range tend to zero and simultaneously let the depth of the potentlal well tend to infinity so that
the characteristic depth satisfy the relation Up(ro) ~ A?/(2mr2). The last condition implies that,
in such a well, there exists a shallow real or virtual level. We pass to the limit so that the energy
E = +h?/ (2ma2) of this level remains constant. The quantity a is the so-called “scattering length.”

For krqg < 1, the contribution of the momenta [ # 0 to the scattering becomes negligibly
small because there exists a centrifugal potential. Hence we consider only the contribution of the
s-wave®. The wave function taking into account only the scattering of the s-wave and satisfying -

condition (15) has the form
(x k) = e’k‘" + f(k)e“"/r =14+ f(k) (1/r + zk) +O0(rg) »c(l—a/r), r—0, - (16)

- which implies f(k) = —a/(1 +ika). A pole of the scattermg amplitude corresponds to a “shallow”
real or virtual level. An example of passing to the “point potential” limit in a sequence of symmetnc
potential wells of constant depth was considered in Appendix B.

The scattering cross-section is determmed as

o= 47r|f|2 (4 /k) Imf( ) = 4ma®/(1 + (ka)?) - _ (17)

5The condition that the scattering length a is assumed to be “frozen” as ro — 0 is the crucial condition for the last
assumption to hold. This condition necessarily cannot be satisfied for the scattering length ~ rg. In this case, the.
corrections due to the contribution of nonzero momenta ~ kro are comparable with the corrections ~ ka that arise
in the scattering of the s-wave and are preserved in the scattering amplitude.
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4. MANY-CENTER PROBLEM. “ANOMALOUS”
BEHAVIOR OF THE SCATTERING LENGTH

In the case of an ensemble of scatterers, it is conventional to replace a; in formulas (5) and (10)

by the scattering length at a single pomt—hke scatterer concentrated at a point R;. But already in
-the problem of multiple scattering at two centers R; and Ry with scattering lengths a1 and as, this -

substitution leads to an anomalous behavior of the spectral parameters and the scattering data in
the limit as R = |R1 — Re| — 0. This anomaly, first analyzed in [15] (see also [10]), means that the
ground state Fy in the system of two centers tends to —oo as R — 0, while the scattering length
a(2) tends to 0. -

We study this phenomenon in detail. First, we construct the bound states of a system with two
centers. Obv1ously, the desired eigenfunction has the form

Ug(r) = (F1/|r = ri]) exp(—slr —r1]) + (F2/|r — r]) exp(—sefr — ral). 1)

Condition (8) leads to the equation v
(3¢ —al )(z ay') =exp(—2xR)R~? : (19)

Tt is convement to analyze the last transcendental equation for the parameter s starting from
graphical considerations. In this case, the left-hand side presents a parabola intersecting the Oz-
axis at the points a;! and a;' and the Oy-axis at the point (ajaz)~!, while the right-hand side
. tends monotonically to zero intersecting the Oy-axis at the point R2.

In the case aj, ag > 0, Eq. (19) has two positive roots for a1as < R? and only one root for

aias > R?. In the case where only one of the scattering lengths is greater than zero, there always

exists only one positive root. But if a1, as < 0, then one positive root exists under the condition

that ayap > R2. We note that the fact that a bound state exists in the system of two centers for
“aj,as < 0is an 1mportant distinguishing feature of zero-range potentials [4]. Moreover, there are
no bound states in the potential of each isolated nucleus.

Thus, for R < (a1a2)/?, there always exists a unique negative level Eo(R). Moreover, Eg(R) —
—00 as R — 0, although it was to be expected that Ey would tend to the level generated by

.y . . -1 — -1 .
the point perturbation with the reciprocal scattering length (a(z)) = aj Ly g ! as in the one-
dimensional case. Furthermore, it follows from (13) that, in the multiple scattering at two centers,
the scattering length is equal to

a(z) = R(2a1a2 — R(a1 +baz))/(a1a2 — RZ) (20)

