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We investigate the behavior of the Green functions of Schrodinger operators near
the diagonal. The only nontrivial cases, where the on-diagonal singularities are
nonzero and do not depend on the spectral parameter, are two and three dimensions.
In the case of two dimensions we show that the singularity is independent of both
the scalar and the gauge potentials. In dimension three, we obtain conditions for
preserving the singularity under perturbations by nonregular potentials. Some ex-
amples illustrating dependence of the singularity on general scalar and gauge po-
tentials are presented. © 2005 American Institute of Physics.
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I. INTRODUCTION

Singularities of the Green functions of quantum-mechanical operators play a crucial role in
many branches of theoretical and mathematical physics, from which one should mention first the
renormalization procedure of the quantum field theory.l’2 From the point of view of the high-
derivative quantum gravity, the corresponding problem was considered, e.g., in Ref. 3. In particu-
lar, in the case of nonminimal coupling of quantum matter to the gravitational background with
conical singularities, an operator of the form H=—-A+V arises on a Riemannian manifold X. Here
A is the Laplace-Beltrami operator on X and V represents the nonminimal coupling term &R with
the Ricci scalar R. The scalar curvature possesses a distributional behavior at conical
singularities,4 R=R,y+4m(1 )y, where &) is a Dirac J-like potential supported by a sub-
manifold M CX and 27(1-a) is the angle deficit. As a result, an operator

HM=_A+U+Q5M (11)

arises where U=§R,., and the coupling constant a=4m&(1—a) characterizes the interaction with
the background field concentrated on M. Operators of such form appear in the investigation of
scalar fields with nonminimal coupling on the cosmic string background, in the Euclidean ap-
proach to the black hole thermodynamics, in the study of the particle scattering at the Planck scale
(see Ref. 4 and references therein). Moreover, in the context of the scattering theory, the potential
U can have singularity (e.g., of the Coulomb type) even in the case of a flat manifold X.

We are interested here in the question how to add the singular term &), concentrated on a
zero-dimensional submanifold M of X to the operator Hy=—A+U (this case covers not only
quantum fields with point interactions, but also the case when X is a Cartesian product of two

 Author to whom correspondence should be addressed. Electronic mail: const@mathematik.hu-berlin.de

0022-2488/2005/46(11)/113508/16/$22.50 46, 113508-1 © 2005 American Institute of Physics

Downloaded 24 Sep 2007 to 141.20.50.147. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp


http://dx.doi.org/10.1063/1.2113087
http://dx.doi.org/10.1063/1.2113087
http://dx.doi.org/10.1063/1.2113087

113508-2 Brlining, Geyler, and Pankrashkin J. Math. Phys. 46, 113508 (2005)

manifolds, X=X, X Y, and M has the form M, X Z with M being a discrete subset of X,). If M is
a uniformly discrete subset of X and dim X <3, then the Green function G,(x,y;{) of Hy, can be
obtained through the Krein resolvent formula in terms of the Green function G (x,y; ) for H U.S’(’
An important ingredient of this formula is the so-called “Krein Q-matrix” (a kind of the Dirichlet-
to-Neumann map) Q,,,(z), m,n € M; under the name “Wigner R-matrix” it appears in the scat-
tering theory7 and is used in the charge transport theory.8 To define the diagonal elements of Q for
dim X> 1 a renormalization procedure is needed. For smooth U, the renormalized Green function
G"(x,y;¢), which must be continuous in the whole X X X, is defined as

Grljn(x,%{) = GU(xsysg) - S(x’y)’ (12)

where the “standard singularity” S has the form S(x,y)=-(1/2m)logd(x,y) if dim X=2, and
S(x,y)=1/4md(x,y) if dim X=3 [here d(x,y) is the geodesic distance on X]. Now one can set
0,m()=Gp"(m,m;{). The corresponding renormalization procedure in the Euclidean case is
known long ago, see, e.g., Refs. 9 and 10 for the history and the quantum mechanical treatment.
It is important to note that usually one obtains G}5"(x,y;{) by a momentum cutoff (an ultraviolet
regularization procedure); the result is equivalent to that obtained with the help of a dimensional
regularization. In the case of brane coupling to gravity or to a gauge field it is necessary to use a
dimensional regularization.“ It is worthy to add that the strict mathematical treatment of the
operators (1.1) has its origins in the paper12 by Berezin and Faddeev. In the case dim X=4 there
is no regularization procedure involving a singularity independent of the energy parameter { (see
Example 7 below). Moreover, if U has a Coulomb-type singularity or if an interaction with a
gauge field is present, then the function S in (1.2) is different from the standard one, i.e.,
S(x,y) # 1/47d(x,y) (see Examples 12 and 14 below); similar phenomena related to propagation
of waves in strongly inhomogeneous media have been studied recently in Ref. 13.

The main goal of our paper is to investigate in detail the singularity of the Green function for
the operator Hy=Hy+ U where H,, is the Bochner-Laplace operator on a Riemannian manifold of
dimension <3 and U is a scalar potential from a wide class of measurable functions. As an
important consequence we conclude that the operator of the form (1.1) is well defined in this case.
It should be stressed that the operators of this form are used not only in the quantum field theory
but they occur often in the single-electron theory of condensed matter physics where H, represents
the Hamiltonian of an electron in the presence of a time-independent magnetic field, U is a
confinement electric potential, and &), is an additional potential (e.g., the potential of impurities or
of a crystal lattice). The Riemannian manifold with nontrivial curvature can appear in this situa-
tion, e.g., as a result of the reduction of a few-electron problem to the single-electron one."
Another example of using nontrivial three-dimensional Riemannian manifolds is the simulation of
the confinement potential of a quantum dot."” The defects in solids were investigated previously
by methods of quantum gravity in Ref. 16. New technologies of manufacturing two-dimensional
nanostructures with nontrivial geometry”’18 caused the appearance of mathematical models of
such structures where, in particular, the Hamiltonian has the form (1.1) with the S-term simulating
the potential of a short range impurity19 [if the nanostructure is placed in a magnetic field we must
replace A in (1.1) by the Bochner Laplacian as above]. Moreover, the properties of the Green
function G, are needed for investigation of explicitly solvable models of the geometric scattering
theory20 or spectral theory of periodic hybrid manifolds.”’

