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We investigate the behavior of the Green functions of Schrödinger operators near
the diagonal. The only nontrivial cases, where the on-diagonal singularities are
nonzero and do not depend on the spectral parameter, are two and three dimensions.
In the case of two dimensions we show that the singularity is independent of both
the scalar and the gauge potentials. In dimension three, we obtain conditions for
preserving the singularity under perturbations by nonregular potentials. Some ex-
amples illustrating dependence of the singularity on general scalar and gauge po-
tentials are presented. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2113087�

. INTRODUCTION

Singularities of the Green functions of quantum-mechanical operators play a crucial role in
any branches of theoretical and mathematical physics, from which one should mention first the

enormalization procedure of the quantum field theory.1,2 From the point of view of the high-
erivative quantum gravity, the corresponding problem was considered, e.g., in Ref. 3. In particu-
ar, in the case of nonminimal coupling of quantum matter to the gravitational background with
onical singularities, an operator of the form H=−�+V arises on a Riemannian manifold X. Here

is the Laplace-Beltrami operator on X and V represents the nonminimal coupling term �R with
he Ricci scalar R. The scalar curvature possesses a distributional behavior at conical
ingularities,4 R=Rreg+4��1−���M, where �M is a Dirac �-like potential supported by a sub-
anifold M �X and 2��1−�� is the angle deficit. As a result, an operator

HM = − � + U + a�M �1.1�

rises where U=�Rreg and the coupling constant a=4���1−�� characterizes the interaction with
he background field concentrated on M. Operators of such form appear in the investigation of
calar fields with nonminimal coupling on the cosmic string background, in the Euclidean ap-
roach to the black hole thermodynamics, in the study of the particle scattering at the Planck scale
see Ref. 4 and references therein�. Moreover, in the context of the scattering theory, the potential

can have singularity �e.g., of the Coulomb type� even in the case of a flat manifold X.
We are interested here in the question how to add the singular term �M concentrated on a

ero-dimensional submanifold M of X to the operator HU=−�+U �this case covers not only
uantum fields with point interactions, but also the case when X is a Cartesian product of two

�
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anifolds, X=X0�Y, and M has the form M0�Z with M0 being a discrete subset of X0�. If M is
uniformly discrete subset of X and dim X�3, then the Green function GM�x ,y ;�� of HM can be
btained through the Krein resolvent formula in terms of the Green function GU�x ,y ;�� for HU.5,6

n important ingredient of this formula is the so-called “Krein Q-matrix” �a kind of the Dirichlet-
o-Neumann map� Qmn�z�, m ,n�M; under the name “Wigner R-matrix” it appears in the scat-
ering theory7 and is used in the charge transport theory.8 To define the diagonal elements of Q for
im X	1 a renormalization procedure is needed. For smooth U, the renormalized Green function

U
ren�x ,y ;��, which must be continuous in the whole X�X, is defined as

GU
ren�x,y ;�� = GU�x,y ;�� − S�x,y� , �1.2�

here the “standard singularity” S has the form S�x ,y�=−�1/2��log d�x ,y� if dim X=2, and
�x ,y�=1/4�d�x ,y� if dim X=3 �here d�x ,y� is the geodesic distance on X�. Now one can set

mm���=GU
ren�m ,m ;��. The corresponding renormalization procedure in the Euclidean case is

nown long ago, see, e.g., Refs. 9 and 10 for the history and the quantum mechanical treatment.
t is important to note that usually one obtains GU

ren�x ,y ;�� by a momentum cutoff �an ultraviolet
egularization procedure�; the result is equivalent to that obtained with the help of a dimensional
egularization. In the case of brane coupling to gravity or to a gauge field it is necessary to use a
imensional regularization.11 It is worthy to add that the strict mathematical treatment of the
perators �1.1� has its origins in the paper12 by Berezin and Faddeev. In the case dim X
4 there
s no regularization procedure involving a singularity independent of the energy parameter � �see
xample 7 below�. Moreover, if U has a Coulomb-type singularity or if an interaction with a
auge field is present, then the function S in �1.2� is different from the standard one, i.e.,
�x ,y��1/4�d�x ,y� �see Examples 12 and 14 below�; similar phenomena related to propagation
f waves in strongly inhomogeneous media have been studied recently in Ref. 13.

The main goal of our paper is to investigate in detail the singularity of the Green function for
he operator HU=H0+U where H0 is the Bochner-Laplace operator on a Riemannian manifold of
imension �3 and U is a scalar potential from a wide class of measurable functions. As an
mportant consequence we conclude that the operator of the form �1.1� is well defined in this case.
t should be stressed that the operators of this form are used not only in the quantum field theory
ut they occur often in the single-electron theory of condensed matter physics where H0 represents
he Hamiltonian of an electron in the presence of a time-independent magnetic field, U is a
onfinement electric potential, and �M is an additional potential �e.g., the potential of impurities or
f a crystal lattice�. The Riemannian manifold with nontrivial curvature can appear in this situa-
ion, e.g., as a result of the reduction of a few-electron problem to the single-electron one.14

nother example of using nontrivial three-dimensional Riemannian manifolds is the simulation of
he confinement potential of a quantum dot.15 The defects in solids were investigated previously
y methods of quantum gravity in Ref. 16. New technologies of manufacturing two-dimensional
anostructures with nontrivial geometry17,18 caused the appearance of mathematical models of
uch structures where, in particular, the Hamiltonian has the form �1.1� with the �-term simulating
he potential of a short range impurity19 �if the nanostructure is placed in a magnetic field we must
eplace � in �1.1� by the Bochner Laplacian as above�. Moreover, the properties of the Green
unction GU are needed for investigation of explicitly solvable models of the geometric scattering
heory20 or spectral theory of periodic hybrid manifolds.21

Our analysis of the singularity for the Green function GU shows that in dimension two the
ingular term has the standard form even in the presence of an additional U�1�-gauge potential
Theorem 15�. On the other hand, in dimension three, S depends on U modulo a Lebesgue class of
unctions on X �see Theorem 16� and is defined up only to a continuous additive term �the
ituation here is completely similar to that for the Krein Q-functions, they are defined up to an
dditive constant�. The concrete value of this term is subject of analysis of a given physical
roblem and is out of the scope of the present work. We mention only that a possible way to fix
he corresponding additive constant is to compare the integrated density of states with the trace of

