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The continuity of integral kernels related to Schrodinger operators (the kernel of the heat equa-
tion, Green’s function) plays an important role in the study of different properties of quantum
systems. In the Euclidean case, it was shown in [1] that sufficiently general functions of the
Schrodinger operator have continuous integral kernels for scalar potentials belonging to the Kato
class. In [2], this result was generalized to operators with nontrivial vector potential of the mag-
netic field; in this case, arbitrary domains in the Euclidean space were admitted as configuration
spaces. Simultaneously, in view of several problems in mesoscopy and gravitation quantization [3,
4], it seems to be of interest to study the integral kernels related to the Schrédinger operators
on Riemann manifolds. In this paper, we presents several results concerning the existence and
continuity of integral kernels for different operators generated by the Schrédinger operator on a
manifold. In addition, we give several estimates for Green’s function for the cases in which its
arguments are far from one another or, conversely, close to one another.

Let X be a v-dimensional manifold of bounded geometry. By d(x,y) we denote the geodesic
distance between points x,y € X; by B(z,r) we denote an open ball of radius r centered at z;
and by D we denote the set {(z,y) € X x X,z = y} C X x X. We consider a 1-form A
on X with smooth coefficients; this form determines the connection in a trivial linear bundle
over X ; by Ay we denote the corresponding Bochner Laplacian (for A = 0, we obtain Ay = A,
which is the Beltrami-Laplace operator). The method used to prove our results requires several
(rather weak) restrictions on the scalar potentials under study; in what follows, we assume that
this potential belongs to the class P(X) of real functions U on X with the properties

n

Ut :=max(U,0) € L° (X) and U_ :=max(-U,0) € ZLW(X),
i=1

where 2 < p; < oo for v <3 and v/2 < p;, < oo for v >4, 0 <i<n. By Hay we denote

the operator acting on C§°(X) according to the rule Hy y¢p = —Aa¢ + U¢. Using the results

obtained in [5], we can prove the following assertion.

Proposition. The operator Ha y introduced above is lower semibounded and essentially self-
adjoint in L?(X).

We preserve the same notation for the closure of H4 . This operator will be called the
Schriodinger operator with vector potential A and scalar potential U ; we denote its spectrum and
the resolvent set by o(Ha ) and p(Ha ), respectively.
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The Schrodinger operator generates other operators closely related to it: the Schrodinger semi-
group

Py y(t) = e tHau, t>0;

the resolvent

Rav(():=(Hav - ", Cep(Hau):

and powers of the resolvent defined for o > 0 and Re( < info(Ha ) by the rule

oo
1 / e tHauetCra=l gy
a) Jo

Ri7U(C) - f

In particular, for a positive integer a, we obtain the usual powers of the resolvent defined for all
Cep(Hau).

We are interested in the existence problem for integral kernels of the operators listed above
and of operators related to them, as well as in the properties of these kernels such as continuity,
integrability, etc. To describe these properties, we introduce the class

Kle,p),  a€l0,v), 1<p<oo,

consisting of kernels K (x,y) locally integrable on X x X and satisfying the following conditions:

]K(x,y)]Smax(W,l) for some ¢ >0,

max( sup [\ nen K (@2 )l SR oy se,n K (- 2)llp) <oo  forany v >0
xE xe

The main results describing the global properties of integral kernels are contained in the following
theorem.

Theorem 1. (1) The operators RY ;(C) are integral operators. If GEﬁ)U(x, y; C) denotes their

kernels, then the fo)U are continuous in X x X\ D if one of the following conditions is satisfied:

(a) Re( is sufficiently close to —oo;
(b) « is integer and ¢ € p(Ha v).

Moreover, for a > v/2, the kernels GEK)U are continuous in X X X and bounded.

(2) The kernel Giﬁ)U(:L‘, y; ) belongs to (A, p), where 1 < p < oo is arbitrary, A\ = v — 2«
for a <v/2, X is an arbitrary positive number for « =v/2, and a =0 for a > v/2.