Our analysis of the singularity for the Green function G shows that in dimension two the
singular term has the standard form even in the presence of an additional U(1)-gauge potential
(Theorem 15). On the other hand, in dimension three, S depends on U modulo a Lebesgue class of
functions on X (see Theorem 16) and is defined up only to a continuous additive term (the
situation here is completely similar to that for the Krein Q-functions, they are defined up to an
additive constant). The concrete value of this term is subject of analysis of a given physical
problem and is out of the scope of the present work. We mention only that a possible way to fix
the corresponding additive constant is to compare the integrated density of states with the trace of
G At last but not at least we stress that our main results are new even for the case of Euclidean
spaces X=R".
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Il. DEFINITIONS AND PRELIMINARIES

Throughout the paper we denote by X a complete connected Riemannian manifold of bounded
geometry, which means that the injectivity radius ri,; of X is positive and every covariant deriva-
tive of the Riemann curvature tensor is bounded. Examples are provided by homogeneous spaces
with invariant metrics (in particular, Euclidean spaces), compact Riemannian manifolds and their
covering manifolds; for discussion of various properties of such manifolds in the context of
differential operators we refer to Ref. 22. The dimension of X we denote by »; the geodesic
distance between x,y € X will be denoted by d(x,y). For xe X and r=0 we use the notation
B(x,r)={y € X:d(x,y) <r}; throughout the paper, we suppose r<r;, for radiuses r of all consid-
ered sufficiently small balls. For a measurable function f on X, we denote by |[f1|p the LP-norm of
f. If K is a bounded operator from L”(X) to L4(X), 1 <p,q <o, then its norm will be denoted by
1Kl |

Let A=A; dx/ be a I-form on X, for simplicity we suppose here A; e C*(X). The functions A;
can be considered as the components of the vector potential of a magnetic field on X. On the other
hand, A defines a connection V, in the trivial line bundle XX C—X, V, u=du+iuA; by —A,
=VZVA we denote the corresponding Bochner Laplacian. In addition, we consider a real-valued
scalar potential U of an electric field on X. This potential will be assumed to satisfy the following
conditions:

U, == max(U,0) € L2°(X), U_:=max(-U,0) e >, L"(X),

loc
i=1

2=pi=o ifv=s3, v2<p,s=x ifv=4 0=sisn

we stress that p; as well as n are not fixed and depend on U. The class of such potentials will be
denoted by P(X). Below we will need an approximation of singular potentials by smooth ones; for
this purpose the following lemma is useful.

Lemma 1: Let f e L (X), where 1<p<o, and f=0. Then there is g € C*(X) such that g
=0 and f-g € LX) for all 1<q<p.

Proof: Fix a e X and for integers n, n=1, denote YnzB(a,n)\ag(a,n—l). Fix a real se-
quence a,, a,>0 such that 2a, <1 and denote by f, the restriction of f to the set Y,. Since the
measure of Y, is finite, for every n we can find a function g,, g, € C,(X), such that g,=0,
supp(g,) C Y,,, and max(||f,— g,/ |lf,—&.ll) <a,. Since the family (Y,) is locally finite, the point-
wise sum g=Xg, exists and g € Cj(X). It is clear that g =0 and max(||f-gl|,.|f-gl) <1, ie., f
—ge L’ (X)NLY(X). O

We denote by H, ; the operator acting on functions ¢ e Cj(X) by the rule H yp=—A,¢
+Ud. This operator is essentially self-adjoint in Z?(X) and semibounded below,” its closure will
be also denoted by H, ;. By spec(H, ;) we denote the spectrum of H, ;; and by res(H, ) the set
of regular points: res(H, )=C\spec(H, ). Let us denote the resolvent of H, ;; by R, ({), i.e.,
Ry ()=(Hy y— o

Here we introduce two classes of integral kernels used in the paper. First class, Keon(p), 1
< p=<oo, consists of all continuous on X X X functions K(x,y) satisfying for any r>0 the condi-
tion

4
p>

I.KJp,r = maX(Sup essxeX”XX\B(x,r)K(x9 : ) p> sup CSSy EX”XX\B(y,r)K("y)”p) <, (21)

where x4 stands for the characteristic function of the set A CX. The second class, K(«a,p), 0
<a<w, 1<p=<ow, consists of all measurable functions K on X X X obeying the condition (2.1)
and

|K(x,y)| < ¢ max(1,d(x,y)™®) for a constant ¢ = c¢(K) > 0. (2.2)
We set Keona,p):=K(a,p) N C(X X X\D), where D is the diagonal {(x,y) e X X X:x=y}.
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The above introduced classes of integral kernels are important due to their relations to the
properties of the resolvents R, ;({); these relationships are stated in the following theorem which
is our starting point (see Ref. 23, for the proof).

Theorem 2: For any { e res(H, ) the resolvent Ry /() has an integral kernel G, y(x,y;{),
the Green function, which belongs to K (N ,q), where g, 1 <q <o, is arbitrary, and \=v-2 for
v>2, A€ (0,v) is arbitrary for v=2, N\=0 for v=1; moreover, G,y is continuous in XXX for
v=1.

We should point out that the Green function of a Schrédinger operator can violate the condi-
tions (2.1) and (2.2), if the potential U is not from the class P(X). Even the decay of the Green
function for large distances between x and y (the off-diagonal behavior) can be different from the
“standard” exponential one coming from the comparison with the Laplacian; a good example is
delivered by the one-dimensional inverse harmonic oscillator, whose Green function has only a
polynomial decay at infinity (see Appendix A).

Our further calculations will involve a couple of operations with integral kernels introduced
above; here we collect some useful estimates which will be used very intensively.

The well-known Gelfand-Dunford-Pettis theorem claims that if K is a bounded operator from
LP(X) to L*(X) with some p, 1 <p <o, then it is an integral operator and its kernel K(x,y) satisfies
the estimate

sup ess, l[K(x, ||, <o, g=(1-p)" (2.3)

Conversely, if a kernel K(x,y) satisfies (2.3), then it is an integral kernel of a bounded operator
from LP(X) to L*(X).