U
ren. At last but not at least we stress that our main results are new even for the case of Euclidean

n
paces X=R .
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I. DEFINITIONS AND PRELIMINARIES

Throughout the paper we denote by X a complete connected Riemannian manifold of bounded
eometry, which means that the injectivity radius rinj of X is positive and every covariant deriva-
ive of the Riemann curvature tensor is bounded. Examples are provided by homogeneous spaces
ith invariant metrics �in particular, Euclidean spaces�, compact Riemannian manifolds and their

overing manifolds; for discussion of various properties of such manifolds in the context of
ifferential operators we refer to Ref. 22. The dimension of X we denote by �; the geodesic
istance between x ,y�X will be denoted by d�x ,y�. For x�X and r
0 we use the notation
�x ,r�= �y�X :d�x ,y��r�; throughout the paper, we suppose r�rinj for radiuses r of all consid-
red sufficiently small balls. For a measurable function f on X, we denote by �f�p the Lp-norm of

f . If K is a bounded operator from Lp�X� to Lq�X�, 1� p ,q�, then its norm will be denoted by
K�p,q.

Let A=Aj dxj be a 1-form on X, for simplicity we suppose here Aj �C�X�. The functions Aj

an be considered as the components of the vector potential of a magnetic field on X. On the other
and, A defines a connection �A in the trivial line bundle X�C→X, �Au=du+ iuA; by −�A

�A
*�A we denote the corresponding Bochner Laplacian. In addition, we consider a real-valued

calar potential U of an electric field on X. This potential will be assumed to satisfy the following
onditions:

U+ ª max�U,0� � Lloc
p0 �X�, U− ª max�− U,0� � �

i=1

n

Lpi�X� ,

2 � pi �  if � � 3, �/2 � pi �  if � 
 4, 0 � i � n;

e stress that pi as well as n are not fixed and depend on U. The class of such potentials will be
enoted by P�X�. Below we will need an approximation of singular potentials by smooth ones; for
his purpose the following lemma is useful.

Lemma 1: Let f �Lloc
p �X�, where 1� p�, and f 
0. Then there is g�C�X� such that g

0 and f −g�Lq�X� for all 1�q� p.

Proof: Fix a�X and for integers n, n
1, denote Yn=B�a ,n� \ / B̄�a ,n−1�. Fix a real se-
uence an, an	0 such that �an�1 and denote by fn the restriction of f to the set Yn. Since the
easure of Yn is finite, for every n we can find a function gn, gn�C0

�X�, such that gn
0,
upp�gn��Yn, and max��fn−gn�p

p , �fn−gn�1��an. Since the family �Yn� is locally finite, the point-
ise sum g=�gn exists and g�C0

�X�. It is clear that g
0 and max��f −g�p , �f −g�1��1, i.e., f
g�Lp�X��L1�X�. �

We denote by HA,U the operator acting on functions ��C0
�X� by the rule HA,U�=−�A�

U�. This operator is essentially self-adjoint in L2�X� and semibounded below,23 its closure will
e also denoted by HA,U. By spec�HA,U� we denote the spectrum of HA,U and by res�HA,U� the set
f regular points: res�HA,U�=C \ spec�HA,U�. Let us denote the resolvent of HA,U by RA,U���, i.e.,

A,U���= �HA,U−��−1.
Here we introduce two classes of integral kernels used in the paper. First class, Kcont�p�, 1

p�, consists of all continuous on X�X functions K�x ,y� satisfying for any r	0 the condi-
ion

�K�p,r ª max�sup essx�X��X\B�x,r�K�x, · ��p,sup essy�X��X\B�y,r�K�· ,y��p� �  , �2.1�

here �A stands for the characteristic function of the set A�X. The second class, K�� , p�, 0
���, 1� p�, consists of all measurable functions K on X�X obeying the condition �2.1�

nd

	K�x,y�	 � c max�1,d�x,y�−�� for a constant c = c�K� 	 0. �2.2�
e set Kcont�� , p�ªK�� , p��C�X�X \D�, where D is the diagonal ��x ,y��X�X :x=y�.
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The above introduced classes of integral kernels are important due to their relations to the
roperties of the resolvents RA,U���; these relationships are stated in the following theorem which
s our starting point �see Ref. 23, for the proof�.

Theorem 2: For any �� res�HA,U� the resolvent RA,U��� has an integral kernel GA,U�x ,y ;��,
he Green function, which belongs to Kcont�� ,q�, where q, 1�q�, is arbitrary, and �=�−2 for
	2, �� �0,�� is arbitrary for �=2, �=0 for �=1; moreover, GA,U is continuous in X�X for
=1.

We should point out that the Green function of a Schrödinger operator can violate the condi-
ions �2.1� and �2.2�, if the potential U is not from the class P�X�. Even the decay of the Green
unction for large distances between x and y �the off-diagonal behavior� can be different from the
standard” exponential one coming from the comparison with the Laplacian; a good example is
elivered by the one-dimensional inverse harmonic oscillator, whose Green function has only a
olynomial decay at infinity �see Appendix A�.

Our further calculations will involve a couple of operations with integral kernels introduced
bove; here we collect some useful estimates which will be used very intensively.

The well-known Gelfand-Dunford-Pettis theorem claims that if K is a bounded operator from
p�X� to L�X� with some p, 1� p�, then it is an integral operator and its kernel K�x ,y� satisfies

he estimate

sup essx�X�K�x, · ��q � , q = �1 − p−1�−1. �2.3�

onversely, if a kernel K�x ,y� satisfies �2.3�, then it is an integral kernel of a bounded operator
rom Lp�X� to L�X�.

Lemma 3: Let Kj :Lqj�X�→L�X�, 1�qj �, be bounded linear operators with integral ker-
els Kj�x ,y�, j=1,2, and W�Lq1�X�, then for a.e. �x ,y��X�X the integral J�x ,y�

XK1�x ,z�W�z�K2�z ,y�dz exists and J�x ,y� is an integral kernel of the operator K1WK2.