In particular, for a; = az = a, we have a® = 2Ra/(R +a). In any case, a(z) tends to0as R— 0, -

but not a® — ajay/(a; + ag) as was to be expected.
‘To remove this anomaly in the behavior of both the ground state and the scattering length it is
necessary to assume [15] that, for small R, the parameter a; ! depends on R according to the law

1/a;(R) = 1/a;(R) — 1/R, where @;(R) is a regular function of ‘R with values of the order of the

scattering length at an 1solated nucleus. After the renormalization, we obtam

| a®(R) — 43:(0)32(0)/(@(0) +32(0)), = R—0. - . (21)
In the case of a large number of centers, we must assume that
1/% (ps) = 1/a;(ps) — Bi(psi)/pi» (22)

where p; = min;; |[R; — Rs| and B;(p;) ~ 1 as p; — 0.

In conclusion, we pomt out that, in the case of several centers, the point potential approx1mat10n
remains valid for any relations between the scattering lengths at isolated scatterers, the distances
between the scatterers, and the wavelengths of incident particles. The only 1mportant condition
is that the radii of the corresponding potentlal ranges ‘must be much less than all these three
parameters.

But, as the scatterers approach one another and the distance between them becomes comparable,.

with the scattering lengths at isolated nuclei, the meaning of the free parameters in formula (5)
" becomes different. It is convenient to analyze th1s effect by studying the bound states. For the bound

states, this means that it is necessary to con31der the tunneling effects, which become crucial as

F. the scatterers approach one another

RUSSIAN J OURNAL OF MATHEMATICAL PHYSICS Vol. 12 No. 2 2005
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5 HAMILTONIAN OF A. NEUTRON IN THE FIELD OF N
POINT-LIKE SCATTERERS THE OPTICAL POTENTIAL

To derive effectlve equations describing the repulsion of a neutron from the trap Walls in terms of
the optical potential, we follow the elegant argument presented in [2], where it was first shown that

the derivation of equations with pseudopotential is significantly different in the cases of slow kR < 1

~and fast kR ~ 1 particles, where R i is the characteristic distance between the scatterers. In nuclear
physics, the slow particles are a,ssomated with to the so-called “ultracold neutrons” k~! ~ 1004
and the fast particles are associated with the heat neutrons k=1 ~ 3A. The pseudopotential for
slow particles was first introduced by Ya. B. Zeldovich [8], who also predicted that the neutrons
can be stored in material traps. .

The introducing the optical potentlal for slow partlcles means that the asymptotic behavior
of the wave function far from the system of identical point-like scatterers does not change when

the scatterers are replaced by the slowly varying potential u(r) = 47n(r)a, where a; = a is the -

scattering length. To prove this assertion, we first rewrite formula (9) as follows: -

R ZQ(k )i o o (23)
or, which is the same, : ) : o
kR +( ot +zk)F +47I'ZG0 (Ri,R;j; k)F; = 0. : (24)
We denote the “neutron amphtudes” by \Il = Fi / a; and, for simplicity, assume'that a; =.a is
: mdependent of i. Then v o o 4
¥; = Po(Ry; k) — ikal; —47raZG0 (Ri, R;; k) ;. (25)

We. point out that formula (25) is obtalned from (9) by identical tmnsformatzons For further

‘simplifications, in the right-hand side of the last formula, we replace the sum by an integral under -

the condition that kK <« R~!. In this case, the coefﬁments Go (RZ,R], k) vary slowly with j (the
Zeldovich case). We note that ik = 4w lim,_,o Im G'(R,,R + r; k), i.e., we can assume that only

the real part of the continuation of G(R;,Ry;k) for j =i is “absent” in the sum. Replacmg the

neutron amplitudes ¥; by a continuous function ¥(r), ¥(R;) = ¥;, varying at distances ~ k™, we
pass from the sum to an integral in the last formula: L

W(r) = o (r;k) — dra / Ern(r)Co(r, v'; KT ('), @)

where n(r) is the density of scatterers®. The integral around the center R; = R, is small under the
condition that a < R: : -

ava | drn(r )Go(rr k)¥(r') ~ aR?/R® ~ a/R. @)
¢r'—r|<R '
Equatlon (26) is equivalent to the dlfferentlal Schrodinger equation: o
—AY(r) + u(r)¥(r) = E20(r), u(r) = 4nn(r)a. - (28)

Here u(r) is the so-called optical potential (the Fermi pseudopotential). Solving Eq. (28) with
pseudopotential is, in fact, equivalent to calculating the inverse of the matrix @;; in (10).