Lemma 3: Let K;: L9(X) — L™(X), 1<q;<%, be bounded linear operators with integral ker-
nels Kjx,y), j=1,2, and WelLl(X), then for a.e. (x,y)eXXX the integral J(x,y)
=[xK,(x,2)W(z)K,(z,y)dz exists and J(x,y) is an integral kernel of the operator K, WK,.

Proof: The operator K;WK, is bounded from L%(X) to L*(X), therefore, it is an integral
operator. Let f € L%(X) N C(X) such that f(x) >0 for all x € X. Then there holds

K\ WK, f(x) = f K, (x,2)W(z) f Ky(z,y)f(y)dy dz. (2.4)
X X

From the other side, according to the estimates (2.3) for K, and K, there holds

f K> (-, y)f(y)ldy € L*(X), IW(~)|J K> (-, y)f(y)ldy e L1(X),
X X

hence,

f |K1(x,z)|<|W(z)|f |Kz(z,y)f(y)|dy>dz <o,
X X

By the Fubini

f ( f K, (x,z)W(z)Kz(z,y)|dZ)f(y)dy <,
X X

and since f(x) >0, the inner integral exists for a.e. (x,y) e X X X.
Let now f be an arbitrary function from L%2(X). Repeating the arguments above, we get

K \WK,f(x) = f ( f K](x,z)W(Z)Kz(z,y)dz)f(y)dy (2.5)
X X

for a.e. x € X. Therefore J is an integral kernel for K;WK,. O
We will often use the estimate given by the lemma below (cf. Ref. 23).
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Lemma 4: There exists ry>0 such that for any a,r with 0<r<r,, 0sa<v, and a,xeX
there holds

d
f Y S=cr (2.6)
Bl(a,r) d(x,)’)

with some ¢ >0 depending only on «a.

Our next auxiliary result is the following lemma.

Lemma 5: Let K € K(a,p), | <p<oo, pa<v, and 1/p+1/qg=1, then K is an integral kernel
of a bounded operator from LX) to L*(X).

Proof: According to the Gelfand-Dunford-Pettis theorem we must prove

sup essxexJ [K(x,y)|” dy < ee.
b'¢

Fix r, 0<r<ry, and for x € X expand the integral into two parts,

f Kol dy = f Kol dy + f Kol dy.
X B(x.r)

X\B(x,r)

The first term is estimated by Lemma 4, and the second one is majorated by [Kjgr. O

Lemma 6: Let three measurable functions K;(x,y), Ky(x,y) and W(x) be given, where x,y
€ X. Denote F(x,y,z)=K,(x,2)W(z2)K,(z,y), and if the integral [yF(x,y,z)dz exists, denote it by
J(x,y).

(A) Let K;e Keonlaj.p)), j=1,2, and We LP(X), such that 1/p;+1/p,+1/p=1 and p
>v/(v-max(a,,a,)). Then F(x,y, ) e LX) for x#y, hence J is well defined. Moreover, J
€ Keont(a,0), where a=max(p'(a;+ay)—v,0) with 1/p+1/p'=1, if p'(a,+ @) # v, and « is an
arbitrary number from (0,v) otherwise.

(B) Let the conditions of the item (A) be satisfied. Assume additionally that o+ a,<v and
W e L (X) with ¢> vl (v—a;—a,). Then F(x,y,-) € L'(X) for any x,y € X and J € C(X X X).

(C) Let We LP(X)’ and Kl € Iccont(pl)’ K2 € ’Ccom(a”pz) or Kl € ]Ccont(avpl)s KZ € Kcont(p2)-
Assume additionally that 1/p+1/p,+1/p,=1 and p>v/(v—a). Then F(x,y,-) e L'\(X) for any
x,yeX, and Je C(XXX).

Proof: The proof of the items (A) and (B) is given in Ref. 23.

(C) We give a proof for the case K| € K ,n(p;) and K, € K (@, p,); the second case can be
considered exactly in the same way.

Let x,y € X; we show first that F(x,y,-) € L'(X). Let >0, then for z € B(y,r) we have

|F(x,y,2)| < cky(x,y) W(2)d(y,2)™,  ky(x,y) == sup Kj(x,z) <%, ¢>0, (2.7)

zeB(y,r)

therefore, F(x,y,-) e L'(B(y,r)) due to the Holder inequality and our conditions on p. For
z & B(y,r) due to the Holder inequality we have the estimate

P>

Upy
[ e ([ o) i,
X\B(y.r) X\B(y.r)

and

f K, (x,2)["1 dzgf Ky (x,2)|" dz=f K, (x,2)["! dﬁf Ky (x,2)[" dz,
X\B(y,r) X B(x,r) X\B(x,r)

where the first term on the right-hand where the first term on the right-hand side is finite due to the
continuity of K, and the second one is estimated by (2.1). This proves the inclusion F(x,y,-)
e L'(X).
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Now let x,yq € X, 0<r<R, and x € B(xq,r/2), y € B(yo,r/2), then

|F(x0,y0.2)|dx + f |F(x,y,z)|dz
X\B(y(.R)

|F(x,y,2)|dz + f

B(yg.r)

906) S0l = |

B(yq.7)

+f IF(xo,yo,z)Idz+f |F(x,y,2) — F(x0,0,2)|dz.
X\B(yq.R) B(yo,R\B(y(.r)

(2.8)

Take €>0 and assume r<r,. For z € B(y,,r) we estimate F(x,y,z) as in (2.7), then we get using
Lemma 4

(p=Dlp
f |F(x,y,2)|dz<c sup K, (x,y)||W1|p{f d(y,z)P1-p) dz} < e = o(1)
B(yo,r) B(yg.r)

xeB(xq,r),

yeB(yg.r)

as r—0. On the other hand,

f |F()C,y,Z)|dZ = |-K1Jpl,rj-KZJpz,r”XX\B(xO,R)‘/V”p = 0(1) as R — oo,
X\B(x(.R)

Finally, we conclude that » can be taken sufficiently small and R sufficiently large, such that the
sum of the first four terms on the right-hand side of (2.8) is less than €/2. Now it is sufficient to
prove that at these fixed r and R the function

f F(x,y,z)dz
B(yg.R)\B(y(.")

is continuous as x € B(xy,r/2) and y € B(yq,r/2). To do this, we note that with some C’'>0 the
following estimate |F(x,y,z)|<C'|W(z)| takes place for all x € B(x,,7/2), y € B(yy,r/2), and z
€ B(yy,R)\B(y,,r). Since W e L'(B(y,,R)\B(y,,7)), the requested continuity follows from the

Lebesgue majorization theorem. U
As it was mentioned in the Introduction, we are going to present the Green function in the
form

G u(6,y:0) =Ss p(x,y) + Gp(x,y50).,

where the second term must be continuous in X X X. Such a representation is trivial in the one-
dimensional case, the Green function is continuous, and one can set S4 ;=0. In dimensions v
=4 the problem makes no sense, as the following example shows.