Proof: The operator K1WK2 is bounded from Lq2�X� to L�X�, therefore, it is an integral
perator. Let f �Lq2�X��C�X� such that f�x�	0 for all x�X. Then there holds

K1WK2f�x� = �
X

K1�x,z�W�z��
X

K2�z,y�f�y�dy dz . �2.4�

rom the other side, according to the estimates �2.3� for K1 and K2, there holds

�
X

	K2�· ,y�f�y�	dy � L�X�, 	W�·�	�
X

	K2�· ,y�f�y�	dy � Lq1�X� ,

ence,

�
X

	K1�x,z�	�	W�z�	�
X

	K2�z,y�f�y�	dydz �  .

y the Fubini

�
X
��

X

	K1�x,z�W�z�K2�z,y�	dz f�y�dy �  ,

nd since f�x�	0, the inner integral exists for a.e. �x ,y��X�X.
Let now f be an arbitrary function from Lq2�X�. Repeating the arguments above, we get

K1WK2f�x� = �
X
��

X

K1�x,z�W�z�K2�z,y�dz f�y�dy �2.5�

or a.e. x�X. Therefore J is an integral kernel for K1WK2. �
We will often use the estimate given by the lemma below �cf. Ref. 23�.
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Lemma 4: There exists r0	0 such that for any � ,r with 0�r�r0, 0����, and a ,x�X
here holds

�
B�a,r�

dy

d�x,y�� � cr�−� �2.6�

ith some c	0 depending only on �.
Our next auxiliary result is the following lemma.
Lemma 5: Let K�K�� , p�, 1� p�, p���, and 1/ p+1/q=1, then K is an integral kernel

f a bounded operator from Lq�X� to L�X�.
Proof: According to the Gelfand-Dunford-Pettis theorem we must prove

sup essx�X�
X

	K�x,y�	p dy �  .

ix r, 0�r�r0, and for x�X expand the integral into two parts,

�
X

	K�x,y�	p dy = �
B�x,r�

	K�x,y�	p dy + �
X\B�x,r�

	K�x,y�	p dy .

he first term is estimated by Lemma 4, and the second one is majorated by �K�p,r
p . �

Lemma 6: Let three measurable functions K1�x ,y�, K2�x ,y� and W�x� be given, where x ,y
X. Denote F�x ,y ,z�ªK1�x ,z�W�z�K2�z ,y�, and if the integral 
XF�x ,y ,z�dz exists, denote it by

�x ,y�.
�A� Let Kj �Kcont�� j , pj�, j=1,2, and W�Lp�X�, such that 1/ p1+1/ p2+1/ p=1 and p

� / ��−max��1 ,�2��. Then F�x ,y , · ��L1�X� for x�y, hence J is well defined. Moreover, J
Kcont�� ,�, where �=max�p���1+�2�−� ,0� with 1/ p+1/ p�=1, if p���1+�2���, and � is an

rbitrary number from �0,�� otherwise.
�B� Let the conditions of the item �A� be satisfied. Assume additionally that �1+�2�� and

�Lloc
q �X� with q	� / ��−�1−�2�. Then F�x ,y , · ��L1�X� for any x ,y�X and J�C�X�X�.

�C� Let W�Lp�X�, and K1�Kcont�p1�, K2�Kcont�� , p2� or K1�Kcont�� , p1�, K2�Kcont�p2�.
ssume additionally that 1/ p+1/ p1+1/ p2=1 and p	� / ��−��. Then F�x ,y , · ��L1�X� for any
,y�X, and J�C�X�X�.

Proof: The proof of the items �A� and �B� is given in Ref. 23.
�C� We give a proof for the case K1�Kcont�p1� and K2�Kcont�� , p2�; the second case can be

onsidered exactly in the same way.
Let x ,y�X; we show first that F�x ,y , · ��L1�X�. Let r	0, then for z�B�y ,r� we have

	F�x,y,z�	 � ck1�x,y�W�z�d�y,z�−�, k1�x,y� ª sup
z�B�y,r�

K1�x,z� � , c 	 0, �2.7�

herefore, F�x ,y , · ��L1�B�y ,r�� due to the Hölder inequality and our conditions on p. For
�B�y ,r� due to the Hölder inequality we have the estimate

�
X\B�y,r�

	F�x,y,z�	dz � ��
X\B�y,r�

	K1�x,z�	p1 dz1/p1

�K2�p2,r�W�p,

nd

�
X\B�y,r�

	K1�x,z�	p1 dz � �
X

	K1�x,z�	p1 dz = �
B�x,r�

	K1�x,z�	p1 dz + �
X\B�x,r�

	K1�x,z�	p1 dz ,

here the first term on the right-hand where the first term on the right-hand side is finite due to the
ontinuity of K1, and the second one is estimated by �2.1�. This proves the inclusion F�x ,y , · �

1
L �X�.
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Now let x0 ,y0�X, 0�r�R, and x�B�x0 ,r /2�, y�B�y0 ,r /2�, then

	J�x,y� − J�x0,y0�	 � �
B�y0,r�

	F�x,y,z�	dz + �
B�y0,r�

	F�x0,y0,z�	dx + �
X\B�y0,R�

	F�x,y,z�	dz

+ �
X\B�y0,R�

	F�x0,y0,z�	dz + �
B�y0,R�\B�y0,r�

	F�x,y,z� − F�x0,y0,z�	dz .

�2.8�

ake �	0 and assume r�r0. For z�B�y0 ,r� we estimate F�x ,y ,z� as in �2.7�, then we get using
emma 4

�
B�y0,r�

	F�x,y,z�	dz � c sup
x�B�x0,r�,
y�B�y0,r�

K1�x,y��W�p��
B�y0,r�

d�y,z�p�/�1−p� dz��p−1�/p

� Cr�−�−�1/p� = o�1�

s r→0. On the other hand,

�
X\B�x0,R�

	F�x,y,z�	dz � �K1�p1,r�K2�p2,r��X\B�x0,R�W�p = o�1� as R →  .

inally, we conclude that r can be taken sufficiently small and R sufficiently large, such that the
um of the first four terms on the right-hand side of �2.8� is less than � /2. Now it is sufficient to
rove that at these fixed r and R the function

�
B�y0,R�\B�y0,r�

F�x,y,z�dz

s continuous as x�B�x0 ,r /2� and y�B�y0 ,r /2�. To do this, we note that with some C�	0 the
ollowing estimate 	F�x ,y ,z�	�C�	W�z�	 takes place for all x�B�x0 ,r /2�, y�B�y0 ,r /2�, and z

B�y0 ,R� \B�y0 ,r�. Since W�L1�B�y0 ,R� \B�y0 ,r��, the requested continuity follows from the
ebesgue majorization theorem. �

As it was mentioned in the Introduction, we are going to present the Green function in the
orm

GA,U�x,y ;�� = SA,U�x,y� + GA,U
ren �x,y ;�� ,

here the second term must be continuous in X�X. Such a representation is trivial in the one-
imensional case, the Green function is continuous, and one can set SA,U�0. In dimensions �
4 the problem makes no sense, as the following example shows.