Far from matter, i.e., in the domain [r—R;| > k™1, the Green’s function G (R], r; k) is a smooth
- function. Hence Eq. (7) in this domain can be ertten in integral form

b(r;K) = o(r; K) — 4ra / Pr'n(r)Go(r', r; k) U(r). (29
Since Egs. (26) and (29) coincide, the neutron wave function ¥ (r; k) outside matter must be iden-
tified with the function” ¥(r).

Under the assumption that the amplitudes ¥; vary slowly with the number ¢, we can replace

the sum by an integral also in formula (12) determining the scatterlng amplitude FW), Thus, we
obtam

- 6As usual, we assume that the volume d3r contains n(r)d3r scatterers.
7Strictly speaking, Eq. (26) holds only inside matter; it can be “continued” to the entire space only under some
additional conditions.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS  Vol. 12 No. 2 2005
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POy )= SR = [t ana ) = ~ 0O, (0)

~ which completely agrees Wlth the general formula for the scattering amplitude at a ﬁmte—range
potential.

In conclusion, we note that in [5] the neutron amplitudes are defined as ¥; = —(a; ' + ik)F}.
Acting as above, we obtain the following equation for the smoothed amplitudes ¥(r): -
ZAT(r) + ) = KU, @) = drn(r)(a/(1 + ika)). (31)

The optical potentlal in the last formula contains an imaginary correction. But, the existence
problem concernmg the imaginary additional term in the opt1cal potential cannot be solved on the
same level of rigor as Eqs (28) and (31) were obtamed :

6. RANDOM SCATTERING LENGTH

Apparently, the optmal potential describes well the case of an ideal infinite crystal for which
all the scattering lengths are assumed to be the same. In fact, as was shown in Section 4, the
scattering length at the jth center depends.on the position of all the other scatterers. Thus, it
can be somewhat different even for identical nuclei because of various defects of the lattice, far
distances from the matter boundary, heat oscillations of nuclei, the absence of higher-order terms,
etc. In any case, the “characteristic difference” between the scattering length in matter and the
scattering length at an isolated nucleus is of order 1/R. Here we consider the simplest model in
which all the scattering lengths are assumed to be random variables. In this case, the positions R;
of the scatterers are assumed to be fixed. Such a model allows one to introduce a random element
and, at the same time, to perform s1mple analytic calculations. ' : »
We make the following model assumption: let the reciprocal of the scatterlng length o; = aJ 1A
be a Lorentz distributed random variable with half-width &;. We readily note that the“drawback”
of such a distribution is that the scattering length itself does not have any mean value, since the

integral , : ,
1 [~ 1 » ,
;/ c‘u—l—T(Tz—i-%z)dT . (32)
diverges near the point 7 = —& like the integral [ dz/z at zero. But the mean value of the scattering
- amplitude exists and can be determined as the integral : :
foy =2 [ e (b = ey
a+1+ik \ 724 2 ~atintik :

which can elementary be calculated by using the residue technique. It is easﬂy seen that the mean
scattering cross-section.is : '

& = (4n/k) Im f(E) = ((4ma® )/(1 + (k + %)2 a®))(1 + »/k). o (34)

Now we consider the case of many scatterers. According to (7) and (9), the scattering state is

determined as follows:
zk]r —R|

¢(I‘;k)=¢0(1"k ZQU%I ‘wo(R;,,kx o (35)