Example 7 (four-dimensional Laplace operator): Consider the simplest case of the Laplacian
in L>(R*). The Green function takes the form

—

G(x,y:0) = #fyl

where K is the modified Bessel function of the first order. Near the diagonal x=y one has

—
Ki(N={x—-y

),

DN {loglx -y .
G(x9y’§)—4772|x_y|2_ 8’7T2 +k(x,y’§)

with a continuous k. Therefore, for {,,, € res(=A), ¢, # {,, the difference
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G(x,y;¢1) - G(x,y;0) ~ g;;fl log|x —y|

is a discontinuous function, so that the singularity cannot be chosen independent of the spectral
parameter.

Therefore, the only nontrivial cases remain v=2 and v=3, which we will consider in the
present paper.

Example 8 (on-diagonal singularity for the Laplace operator): Here we consider the case A
=0 and U=0, i.e., the case of the Laplace-Beltrami operator —A on the manifold X with v=2 or
v=3. Denote the Green function of —A by G(x,y;{). Take y € X and introduce polar coordinates
(ry, ), ry=d(x.y), o e S¥-1, centered at y, then we have in a normal neighborhood W, of y,

—A(//:—&z—l//+(vr—l+0'10—02)a—¢
y

2 y 4
&ry &ry c?ry

where the function 6,=6,(r,,®) is defined in such a way that in W,, we have dx
=r;"1 0,(ry, w)dr, dw. Since r;f_l 6(ry, w) is the Jacobian for the inverse to the exponential map in
W,, there holds 6,(0,w)=c,>0 and (d/3r)6,(0,w)=0 for all we S*-!. Moreover, inf c,>0asy

runs over a compact set in X.

Denote now
! 1 ! 2
— 1o . p=2,
2 gd(x,y) v
S(x,y) =
T
d7md(x,y)’ v

and for a fixed { e res(—A) denote K(x,y):=G(x,y;{)—S(x,y). Then there holds

a0, d
(= A= OK(.y) = 6,' = —=S(,y) = £S(-.y) = L(x.y). (2.9)
7 (?ry c?ry
It is clear that L(-,y) eLz(Wy), hence due to the Sobolev embedding theorem, x— K(x,y) is
continuous in W,. Let us show that really K(x,y) is continuous in (x,y). To do this, we fix yq
e X and take ry>0 such that B(y,,2ry) C Wy, We prove the following assertion:

(CM)  the map B(yy.ro) 3 y+—> L(-,y) € L*(B(yy,r,)) is continuous with respect to the norm
topology of the space L*(B(yy,r0)).

Let xy € C*(X) such that supp x C B(yg,2rp), x(x)=1 for x € B(yy,ry), and 0< y(x) <1 for all
x € X. Note that B(y,,2r,) is a normal neighborhood of y for all y € B(y,,2r), therefore we can
assume that L(x,y) is defined for all x € X and y € B(y,2r,). Extend L by zero for y & B(y,,2r)
and set T(x,y)=x(x)x(y)L(x,y). It is clear that T € K., («,p) where p is arbitrary number with
I<p=<w, and a=1 for v=3, « is any strictly positive number for »=2. Using items (A) and (B)
of Lemma 6 we can easily show that for every feL?*(X) the mapping B(yy.ry) >y
— [ B(yorgL (%, ¥)f(y)dy is continuous and the mapping B(yo, o) y—>fB(yo,,O)|L(x,y)|2 dy is also
continuous. This proves the assertion (CM). Returning to Eq. (2.9) we see that K(-,y) tends to
K(-,yo) with respect to the topology of W3(B(y,,7,)). Due to the Sobolev embedding theorem, this
implies a uniform convergence in the ball B(y,,r), i.e.,

lim  sup |K(x,y) — K(x,y0)|=0.
)

y—yo xeB(yg.rg

This together with the continuity in x proves the required joint continuity in (x,y). Therefore, the
functions S(x,y) are suitable on-diagonal singularities of the Laplace operator.
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Note that the proof of the separate continuity of the function K(x,y) is considerably simpler
and can be found, e.g., in Ref. 24.

lll. ON-DIAGONAL BEHAVIOR FOR SINGULAR SCALAR POTENTIALS

Below we will use the notation LI (X)=U o> pLibe(X).

Lemma 9 (singularity is independent of the spectral parameter): Let v=2 or 3, A
e[C*(X)]", Ue P(X), {1, eres(Hy y), then the difference Gy y(x,y;8)—Gay(x,y:4s) is con-
tinuous in X X X.

Proof: The proof follows from the Hilbert resolvent identity for the kernels, Ry ({;)
_RA,U(gz):(gl_52)RA,U(§1)RA,U(§2)~ The integral kernel fXGA,U(x’Z;gl)GA,U(Z’y;gz)dZ of
Ry .u({1)R4 (&) is continuous due to Lemma 6(B). O

The preceding lemma shows that for fixed A and U, the on-diagonal singularity in question
exists; for example, as a singularity one can take G, y(x,y;{) for a fixed ¢,  res(H, ;). Our aim
is to understand how the singularity depends on A and U.

The following lemma shows that Green functions of Schrodinger operators with smooth
potentials have the same on-diagonal singularity.