Example 7 (four-dimensional Laplace operator): Consider the simplest case of the Laplacian
n L2�R4�. The Green function takes the form

G�x,y ;�� =
�− �

4�2	x − y	
K1��− �	x − y	� ,

here K1 is the modified Bessel function of the first order. Near the diagonal x=y one has

G�x,y ;�� =
1

4�2	x − y	2
−

� log	x − y	
8�2 + k�x,y ;��
ith a continuous k. Therefore, for �1 ,�2� res�−��, �1��2, the difference
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G�x,y ;�1� − G�x,y ;�2� �
�2 − �1

8�2 log	x − y	

s a discontinuous function, so that the singularity cannot be chosen independent of the spectral
arameter.

Therefore, the only nontrivial cases remain �=2 and �=3, which we will consider in the
resent paper.

Example 8 (on-diagonal singularity for the Laplace operator): Here we consider the case A
0 and U=0, i.e., the case of the Laplace-Beltrami operator −� on the manifold X with �=2 or
=3. Denote the Green function of −� by G�x ,y ;��. Take y�X and introduce polar coordinates

ry ,��, ry =d�x ,y�, ��S�−1, centered at y, then we have in a normal neighborhood Wy of y,

− �� = −
�2�

�ry
2 + �� − 1

ry
+ �y

−1��y

�ry
 ��

�ry
,

here the function �y =�y�ry ,�� is defined in such a way that in Wy, we have dx
ry

�−1�y�ry ,��dry d�. Since ry
�−1��ry ,�� is the Jacobian for the inverse to the exponential map in

y, there holds �y�0,��
cy 	0 and �� /�r��y�0,��=0 for all ��S�−1. Moreover, inf cy 	0 as y
uns over a compact set in X.

Denote now

S�x,y� = �
1

2�
log

1

d�x,y�
, � = 2,

1

4�d�x,y�
, � = 3,�

nd for a fixed �� res�−�� denote K�x ,y�ªG�x ,y ;��−S�x ,y�. Then there holds

�− � − ��K�· ,y� = �y
−1��y

�ry

�

�ry
S�· ,y� − �S�· ,y� ¬ L�x,y� . �2.9�

t is clear that L�· ,y��L2�Wy�, hence due to the Sobolev embedding theorem, x�K�x ,y� is
ontinuous in Wy. Let us show that really K�x ,y� is continuous in �x ,y�. To do this, we fix y0

X and take r0	0 such that B�y0 ,2r0��Wy0
. We prove the following assertion:

�CM� the map B�y0,r0� � y � L�· ,y� � L2�B�y0,r0�� is continuous with respect to the norm

topology of the space L2�B�y0,r0�� .

Let ��C�X� such that supp ��B�y0 ,2r0�, ��x�=1 for x�B�y0 ,r0�, and 0���x��1 for all
�X. Note that B�y0 ,2r0� is a normal neighborhood of y for all y�B�y0 ,2r0�, therefore we can
ssume that L�x ,y� is defined for all x�X and y�B�y0 ,2r0�. Extend L by zero for y�B�y0 ,2r0�
nd set T�x ,y�=��x���y�L�x ,y�. It is clear that T�Kcont�� , p� where p is arbitrary number with
� p�, and �=1 for �=3, � is any strictly positive number for �=2. Using items �A� and �B�
f Lemma 6 we can easily show that for every f �L2�X� the mapping B�y0 ,r0��y


B�y0,r0�L�x ,y�f�y�dy is continuous and the mapping B�y0 ,r0��y→
B�y0,r0�	L�x ,y�	2 dy is also
ontinuous. This proves the assertion �CM�. Returning to Eq. �2.9� we see that K�· ,y� tends to
�· ,y0� with respect to the topology of W2

2�B�y0 ,r0��. Due to the Sobolev embedding theorem, this
mplies a uniform convergence in the ball B�y0 ,r�, i.e.,

lim
y→y0

sup
x�B�y0,r0�

	K�x,y� − K�x,y0�	 = 0.

his together with the continuity in x proves the required joint continuity in �x ,y�. Therefore, the

unctions S�x ,y� are suitable on-diagonal singularities of the Laplace operator.
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Note that the proof of the separate continuity of the function K�x ,y� is considerably simpler
nd can be found, e.g., in Ref. 24.

II. ON-DIAGONAL BEHAVIOR FOR SINGULAR SCALAR POTENTIALS

Below we will use the notation Lloc
p+�X�=�q	pLloc

q �X�.
Lemma 9 (singularity is independent of the spectral parameter): Let �=2 or 3, A

�C�X���, U�P�X�, �1 ,�2� res�HA,U�, then the difference GA,U�x ,y ;�1�−GA,U�x ,y ;�2� is con-
inuous in X�X.

Proof: The proof follows from the Hilbert resolvent identity for the kernels, RA,U��1�
RA,U��2�= ��1−�2�RA,U��1�RA,U��2�. The integral kernel 
XGA,U�x ,z ;�1�GA,U�z ,y ;�2�dz of

A,U��1�RA,U��2� is continuous due to Lemma 6�B�. �

The preceding lemma shows that for fixed A and U, the on-diagonal singularity in question
xists; for example, as a singularity one can take GA,U�x ,y ;�0� for a fixed �0� res�HA,U�. Our aim
s to understand how the singularity depends on A and U.

The following lemma shows that Green functions of Schrödinger operators with smooth
otentials have the same on-diagonal singularity.

Lemma 10 (singularity for operator with smooth potentials): Let �=2 or 3, A� �C�X���,
,V�P�X��C���, where � is a domain in X, then the difference GA,U�x ,y ;��−GA,V�x ,y ;��

as a continuous extension to all points �x ,x�, x��. In particular, if �=X, then GA,U�x ,y ;��
GA,V�x ,y ;���Kcont�p� with arbitrary p
1.