. where the diagonal entries of the matrix () are @; + 7; and 7; are independent random varlables
We introduce the scattering state averaged over all the realizations of these variables:
'Lkll‘ R;| ' B
(¥(r;k)) = do(r; k) — Z( (k)i D p— TR Po(R;; k) - (36)
. ij ' '
To find the entries (Q(k)m ) of the averaged matrix, we use the so-called “supersymmetric
trick” [6, 7, 16]. According to the general scheme, we introduce. commutmg (complex) variables z;

and the anticommuting (Grassmannian) variables 92, then Q(k)“ can be calculated by using the
so-called Berezin integral =
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[AnGo (¥, ', k) + (aw + Ti,)éi,j,]i—’jl' = z/ zf zj exp [ Z(z 20+ 050 )47rG0(z 3’5 k)
. 2,5 . .
+ zZ(zz,zZ + 63,0 )(azf + Ty )] DzDO, (37)
 where - ' G k) : 4
0 Rza 1 .7) '
k : - . Dz= Do = 9*
| Go(’LJ, )= {zk/(47r) Ci=j, z = Hz %, H
Let p; be the dlstnbutlon density of the random variable 7;, and let gi be the characterlstlc function

of this density: _ .
@ =] e d.

oo
Averaging (37) and taking into account the fact that r; are independent we obtain

‘([47F@0(i'aj';k)+(va_"i'-“‘,'f'i')&'j']i_,})'t:‘i/’2329‘ exp [Z( zir %y +02’9 NarGo(d', §'; k)
. . B %)

+1 Z(zz, zy + 05,0:) a,'} H gir (zz,zz/ + 6 91/) DzDG( )
L N Byl 38) -

The mtegral in (38) is finite if 7; are Lofentz distributed: o
w; > 0. ’ _ (39)

P =1
In this case, the charactenstlc function has the form - o , o
gi(z) = exp(— xZ]:L'|) : » (40) -

and we obtain the following finite ekpression for the integral in (38):

{[4nGo (@', '3 k) + ( -{—Ti/)&i}j/]i—;)" :i/ z;*zjvexp [Z( Zhzp + 050,)4nGo(i, 73 k)
AV

+ zZ(z bzt Oz,ez:)(abl + i3y )} DzDf = [4nCo (i, 5; k) + (@ur + iseir)S v ]—11 . (41)

In the case of a single scattering center, thls procedure implies (33). Thus, the averaging over
the scattering state realizations has the form '

- WK) = vl k) = 3 [Gold' '5k) + (@ + i)y ] %(RZ, K)Co(Ry, ). (42)
6
Followirig the argument given in Section 1, for the case in Wthh & =a~atand x; = z ~ R,
we obtain the following equation for the ‘smoothed” neutron amplitudes:

| AU +un) () = BU(),  u(r) = drn(r)(@ +ix) Y, » (43) .
where ¥(r) coincides with (¢ (r; k)) for suffimently large 7. ‘

7. CONCLUSION v

In this paper, we analyzed the “optical potential” method for describing the interaction of slow
neutrons with the medium. We showed that the well-known formulas of the theory of multiple
scattering of waves corresponds to the limit of the so-called “zero-range” potentials, which are

- three-dimensional analogs of d-potentials.

We pass to the optical potential under the assumption that the ‘neutron amplitudés” vary slowly
at distances of the order of the distance between the scatterers and the scattering lengths are the

- . same for all the centers and coincide with the scattering lengths at isolated nuclei.

~ But already in the problem with two scattering centers, the assumptlon that the scattering
- lengths are equal to the scattering length at an isolated center leads to an “anomalous” behavior of
the scattering data in the limit as R — 0. The situation can be “improved” by using a “renormaliza-
" tion” of the scattering lengths. The renormalization is reduced to the change aj'-"l —a;(R)"1—R™1.
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A similar renormalization can be justified “heuristically” in the case of many scatterers. In this
case, it is reduced to the change aTl — Ej(R)_1 - B ~(R)R‘1, where R is the minimal distance
between the scatterers.