Lemma 10 (singularity for operator with smooth potentials): Let v=2 or 3, A e [C*(X)]",
U,VePX)NC*(Q), where Q) is a domain in X, then the difference G, y(x,y;{)—Gy(x,y;0)
has a continuous extension to all points (x,x), x € Q. In particular, if Q=X, then G, y(x,y;{)
—Gav(x,y:0) € Keonp) with arbitrary p=1.

Proof: Fix a real E sufficiently close to — and take x, € (). We show that in a neighborhood
of (xg,xp) in XXX, the difference F(x,y;E)=G, (x,y;E)—G,y(x,y;E) is the restriction of a
continuous function in this neighborhood. Due to Lemma 9 the same will hold for all values of the
spectral parameter.

Let ) be a bounded subdomain of () and contain x,; denote W=U+ )(QO(V— U); it is clear that
W e P(X). Since W-U is bounded with compact support, one has R, ;({) =Ry w({) =R ()W
—U)R4 w({), so that the difference

Gay(x,y:E) = Gy ylx,y;E) = f Ga.v(x,2:E)(W(z) - U(2)) G4 wlz,y; E)dz
X

is continuous in X XX according to Lemma 6(B). It remains to show that the function L(x,y)
=Gy y(x,y;E) -Gy wix,y;E) is continuous on )y X €. To do this, let us note that in the sense of
distributions the following equality holds:

((Hy )= E+ (Hy y)y = E)L(x,y) = (W(x) = V(x))Ga wlx,y:E) + (W(y) = V() Ga wix,y; E),
(3.1)

where (Hy ), [respectively, (Hy y),] means that Hy , acts on the first (respectively, the second)
argument in L; the bar means that we change the coefficients in H, , by the complex conjugate
ones. The operator in the left-hand side of (3.1) is elliptic in X €}, with smooth coefficients,
while the right-hand term vanishes in QX (). According to the elliptic regularity theorem L is
continuous in X €),. (]

The following Proposition contains our main result on the dependence of the on-diagonal
singularity on singularities of the scalar potential.

Proposition 11 (preserving the on-diagonal singularity under singular perturbations): Let v
=2 or 3, Ae[C*(X)]", and U,,U, € P(X). If v=3, assume additionally that U,~U, € Ly}(X).
Then the difference GA,UI(X,)N5)—GA,U2(X,)’§§) is continuous in XXX for any (
eres(Hy y,) Nres(Hy ).

Proof: For the sake of brevity we fix A and remove it from the notation, i.e., instead of G, ;
we will write Gy, etc.

First of all, using Lemma | we choose functions V|, V, € C*(X) semibounded below such that
W;i=U;=V;=3{,W,, where W, ; € LPis with 2<p; <, s=1,...,n;, j=1,2.

7.8
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For (e res(HUl) N res(HUz) the sets D;:= (HUj—g)Cf;(X) are dense in L*(X), because Cj,(X) is
an essential domain of both H U, and H, U, As e D;, one has

Ro (9= Ry (D= Ry (OW Ry (D (3.2)

As the operators on both sides of (3.2) are bounded and coincide on a dense subset, they coincide
everywhere, i.e., (3.2) holds for any # e L?*(X). Combining Lemma 3 and Lemma 6(B) we con-
clude that in the dimension two, the operator on the right-hand side of (3.2) has a continuous
integral kernel, which together with Lemma 10 implies the conclusion of the proposition.

Let us consider the dimension three more carefully. To be shorter, we remove the dependence
of the resolvents on ¢ from the notation. We have the following chain of equalities:

RU1 - RU2 = RVI - Iev2 + RVI WlRUl - RVZWZRUZ = RVl - RV2 + RVIWIRUI + R‘/z‘alz(RU1 - RU2)
=Ry, WoRy =Ry =Ry, + Ry, Wo(Ry = Ry,) + Ry (W, = WoRy + (Ry =Ry )W iRy,

Therefore, (1-Ry,W))(Ry —Ry)=:L=A+B+C, where A:=Ry —Ry, B:=Ry (W,-WyRy,, C
= (va _RVZ)WIRUI'

Due to Lemma 10, the operator A has an integral kernel from K, (p) with arbitrary p, p
= 1. Since W,~W, € Ly (X), the operator B has an integral kernel from /.., () due to Theorem
2 and the items (A), (B) of Lemma 6. As Ry —Ry, € Koy(p) with arbitrary p=1 (Lemma 10), the
integral kernel for C is from /., () due to Theorem 2 again and the items (A), (C) of Lemma 6.
Therefore, the operator L has an integral kernel L(x,y)=L(x,y;{) € Kcon(®). Now we note that
the multiplication by W, is a continuous mapping from L*(X) to L2s(X). At the same time, as
Gy, € Keoni(1,p), p=1, the resolvent Ry, is a bounded operator from each L"25(X) to L*(X) due to
Lemma 5. Since L=(1 _RV2W2)(RU1 _RUz)’ we can combine Theorem 2 and Lemma 5 to show that
the operator L is a bounded map from L(X) to L*™(X) for any p with 3/2<p< . Since
IL(x,y:0)|=|L(y,x:0)|, we see from (2.3) that L(x,y) € Kou(g) for any g with 1<g<3.

One can find { such that [Ry ()Will..=@<1 (see Ref. 23), therefore, the operator 1
—Ry, W, acting in L*(X) is invertible and for any n € N there holds

n—1

Ry, =Ry, =2 (Ry Wo)* L+ (1= Ry W)™\ (Ry, W»)"L. (3.3)
k=0

Applying iteratively Lemmas 3 and 6(A) and taking into account Theorem 2, we can show that the
operators (szwz)ksz have integral kernels from Ko, (B:,©) with B,<1. At the same time, all
these operators are bounded from LP(X) to L*(X) for any p with 3/2<p< . Using the same
arguments as for L above, we conclude that these kernels are in Koo (B,q) for any g with 1
< ¢ <3. Applying now Lemma 6 (C) one proves that the first term on the right-hand side has a
continuous integral kernel.