Proof: Fix a real E sufficiently close to − and take x0��. We show that in a neighborhood
f �x0 ,x0� in X�X, the difference F�x ,y ;E�=GA,U�x ,y ;E�−GA,V�x ,y ;E� is the restriction of a
ontinuous function in this neighborhood. Due to Lemma 9 the same will hold for all values of the
pectral parameter.

Let �0 be a bounded subdomain of � and contain x0; denote W=U+��0
�V−U�; it is clear that

�P�X�. Since W−U is bounded with compact support, one has RA,U���−RA,W���=RA,U����W
U�RA,W���, so that the difference

GA,U�x,y ;E� − GA,W�x,y ;E� = �
X

GA,U�x,z;E��W�z� − U�z��GA,W�z,y ;E�dz

s continuous in X�X according to Lemma 6�B�. It remains to show that the function L�x ,y�
GA,V�x ,y ;E�−GA,W�x ,y ;E� is continuous on �0��0. To do this, let us note that in the sense of
istributions the following equality holds:

��HA,V�x − E + �HA,V�y − E�L�x,y� = �W�x� − V�x��GA,W�x,y ;E� + �W�y� − V�y��GA,W�x,y ;E� ,

�3.1�

here �HA,V�x �respectively, �HA,V�y� means that HA,V acts on the first �respectively, the second�
rgument in L; the bar means that we change the coefficients in HA,V by the complex conjugate
nes. The operator in the left-hand side of �3.1� is elliptic in �0��0 with smooth coefficients,
hile the right-hand term vanishes in �0��0. According to the elliptic regularity theorem L is

ontinuous in �0��0. �

The following Proposition contains our main result on the dependence of the on-diagonal
ingularity on singularities of the scalar potential.

Proposition 11 (preserving the on-diagonal singularity under singular perturbations): Let �
2 or 3, A� �C�X���, and U1 ,U2�P�X�. If �=3, assume additionally that U1−U2�Lloc

3+�X�.
hen the difference GA,U1

�x ,y ;��−GA,U2
�x ,y ;�� is continuous in X�X for any �

res�HA,U1
�� res�HA,U2

�.
Proof: For the sake of brevity we fix A and remove it from the notation, i.e., instead of GA,U

e will write GU, etc.
First of all, using Lemma 1 we choose functions V1 ,V2�C�X� semibounded below such that

nj pj,s

jªUj −Vj =�s=1Wj,s, where Wj,s�L with 2� pj,s�, s=1, . . . ,nj, j=1,2.
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For �� res�HU1
�� res�HU2

� the sets D jª �HUj
−��C0

�X� are dense in L2�X�, because C0
�X� is

n essential domain of both HU1
and HU2

. As ��D j, one has

RUj
���� − RVj

���� = RVj
���WjRUj

���� . �3.2�

s the operators on both sides of �3.2� are bounded and coincide on a dense subset, they coincide
verywhere, i.e., �3.2� holds for any ��L2�X�. Combining Lemma 3 and Lemma 6�B� we con-
lude that in the dimension two, the operator on the right-hand side of �3.2� has a continuous
ntegral kernel, which together with Lemma 10 implies the conclusion of the proposition.

Let us consider the dimension three more carefully. To be shorter, we remove the dependence
f the resolvents on � from the notation. We have the following chain of equalities:

RU1
− RU2

= RV1
− RV2

+ RV1
W1RU1

− RV2
W2RU2

= RV1
− RV2

+ RV1
W1RU1

+ RV2
W2�RU1

− RU2
�

− RV2
W2RU1

= RV1
− RV2

+ RV2
W2�RU1

− RU2
� + RV2

�W1 − W2�RU1
+ �RV1

− RV2
�W1RU1

.

herefore, �1−RV2
W2��RU1

−RU2
�¬L=A+B+C, where AªRV1

−RV2
, BªRV2

�W1−W2�RU1
, C

�RV1
−RV2

�W1RU1
.

Due to Lemma 10, the operator A has an integral kernel from Kcont�p� with arbitrary p, p
1. Since W1−W2�Lloc

3+�X�, the operator B has an integral kernel from Kcont�� due to Theorem
and the items �A�, �B� of Lemma 6. As RV2

−RV1
�Kcont�p� with arbitrary p
1 �Lemma 10�, the

ntegral kernel for C is from Kcont�� due to Theorem 2 again and the items �A�, �C� of Lemma 6.
herefore, the operator L has an integral kernel L�x ,y�=L�x ,y ;���Kcont��. Now we note that

he multiplication by W2,s is a continuous mapping from L�X� to Lp2,s�X�. At the same time, as

V2
�Kcont�1, p�, p
1, the resolvent RV2

is a bounded operator from each Lp2,s�X� to L�X� due to
emma 5. Since L= �1−RV2

W2��RU1
−RU2

�, we can combine Theorem 2 and Lemma 5 to show that
he operator L is a bounded map from Lp�X� to L�X� for any p with 3/2� p�. Since

L�x ,y ;��	= 	L�y ,x ; �̄�	, we see from �2.3� that L�x ,y��Kcont�q� for any q with 1�q�3.
One can find � such that �RV2

���W2�,¬��1 �see Ref. 23�, therefore, the operator 1
RV2

W2 acting in L�X� is invertible and for any n�N there holds

RU1
− RU2

= �
k=0

n−1

�RV2
W2�kL + �1 − RV2

W2�−1�RV2
W2�nL . �3.3�

pplying iteratively Lemmas 3 and 6�A� and taking into account Theorem 2, we can show that the
perators �RV2

W2�kRV2
have integral kernels from Kcont��k ,� with �k�1. At the same time, all

hese operators are bounded from Lp�X� to L�X� for any p with 3/2� p�. Using the same
rguments as for L above, we conclude that these kernels are in Kcont��k ,q� for any q with 1
q�3. Applying now Lemma 6 �C� one proves that the first term on the right-hand side has a

ontinuous integral kernel.
Denote Tnª �1−RV2

W2�−1�RV2
W2�n−1RV2

; this operator is bounded from each Lpj,s�X� to
�X�; due to the Gelfand-Dunford-Pettis theorem, this is an integral operator with an integral
ernel Tn�x ,y�. The second term in �3.3� takes the form TnW2L, and by virtue of Lemma 3 this is
lso an integral operator with the kernel Sn�x ,y�ª
XTn�x ,z�W2�z�L�z ,y�dz. From the other side,
ne can write Sn�x ,y�=TnW2ly�x�, where ly�x�ªL�x ,y�. Note that for each y�X there holds ly