We assume that, in a real situation when the crystal nonideality, the boundary ex1stence and
the heat motion of nuclei are taken into account, the function 3;(R) can be assumed to be a random
variable. This assumption lead to an mdetermlnacy in the reciprocal scattering length ~ ~ R7!. In
this case, it is natural to obtain the “averaged” description of the scattering process. But, in the

general case, the process of obtaining constructive formulas is a technically complex procedure .

because it is necessary to invert the matrix (10). To overcome this difficulty, we assume that the
random variables are Lorentz distributed and obtain the averaged optical potential explicitly, using
the so-called “supersymmetrlc trick” [6]. The averaged optical potential turns out to be dissipative,
and the imaginary correction to it coincides with the parameter of the Lorentz distribution.
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9. APPENDIX A

Unfortunately, formula (4) does not give a mathematically well-defined Hamiltonian H for any
' ch01c_e of the nonzero coupling constants ¢; = —27A?>m~1F}. This originates from the fact that, in
~ contrast to the one-dimensional case, the quadratic form f +— (Hof| f) +Z ¢l f (R;)|?, well-defined
on the space of finite functions C§°(R?), cannot be continued to a closed quadratic form in L2(R3)
‘in all dimensions greater than unity [15]. Intuitively, we see that the most natural method for

overcoming this difficulty is to consider the Hamiltonian H as the limit of a famlly of Hamiltonians
of the form

H,=Ho+ Y Vo(x— R;), - - (44)
where V;(x) are “regular” functions tending to the Dirac function 6(x) as € — 0, while the form

of the couphng constants c§ ) must be determined so that H,. converge to H in some operator

topology. In this context, the topology of uniform resolvent convergence is the strongest topology.
Namely, the family H. converges in this topology to H as € — 0 if the family (He —2)71 converges
" to (H —2)~! in the operator norm for some (and hence for any) nonreal z € C. :
If we want to obtain a nontrivial limit in a neighborhood of the point R; (i.e., an operator H
whose action on the functions concentrated in a sufficiently small neighborhood of the point R; is
other than Hp), then it is necessary that cg-s) be nonnegative for sufficiently small £ > 0 and do

not exceed ¢ in the order of magnitude [4]. Intuitively, this means that the potential c;0(r — R;)-
in formula (4) must be an attracting potential with an inﬁnitely small coupling constant c;.

10. APPENDIX B

We consider a spherically symmetric potential well of constant depth Uy and radlus rg. In such
a potential well, we seek bound states with energy E = —h%x?/(2m) and momentum [ = 0. As
usual, we introduce an ‘eigenfunction in the form x(r)/r and obtaln '

Asm(%’r), T <‘r0,k. (45)
B exp(—m"), T 2 To,
where we use the notation (/)2 = 2mUy/h? — 32 Equatmg the loga,rrthmrc der1vat1ves X'/x at
the pomt r = 79, we obtain the followmg system of equations: _
| n=—Ecoté, 417" =uo, B (46) |
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where & = 3/rg, ) = 319, and ug = 2mr0Uo / F2. Graphically, the solutions of this system are the
points at which the circle of radius® ug intersects the curves n = —€cot &, Clearly, the positive
solutions £ and 7 exist if the radius ug is greater than 7/2. The parameter 1 determines the
“depth” of the level. Now we fix the level energy and let the radius of the well tend to zero.
In this case, the level becomes “shallow,” i.e:, 7 — 0. Solving system (46) by the perturbation
theory method in the parameter 7, we obtam f =w(n+1/2)+n/(r(n+ 1/2)) + O(n?) and ug =

72 (n+1/2)° +277+O(772)—7r (n+1/2)* +2r¢/a+ O((ro/a)?), where a = 3~ is the scattermg '

length. This gives the formula for the sequence of potentials Ug{ro}, 7o — 0, with a fixed scattering
length:

‘The potential wells Uy become deep as r¢ — 0, but they are “weaker” than the d-sequénce (the
sequence tending to the 6—funct10n) ThlS can ea,sﬂy be seen if we write the characterlstlc 'depth of
the well in the form :

h? 27rh 70

2m7'0

5{7'0}7 -5{T0} = (_)‘7 (48)

~ where Q(rg) = 4nr3/3 is the volume of a sphere of radius ro and the sequence §{ro} — &(r) as

- 19 — 0. Clearly, the coefficient of §{ro} (the “couphng constant”) ténds to zero as rg — 0.
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