Denote T,:=(1 —RV2W2)_](RV2W2)n_1RV2§ this operator is bounded from each LFis(X) to
L”(X); due to the Gelfand-Dunford-Pettis theorem, this is an integral operator with an integral
kernel T,(x,y). The second term in (3.3) takes the form T, W,L, and by virtue of Lemma 3 this is
also an integral operator with the kernel S,(x,y):= [xT,(x,z)W,(z)L(z,y)dz. From the other side,
one can write S,(x,y)=T,W,l,(x), where /,(x):=L(x,y). Note that for each y € X there holds I,
e L”(X), and the operator T,W, is a bounded mapping from L*(X) to L*(X) with the norm
1T, Wolls oo < (1= Ry Wo) oo [Ry, Wl o < @/ (1~ ).

Now let us fix xo € X and take a bounded open neighborhood € of x,. It is clear that [/,]|..
<cq for all y e ) with a certain co>0. Therefore sup, .o 1S, (x,y; Q)| <cqa”/(1-a). Take €
>0 and choose n such that cqa”/(1-a)<e. From Eq. (3.3) we have in X () the relation
Gy, (x,y:0) =Gy, (x,y:0)=K,(x,y) +7,(x,y), where K, is continuous and IS,| < €. As €is arbitrary,
this means that GUl(x,y;g“)—GUZ(x,y;é’) is continuous in X ). Since x, € X is arbitrary, the
lemma is proven. Due to Lemma 9, this holds for all { e res(HVl) Nres(H Vz)' O
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The following example shows that the condition U,;-U, € L130+C(X) cannot be omitted in di-
mension three.

Example 12 (Coulomb potential in three dimensions): Let X=R3, A=0, and U=q/|x , le.,
H=H, y=-A+q/ |x|. Clearly, U & L3 (IR3). The Green function can be calculated explicitly,25

loc

I'd-«)

G(x’%g) = 4’7T|.X _ y|

[W1n(\= LM (= Lm) = Wo (= 2OM, 1 (= {01, (3.4)

, k=—qI\N-4L, M «12 and W, , are the Whittaker

where &:=|x|+[y|+|x—y|, 7:=|x[+|y|-|x-y

functions,
M, p(x)= ex®(a,2;x), Weinx) = ey WV (a,2;x). (3.5)

Here ®(a,c;x) and ¥(a,c;x) are the Kummer function and the Tricomi function, respectively. We
prove in Appendix B the asymptotics

—
q N— g q q .
G(x,0:0) = +—1 -+ 1+ +log V- {+1log(2/e) + 2C
(x,0:0) 47'r|x| 4ar 0g|x| 4ar 477<¢( 2\/__4*) 0g V= {+log(2/e) E)
+ O(|x[log|x]|). (3.6)

Therefore, the singularity for G(x,y;{) contains an unavoidable logarithmic term and is different
from the standard three-dimensional singularity.

IV. DEPENDENCE OF THE SINGULARITY ON THE MAGNETIC FIELD

Lemma 13 (singularity due to the magnetic field in two dimensions): Let v=2, then for any
Ae[C*(X)]” the difference Gpo(x,y;0)—Goolx,y:) is continuous in XXX if (
eres(H, o) Nres(Hy ).

Proof: Let x, be an arbitrary point of X. We show that the difference G, (x,y;¢)
—Gy(x,y;¢) is continuous in a neighborhood of (xy,x,) for at least one value of the spectral
parameter {; due to Lemma 9 this difference is continuous for all admissible spectral parameters.

Take two sufficiently small numbers r and r, with 0<<r<r,. Fix a function ¢ e C;j(X) such
that supp ¢ C B(xq,ry), ¢(x)=1 as x e B(xg,r). Denote for brevity Hy:=Hy,, H:=H,q H,
= H 44 o; the corresponding Green functions will be denoted by G, G, and G, respectively.

In B(xy,r) X B(xy,r) for real { sufficiently close to — one has in the sense of distributions

(H))y = O + (Ha)y = O)G(x,y;0) = Go(x,y:0) =0,

therefore, due to the elliptic regularity, the difference G,(x,y;{)—G(x,y;{) is continuous in
B(xy,r) X B(xy,r). Now we are going to show that G,(x,y;{)—G(x,y;{) is continuous. Since H,
and H, are uniformly elliptic operators with C*-bounded coefficients, we are able to use estimates
for the Green functions and their derivatives obtained in Ref. 22. First of all,

Go(x.y;0), Gyx,y;0) € Ko\, q) (4.1)

for arbitrary A >0 and ¢ € [1,%] (see Theorem 2). Moreover, for { close to — both these kernels
are smooth outside the diagonal x=y, and according to (Ref. 22, Theorem A1.3.7) we have
|10g d(X,Y)| )e_wd(x’y), =1.2,

d(x,y)

where d is any first order derivative taken in canonical coordinates, and C, w>0. Additionally, by
(Ref. 22, Theorem A1.2.3) for any p=1 there exist €,C' >0 such that

|0,Go(x,y;0)| < C(l +
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supJ |0,Go(x,y: 0[P dy + supJ |0,Go(x,y; )P dx< €', j=1,2.
d(x,y)>r d(x,y)>r

X y

This implies the inclusion

axGO(xJ’;g) € ICcom(H)\,q), (42)

with the same N\ and ¢ as in (4.1).

In canonical coordinates in B(xy,r,) both H, and H, are given by symmetric second-order
elliptic expressions with the same principal symbol, in particular, the difference 7:=H,—H, is
defined by a first order differential expression, T=b(x)d,+b,(x)d,+c(x), where by, b;, ¢ are
compactly supported smooth functions. For the functions of the form ¢=(Hy—{)¢ with ¢
eCi(X) we have (Hy—)¢=(Hy+T-ORy(DP=(1+TR(Y), therefore, Ro(\)d—Ro(O
=R,({)TRy({)#. In terms of integral kernels this means

f Go(x,y:O)(y)dy — f
X

Gy (x,y;: ) y)dy = f G (x,2;0[b1(2)9) + by(2) 9, + ¢(2)]
X X

X J xGo(z,y; ) (y)dy dz

=f G2(X,Z§§)f [b1(2)K(z,y58) + ba(2)Ky(2,y:0)
X X

+¢(2)Go(z,y: ) 1(y)dy dz, (4.3)

where

Ki(z.y;0) = 3, Golz,y:0),  Ka(z,y:0) = 9.,Go(2.y;0).