L�X�, and the operator TnW2 is a bounded mapping from L�X� to L�X� with the norm
TnW2�,� ��1−RV2

W2�−1�, · �RV2
W2�,

n ��n / �1−��.
Now let us fix x0�X and take a bounded open neighborhood � of x0. It is clear that �ly�

c� for all y�� with a certain c�	0. Therefore supx,y�� 	Sn�x ,y ;��	�c��n / �1−��. Take �
0 and choose n such that c��n / �1−����. From Eq. �3.3� we have in ��� the relation

U1
�x ,y ;��−GU2

�x ,y ;��=Kn�x ,y�+�n�x ,y�, where Kn is continuous and 	Sn	��. As � is arbitrary,
his means that GU1

�x ,y ;��−GU2
�x ,y ;�� is continuous in ���. Since x0�X is arbitrary, the
emma is proven. Due to Lemma 9, this holds for all �� res�HV1
�� res�HV2

�. �
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The following example shows that the condition U1−U2�Lloc
3+�X� cannot be omitted in di-

ension three.
Example 12 (Coulomb potential in three dimensions): Let X=R3, A=0, and U=q / 	x	, i.e.,

�HA,U=−�+q / 	x	. Clearly, U�Lloc
3+�R3�. The Green function can be calculated explicitly,25

G�x,y ;�� =
��1 − ��
4�	x − y	

�W�,1/2��− ���M�,1/2� ��− ��� − W�,1/2� ��− ���M�,1/2��− ���� , �3.4�

here �ª 	x	+ 	y	+ 	x−y	, �ª 	x	+ 	y	− 	x−y	, �=−q /�−4�, M�,1/2 and W�,1/2 are the Whittaker
unctions,

M�,1/2�x� = ex/2x��a,2;x�, W�,1/2�x� = ex/2x��a,2;x� . �3.5�

ere ��a ,c ;x� and ��a ,c ;x� are the Kummer function and the Tricomi function, respectively. We
rove in Appendix B the asymptotics

G�x,0;�� =
1

4�	x	
+

q

4�
log	x	 −

�− �

4�
+

q

4�
���1 +

q

2�− �
 + log �− � + log�2/e� + 2CE

+ O�	x	log	x	� . �3.6�

herefore, the singularity for G�x ,y ;�� contains an unavoidable logarithmic term and is different
rom the standard three-dimensional singularity.

V. DEPENDENCE OF THE SINGULARITY ON THE MAGNETIC FIELD

Lemma 13 (singularity due to the magnetic field in two dimensions): Let �=2, then for any
� �C�X��� the difference GA,0�x ,y ;��−G0,0�x ,y ;�� is continuous in X�X if �
res�HA,0�� res�H0,0�.

Proof: Let x0 be an arbitrary point of X. We show that the difference GA,0�x ,y ;��
G0,0�x ,y ;�� is continuous in a neighborhood of �x0 ,x0� for at least one value of the spectral
arameter �; due to Lemma 9 this difference is continuous for all admissible spectral parameters.

Take two sufficiently small numbers r and r0 with 0�r�r0. Fix a function ��C0
�X� such

hat supp ��B�x0 ,r0�, ��x�=1 as x�B�x0 ,r�. Denote for brevity H0ªH0,0, H1ªHA,0, H2

H�A,0; the corresponding Green functions will be denoted by G0, G1, and G2, respectively.
In B�x0 ,r��B�x0 ,r� for real � sufficiently close to − one has in the sense of distributions

���H1�x − �� + ��H2�y − ����G1�x,y ;�� − G2�x,y ;��� = 0,

herefore, due to the elliptic regularity, the difference G1�x ,y ;��−G2�x ,y ;�� is continuous in
�x0 ,r��B�x0 ,r�. Now we are going to show that G2�x ,y ;��−G0�x ,y ;�� is continuous. Since H0

nd H2 are uniformly elliptic operators with C-bounded coefficients, we are able to use estimates
or the Green functions and their derivatives obtained in Ref. 22. First of all,

G0�x,y ;��, G2�x,y ;�� � Kcont��,q� �4.1�

or arbitrary �	0 and q� �1,� �see Theorem 2�. Moreover, for � close to − both these kernels
re smooth outside the diagonal x=y, and according to �Ref. 22, Theorem A1.3.7� we have

	�xG0�x,y ;��	 � C�1 +
	log d�x,y�	

d�x,y�
e−�d�x,y�, j = 1,2,

here � is any first order derivative taken in canonical coordinates, and C ,�	0. Additionally, by

Ref. 22, Theorem A1.2.3� for any p
1 there exist � ,C�	0 such that
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sup
x
�

d�x,y�	r

	�xG0�x,y ;��	pe�d�x,y� dy + sup
y
�

d�x,y�	r

	�xG0�x,y ;��	pe�d�x,y� dx � C�, j = 1,2.

his implies the inclusion

�xG0�x,y ;�� � Kcont�1+�,q�, �4.2�

ith the same � and q as in �4.1�.
In canonical coordinates in B�x0 ,r0� both H0 and H2 are given by symmetric second-order

lliptic expressions with the same principal symbol, in particular, the difference TªH2−H0 is
efined by a first order differential expression, T=b1�x��1+b2�x��2+c�x�, where b1, b1, c are
ompactly supported smooth functions. For the functions of the form �= �H0−��� with �
C0

�X� we have �H2−���= �H0+T−��R0����= �1+TR0�����, therefore, R0����−R2����
R2���TR0����. In terms of integral kernels this means

�
X

G0�x,y ;����y�dy − �
X

G2�x,y ;����y�dy = �
X

G2�x,z;���b1�z��1 + b2�z��2 + c�z��

��XG0�z,y ;����y�dy dz

= �
X

G2�x,z;���
X

�b1�z�K1�z,y ;�� + b2�z�K2�z,y ;��

+ c�z�G0�z,y ;�����y�dy dz , �4.3�

here

K1�z,y ;�� ª �z1
G0�z,y ;��, K2�z,y ;�� ª �z2

G0�z,y ;�� .