(3) If f is a Borel function on cHa y and satisfies the condition f(§) < b(1+ |£])~* with
some b >0 and o > v/2, then the operator f(Ha ) has an integral kernel F(z,y) continuous

in X x X and satisfying the uniform estimate |F(z,y)| < Cb, where the constant C' > 0 depends
only on a but not on b.

(4) The operator Pa y(t) has an integral kernel Pa y(x,y,t) continuous and uniformly bounded
in X x X x(0,00).

(5) The spectral projection operator corresponding to any bounded Borel subset of the real axis
has a continuous uniformly bounded integral kernel.

(6) The eigenfunctions of the operator Ha y are bounded and continuous.
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(7) For integer k, the mapping ¢ — G(:’)U(az, y; €) is holomorphic for all z,y € X if k> v/2
and for x # vy otherwise. In addition,

oGy (x5 Q)
¢

:k?fo:El)(x’y;C)? kj:l,Q,....

The asymptotic behavior of Green’s function near the diagonal x = y is also of some interest.
More precisely, in perturbation theory methods based on the “contraction—dilatation” procedure [6]
(in particular, in the zero-radius potential methods), Green’s function is represented in the form

GA,U('Iay; <) :F(mvy)+Gf4e7gU($7y) C)a

where the function Gf%(m, y; ¢) must be continuous on the entire space X x X . In this case,
F(x,y) is called the singularity of Green’s function on the diagonal. The problem of obtaining this
representation in the context of the theory mentioned above is nontrivial only for the dimensions
v =2 and v = 3, because, for v = 1, one can assume that the singularity is zero, and, for v > 3,
the singularity already depends on the spectral parameter. In this case, it is necessary to define
the energy operator in a space with an indefinite metric, which is beyond the framework of the
standard interpretation of quantum mechanics.

The preceding theorem gives only an upper bound for the singularity. A more detailed descrip-
tion is contained in the following theorem.

Theorem 2. (1) Suppose that X is a two-dimensional space. Then, for any A € [C*®(X)]? and
U € P(X), the singularity of Green’s function Ga y on the diagonal coincides with a similar
singularity of Green’s function of the Beltrami—Laplace operator, i.e.,

1 1 re
Gaulz,y; ()= ﬁlogm + Gy (@, y5 ),

where the second term is continuous in X x X .

(2) Suppose that X is three-dimensional, A € [C*(X)]3, and U,V € P(X). If the condition
U-V € L{ (X) holds for some p > 3, then the singularities of Green’s functions Ga,y and Ga v
coincide, i.e., the difference Ga u(z,y; () — Ga,v(z,y; ) is continuous in X x X for any
Cep(Hau)Np(Hav).

In particular, the singularity of Green’s function Gy of the operator —A 4+ U (i.e., A =0)
for U € P(X)N LY (z) with any p > 3 coincides with the singularity of Green’s function of the
Beltrami—Laplace operator:

Gu(z,y;¢) = + Gz, Y5 C),

Amd(z, y)

where the second term is continuous in X X X .

In the three-dimensional case, the singularity of Green’s function depends, in general, on both
the vector and scalar potentials and need not coincide with the singularity of Green’s function of
the Laplacian if the conditions given in item (2) of the preceding theorem are not satisfied. The
corresponding examples can easily be constructed already in the case X = R*®. Thus, Green’s
function G(x,y; ¢) for the Schrédinger operator with Coulomb potential H = —A + ¢/|z| (we
note that ¢/|z| ¢ L} (R?)) has the following asymptotics near the charge:

1 qlog |z|
4|z 47

G(z,0; () = + k(z),
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where k is a continuous function. The dependence of Green’s function on the vector potential of
the magnetic field appears already in the example of the Landau operator

9 SN 292
H—<Zax1—ﬂ'§$2> —l—(lam-i-ﬂfm) _87637 §#0,

for which Green’s function can be represented in the form

eimE(T1y2—T2y1)

G(z,y;¢) = + G (z,y; (),

4|z — y|

where the second term is continuous in X x X .
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