According to the general theory of elliptic operators, the set (Hy—{)Cy(X) is dense in all LP(X)
with any p, 1<p <o, if { is sufficiently close to —o (Ref. 22, Sec. A1.2). Due to the estimates
(4.1) and (4.2), and Lemma 5, the kernels K; and K, define bounded operators from L4(X) to
L*(X) for arbitrary ¢>>2; denote these operators by K;({) and K,({). In this notation, the expres-
sion on the right-hand side of (4.3) can be rewritten as

Ry(Q)¢g—Ry(Dh=[Ry(0D1 K, (Q) + Ry (D)DK (L) + Ry({)cR(O) ]9

The operators in both sides are bounded from L4(X) to L™(X) with any ¢>2 and coincide on a
dense subset, therefore, the corresponding kernels coincide, i.e.,

Go(x,y;é)—Gz(x,y;§)=f Gz(x,z;()bl(z)Kl(z,y;é)dz+f G,(x,2;0)by(2)K5(z,y;)dz
X X

+ J G,(x,2:0)c(2)Gy(z,y;0)dz. (4.4)
X

By Lemma 6 (B), the function on the right-hand side of (4.4) is continuous. O
The three-dimensional analog of Lemma 13 is not true as the following example shows.
Example 14 (three-dimensional Landau Hamiltonian): Consider in L*(R?) the vector potential

of a nonzero uniform magnetic field. By a suitable choice of coordinates one can assume that the

field is directed along the x5 axis, i.e., the magnetic strength vector is B=(0,0,27éx;), where &
>0 is the density of the magnetic flux through the plane (x,,x,). Choose the symmetric gauge for
the magnetic vector potential, A(x):%B XX, then H:=H, , takes the form
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SRTERPRNI
= 1(9 —méxy | + l&x +méx; | -

b
X1 2 (9x§

and the corresponding Green function is G(x,y;{)=P(x,y)F(x-y;{), where

o0 2/t -1 2 .—1
expl— m|§|(x (e = 1) +x;7
Fixig= [ SRR i @.5)
0 —t r’_
1- ———— |t |\t
(e )‘”‘I’Mz ) J
X, =(x;,x,,0) and x,=(0,0,x3).”° In Appendix C we prove the asymptotics
iTEX | AY |) 1(|§|)1/2 (1 1 g )
e
Gxy;)=—"—"+-|—)| Zl=;=——— | + - 4.6
cy0= el s ) Ay i) et 46

as |[x—y|—0; here Z(z;u) is the generalized Riemann {-function (also known as the Hurwitz
{-function). Therefore, the on-diagonal asymptotics is

iTEX | AY ) 1 B( X )
e iB(x Xy
S(x,y) = ( .

= ex
dmx-y| 4ax-y| 2

V. SUMMARY OF RESULTS

We summarize some corollaries from the proven assertions in the following two theorems.

Theorem 15 (on-diagonal singularities of the Green functions in dimension two): On a
two-dimensional manifold of bounded geometry X, for any vector potential A €[C*(X)]* and
scalar potential U € P(X), the Green function G,y of the Schrédinger operator Hy y=—A,+U
has the same on-diagonal singularity as that for the Laplace-Beltrami operator; i.e.,

1 1

Gayleyi) =7~ log de " Giy(xy;0),
where Gy, is continuous on X X X.

Proof: Proposition 11 shows that the singularity does not depend on the scalar potential U
e P(X), and Lemma 13 shows that it is independent of the magnetic potential. Therefore, the
singularity coincides with that for the Laplacian, see Example 8. O

Theorem 16 (on-diagonal singularities of the Green functions in dimension three): Ler X
be a three-dimensional manifold of bounded geometry. For U € P(X) and A € [C*(X)]? consider
the Schrédinger operator Hy y=—A,+ U and its Green function G, y(x,y;{). If Uy, U, € P(X) and
U-U,e L130+0(X), then the Green functions GAU1 and GAU2 have the same on-diagonal singularity
(i.e., Goy,—Gay, is continuous in XX X). In particular, for any U e P(X)NL*(X) there holds

loc

+ Gy p(x,y30), (5.1)

1
G b ; = <
0.0(xy:0) dmd(ry)

where Gy, is continuous in X X X.
Proof: The theorem is a simple corollary of Proposition 11, and the formula (5.1) follows from
Example 8. U
Remark 17: Contrary to the two-dimensional case, the singular term of the Green function for
the three-dimensional Schrodinger operator H, ;; does depend on the scalar potential U as well as
on the magnetic vector potential A. In particular, if A is the vector potential of a uniform magnetic
field B in X=R?3, then instead of (5.1) we have
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iB(x Xy)
2

1
Giox,y:0) = e + G (x,y50),
A,O( y g) 4’7T|X—y| Xp( ) A,O( y g)

see Example 14. On the other hand, the dependence on scalar potentials is shown in Example 12.
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APPENDIX A: OFF-DIAGONAL ASYMPTOTICS FOR THE INVERSE HARMONIC
OSCILLATOR IN DIMENSION ONE

The Green function G(x,y; ) for the inverse harmonic oscillator H =—d?/dx*— w*x*/4, has the
form
imla( 1 .
T N S ) )
Gx,y;{) = # X U(=iflw,e™ o' max(x,y)) X U(= iflw,e" ™ o' max(- x,— y)),

/

V27w
(A1)
where JZ>0 and U(a,x) is the Weber function, see (Ref. 27, Chap. 19). Using (Ref. 27, No.

19.8.1), for large z one obtains U(a,z)=e‘52/4z‘”2‘“u(z), where lim,__,.. u(z)=1. Returning to the
Green function we see that for fixed x and large y one has (assuming y > x)

imlap(L _ iwy*/4
e F(z —zg) . ey
i) = — il w.— e 12 ,
G(x S é’) \/27]'(0 U( lg w e w X) (e—iq'r/4wl/2y)—i§/w+(l /2) U(y)

where lim,_,., v(y) # 0. Therefore, for large |x—y| the Green function has only a polynomial decay.

APPENDIX B: ON-DIAGONAL SINGULARITY FOR THE COULOMB HAMILTONIAN

Here we prove the asymptotics (3.6).