ccording to the general theory of elliptic operators, the set �H0−��C0
�X� is dense in all Lp�X�

ith any p, 1� p�, if � is sufficiently close to − �Ref. 22, Sec. A1.2�. Due to the estimates
4.1� and �4.2�, and Lemma 5, the kernels K1 and K2 define bounded operators from Lq�X� to
�X� for arbitrary q	2; denote these operators by K1��� and K2���. In this notation, the expres-
ion on the right-hand side of �4.3� can be rewritten as

R0���� − R2���� = �R2���b1K1��� + R2���b2K2��� + R2���cR����� .

he operators in both sides are bounded from Lq�X� to L�X� with any q	2 and coincide on a
ense subset, therefore, the corresponding kernels coincide, i.e.,

G0�x,y ;�� − G2�x,y ;�� = �
X

G2�x,z;��b1�z�K1�z,y ;��dz + �
X

G2�x,z;��b2�z�K2�z,y ;��dz

+ �
X

G2�x,z;��c�z�G0�z,y ;��dz . �4.4�

y Lemma 6 �B�, the function on the right-hand side of �4.4� is continuous. �

The three-dimensional analog of Lemma 13 is not true as the following example shows.
Example 14 (three-dimensional Landau Hamiltonian): Consider in L2�R3� the vector potential

f a nonzero uniform magnetic field. By a suitable choice of coordinates one can assume that the
eld is directed along the x3 axis, i.e., the magnetic strength vector is B= �0,0 ,2��x3�, where �
0 is the density of the magnetic flux through the plane �x1 ,x2�. Choose the symmetric gauge for

1
he magnetic vector potential, A�x�= 2B�x, then HªHA,0 takes the form
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H = �i
�

�x1
− ��x22

+ �i
�

�x2
+ ��x12

−
�2

�x3
2 ,

nd the corresponding Green function is G�x ,y ;��=��x ,y�F�x−y ;��, where

F�x;�� = �
0

 exp�− �	�	�x�
2 �et − 1�−1 + x�

2t−1��

�1 − e−t�exp��1

2
−

�

4�	�	t��t

dt , �4.5�

�= �x1 ,x2 ,0� and x� = �0,0 ,x3�.26 In Appendix C we prove the asymptotics

G�x,y;�� =
ei���x�∧y��

4�	x − y	
+

1

4
� 	�	

�
1/2

Z�1

2
;
1

2
−

�

4�	�	 + o�	x − y	� �4.6�

s 	x−y	→0; here Z�z ;u� is the generalized Riemann �-function �also known as the Hurwitz
-function�. Therefore, the on-diagonal asymptotics is

S�x,y� =
ei���x�∧y��

4�	x − y	
=

1

4�	x − y	
exp� iB�x � y�

2
 .

. SUMMARY OF RESULTS

We summarize some corollaries from the proven assertions in the following two theorems.
Theorem 15 (on-diagonal singularities of the Green functions in dimension two): On a

wo-dimensional manifold of bounded geometry X, for any vector potential A� �C�X��2 and
calar potential U�P�X�, the Green function GA,U of the Schrödinger operator HA,U=−�A+U
as the same on-diagonal singularity as that for the Laplace-Beltrami operator, i.e.,

GA,U�x,y ;�� =
1

2�
log

1

d�x,y�
+ GA,U

ren �x,y ;�� ,

here GA,U
ren is continuous on X�X.

Proof: Proposition 11 shows that the singularity does not depend on the scalar potential U
P�X�, and Lemma 13 shows that it is independent of the magnetic potential. Therefore, the

ingularity coincides with that for the Laplacian, see Example 8. �

Theorem 16 (on-diagonal singularities of the Green functions in dimension three): Let X
e a three-dimensional manifold of bounded geometry. For U�P�X� and A� �C�X��3 consider
he Schrödinger operator HA,U=−�A+U and its Green function GA,U�x ,y ;��. If U1 ,U2�P�X� and

1−U2�Lloc
3+�X�, then the Green functions GA,U1

and GA,U2
have the same on-diagonal singularity

i.e., GA,U1
−GA,U2

is continuous in X�X). In particular, for any U�P�X��Lloc
3+�X� there holds

G0,U�x,y ;�� =
1

4�d�x,y�
+ G0,U

ren �x,y ;�� , �5.1�

here G0,U
ren is continuous in X�X.

Proof: The theorem is a simple corollary of Proposition 11, and the formula �5.1� follows from
xample 8. �

Remark 17: Contrary to the two-dimensional case, the singular term of the Green function for
he three-dimensional Schrödinger operator HA,U does depend on the scalar potential U as well as
n the magnetic vector potential A. In particular, if A is the vector potential of a uniform magnetic

3
eld B in X=R , then instead of �5.1� we have
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GA,0�x,y;�� =
1

4�	x − y	
exp� iB�x � y�

2
 + GA,0

ren �x,y;�� ,

ee Example 14. On the other hand, the dependence on scalar potentials is shown in Example 12.
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PPENDIX A: OFF-DIAGONAL ASYMPTOTICS FOR THE INVERSE HARMONIC
SCILLATOR IN DIMENSION ONE

The Green function G�x ,y ;�� for the inverse harmonic oscillator H=−d2 /dx2−�2x2 /4, has the
orm

G�x,y ;�� =
ei�/4�� 1

2 − i��
�2��

� U�− i�/�,e−i�/4�1/2 max�x,y�� � U�− i�/�,e−i�/4�1/2 max�− x,− y�� ,

�A1�

here I�	0 and U�a ,x� is the Weber function, see �Ref. 27, Chap. 19�. Using �Ref. 27, No.
9.8.1�, for large z one obtains U�a ,z�=e−z2/4z−1/2−au�z�, where limz→ u�z�=1. Returning to the
reen function we see that for fixed x and large y one has �assuming y	x�

G�x,y ;�� =
ei�/4�� 1

2 − i��
�2��

U�− i�/�,− e−i�/4�1/2x�
ei�y2/4

�e−i�/4�1/2y�−i�/�+�1 � 2�v�y� ,

here limy→ v�y��0. Therefore, for large 	x−y	 the Green function has only a polynomial decay.