We are interested in asymptotics of the functions x—G(x,xy;{) as x—x, at fixed ¢
eres(H) and x, € R3. As the potential is smooth outside the origin, the Green function has the
standard on-diagonal asymptotics if x,# 0. We consider the case xo=0. We have M, ;,(0)=0,
M, ,,(0)=1, therefore,

I'(l1-«)

47T|x|

G(x,0;0) = W 12(2V= ¢x]).
Consider the following expansions [cf. items 6.1(1) and 6.8(13) in Ref. 28]:

+1
D(a,2;x)=1 +gx+Mx2+ e
2 12

o

N . T(a+k)[fa+k) - (1 +k) -2+ 0] ,
W(a,2;x) = T@ +®(a,2;x)log x + k§=‘,0 @&+ D x
=A x4+ Ag+Ax+Ax?+ - +Bylog x + Byx log x + Box* log x + -+
where
L =)= aat ) - D) - 3)
T r@ 7 Ta-1n T 2T (a-1) ’
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A :a(a+1)(¢r(a+2)—z,b(3)—gb(4)) B 1 a B ala+1)

= By=— = .
2 12T (a—1) T Ta-1) 0T 2Ma-1) T 12l(a-1)

Using (3.5), we get

1
Wein(x)=A_ + (AO - EA_l)x + Byx log x + O(|x* log x|)

_ | +(¢<a>—¢(1)—¢(2)_ !
" T(a) I'a-1) 2I'(a)

Since ¥(1)=—Cp, A2)=1-Cp, where Cj is the Euler constant, we get (3.6) after some trivial
algebra.

) +F ! 1 +0(x*1 )
o (0] 0 .
X ( 1)x g X x~log x

APPENDIX C: ON-DIAGONAL SINGULARITY OF THE THREE-DIMENSIONAL LANDAU
HAMILTONIAN

In this appendix, we are going to prove the asymptotics (4.6).
Set in the integral (4.5) x, =0 and denote x,=z. Then after the change of variables t—#* in
this integral, we obtain

12 (e 2.2 2
- 1~ —ct
G(0.0.2:0.0.0:) = 5 J exp(-az : c )dt, 1)
m™ Jo 1-e"
where a=m and c=(1/2)-({/4m|4). Represent now G(0,0,z;0,0,0;0)=F(z;0)+f>(z;0),

where

g f * exp(=az’t? = ct?)
fl(zsg)_ 20 o t2 dt’
12 o
fHzd= %J (% - lz)exp(— az’t™? — cr?)dt. (C2)
m™Jg \1=-e"

Changing the variable — ! and using the relation

” 1
f exp(— bt* - c/?)dt = 5(77/17)”2 exp(—2(bc)'?)
0

(see Ref. 29, Sec. V. I, formula 2.3.16.3), we obtain f,(z;{)=exp(-(27|&|-0)"?|z|)/(47|z|), or
G(0,0,2;0,0,0;0)=(4m|z|)"+g(z; ), where
1
8(z:0) == —Q2md - 0"+ /o(z:0). (€3)
T

It is clear that the function g is continuous with respect to z and analytic with respect to ¢, ¢
eres(H, o). We can rewrite (C1) in the form

12 o - 1!
|i| f exp( 77'1|§|Zt) dr= ! +g(z:9). (C4)
T Jo (1 _e—z)exp<<__i>t) f 47T|Z|
2 4y

Let h(t)=(e'=1)"'=1"!; the function £ is real analytic on the whole line, 4(f) —0 as t— +o and
h(t)——1 as t— —o, Therefore, i is bounded on R. Let us represent F(x;{) in the form
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_ 1 % _ 2.1
Flx:0) = f exp( 771|§|x tg) dt+f exp( 771§|X tg)
(1-e exp{( ) J\G (1 —e")exp“ —) J\";
2 Amld 2 4mlg
X{exp[— 7lélx  h(1)] - 1}dt = I1(x,0) + 1,(x,0). (C5)

It is easy to show that I, is a continuous function in the domain x € R?, Re {<2€|. Let us show
, as x— 0. It is sufficient to show

that

© _ 2.1
Ax.) = f il ”F'X t g) lexpl— &2 h(1)] - 1]dr — 0
(1- e‘t)expM ) J Vi

2 4l

, as x—0. Fix { e R, {<27]g. Since x’ <x?,
we have |exp[—7|&x% h(r)]— 1| <const x? in a neighborhood of the point (0,0,z). Therefore, using

(C4), we get
o 2.1 2
n =t [ S W o
e (l—e”)expul - )tJ\t t |§|”2 ¢
2 4mg

and we get the required limit. Using (C4) again, we obtain

I

(Co)

Iélml |
Using (C5) and (C6) we get

1 exp[mf(xl Ayl
x -yl

G(x,y:0) = +F(x,y:0),

where F(x,y;{) is jointly continuous with respect to (x,y) € R* X R? for all ¢ e res(H A.0)-

Denote Q()=limy_y|_o F(x,y:{); this limit is independent of x and y since F(x,y:;0) is
invariant with respect to magnetic translations T,, a € R3: T,f(x)=exp[ mi&(a | Ax | )]f(x—a). From
(4.5) we obtain

VP U A IS U S W) PR
agQ“)‘lsﬂa'”L e"pKz 4w|§|)](1 e

Using Eq. (1.10.4) from Ref. 28 we get [¢#*le™'(1—e™")™! dt=T"(s)Z(s,v) and the obvious rela-
tion dZ(s,v)/dv=-sZ(s+1,v) implies immediately

__@>”2( 4)
o) (W 222 ppy: +C (c7)

with a constant C € R. To determine C we compare (C7) with (C3) in the limit R{— —o°. Since
0(0)=¢g(0;¢), we have from (C3) and (C2),

1
() - E(2ﬂ|§| 9?0 asRL——oe.

On the other hand, by the Hermite relation [see (1.10.7) from Ref. 28] there holds Z(1/2,v)
+20"2—0 as Rv — +o. Comparing the two last relations with (C7), we get C=0. Thus, (4.6) is
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proven. Note that the expression for Q({) was obtained at the physical level of rigor in Ref. 30 and
can be found also in Ref. 9.
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