PPENDIX B: ON-DIAGONAL SINGULARITY FOR THE COULOMB HAMILTONIAN

Here we prove the asymptotics �3.6�.
We are interested in asymptotics of the functions x�G�x ,x0 ;�� as x→x0 at fixed �

res�H� and x0�R3. As the potential is smooth outside the origin, the Green function has the
tandard on-diagonal asymptotics if x0�0. We consider the case x0=0. We have M�,1/2�0�=0,

M�,1/2� �0�=1, therefore,

G�x,0;�� =
��1 − ��

4�	x	
W�,1/2�2�− �	x	� .

onsider the following expansions �cf. items 6.1�1� and 6.8�13� in Ref. 28�:

��a,2;x� = 1 +
a

2
x +

a�a + 1�
12

x2 + ¯ ,

��a,2;x� =
1

x��a�
+ ��a,2;x�log x + �

k=0


��a + k����a + k� − ��1 + k� − ��2 + k��

��a��k + 1�!k!
xk

= A−1x−1 + A0 + A1x + A2x2 + ¯ + B0 log x + B1x log x + B2x2 log x + ¯ ,

here

A−1 =
1

, A0 =
��a� − ��1� − ��2�

, A1 =
a���a + 1� − ��2� − ��3��

,

��a� ��a − 1� 2��a − 1�
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A2 =
a�a + 1����a + 2� − ��3� − ��4��

12��a − 1�
, B0 =

1

��a − 1�
, B0 =

a

2��a − 1�
, B2 =

a�a + 1�
12��a − 1�

.

sing �3.5�, we get

W�,1/2�x� = A−1 + �A0 −
1

2
A−1x + B0x log x + O�	x2 log x	�

=
1

��a�
+ ���a� − ��1� − ��2�

��a − 1�
−

1

2��a�x +
1

��a − 1�
x log x + O�	x2 log x	� .

ince ��1�=−CE, ��2�=1−CE, where CE is the Euler constant, we get �3.6� after some trivial
lgebra.

PPENDIX C: ON-DIAGONAL SINGULARITY OF THE THREE-DIMENSIONAL LANDAU
AMILTONIAN

In this appendix, we are going to prove the asymptotics �4.6�.
Set in the integral �4.5� x�=0 and denote x� =z. Then after the change of variables t→ t2 in

his integral, we obtain

G�0,0,z;0,0,0;�� =
	�	1/2

2�
�

0

 exp�− az2t−2 − ct2�

1 − e−t2
dt , �C1�

here a=�	�	 and c= �1/2�− �� /4�	�	�. Represent now G�0,0 ,z ;0 ,0 ,0 ;��= f1�z ;��+ f2�z ;��,
here

f1�z;�� =
	�	1/2

2�
�

0

 exp�− az2t−2 − ct2�
t2 dt ,

f2�z;�� =
	�	1/2

2�
�

0

 � 1

1 − e−t2
−

1

t2exp�− az2t−2 − ct2�dt . �C2�

hanging the variable t→ t−1 and using the relation

�
0



exp�− bt2 − c/t2�dt =
1

2
��/b�1/2 exp�− 2�bc�1/2�

see Ref. 29, Sec. V. I, formula 2.3.16.3�, we obtain f1�z ;��=exp�−�2� 	� 	−��1/2 	z 	 � / �4� 	z 	 �, or
�0,0 ,z ;0 ,0 ,0 ;��= �4� 	z 	 �−1+g�z ;��, where

g�z;�� = −
1

4�
�2�	�	 − ��1/2 + f2�z;�� . �C3�

t is clear that the function g is continuous with respect to z and analytic with respect to �, �
res�HA,0�. We can rewrite �C1� in the form

	�	1/2

2�
�

0

 exp�− �	�	z2t−1�

�1 − e−t�exp��1

2
−

�

4�	�	t�t

dt =
1

4�	z	
+ g�z;�� . �C4�

et h�t�= �et−1�−1− t−1; the function h is real analytic on the whole line, h�t�→0 as t→ + and

�t�→−1 as t→−. Therefore, h is bounded on R. Let us represent F�x ;�� in the form
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F�x;�� = �
0

 exp�− �	�	x2t−1�

�1 − e−t�exp��1

2
−

�

4�	�	t��t

dt + �
0

 exp�− �	�	x2t−1�

�1 − e−t�exp��1

2
−

�

4�	�	t��t

��exp�− �	�	x�h�t�� − 1�dt � I1�x,�� + I2�x,�� . �C5�

t is easy to show that I2 is a continuous function in the domain x�R3, Re ��2�	�	. Let us show
hat I2�x ,��→0 locally uniformly with respect to �, Re ��2�	�	, as x→0. It is sufficient to show
hat

A�x,�� � �
0

 exp�− �	�	x2t−1�

�1 − e−t�exp��1

2
−

�

4�	�	t��t

	exp�− �	�	x�
2 h�t�� − 1	dt → 0

ocally uniformly with respect to ��R, ��2�	�	, as x→0. Fix ��R, ��2�	�	. Since x�
2 �x2,

e have 	exp�−�	�	x�
2 h�t��−1	�const x2 in a neighborhood of the point �0,0 ,z�. Therefore, using

C4�, we get

A�x,�� � cx2�
0

 exp�− �	�	x2t−1�

�1 − e−t�exp��1

2
−

�

4�	�	t��t

dt �
	x	

	�	1/2 +
cx2

	�	1/2 f�	x	,�� ,

nd we get the required limit. Using �C4� again, we obtain

I1�	x	,�� =
1

	�	1/2	x	
+ f�	x	,�� . �C6�

sing �C5� and �C6� we get

G�x,y;�� =
1

4�

exp��i��x� ∧ y���
	x − y	

+ F̃�x,y;�� ,

here F̃�x ,y ;�� is jointly continuous with respect to �x ,y��R3�R3 for all �� res�HA,0�.
Denote Q���=lim	x−y	→0 F̃�x ,y ;��; this limit is independent of x and y since F̃�x ,y ;�� is

nvariant with respect to magnetic translations Ta, a�R3 :Taf�x�=exp��i��a�∧x���f�x−a�. From
4.5� we obtain

�

��
Q��� =

1

16�2	�	1/2�
0



exp��1

2
−

�

4�	�	t��1 − e−t�−1�t dt .

sing Eq. �1.10.4� from Ref. 28 we get 
0
ts−1e−vt�1−e−t�−1 dt=��s�Z�s ,v� and the obvious rela-

ion �Z�s ,v� /�v=−sZ�s+1,v� implies immediately

Q��� =
1

4
� 	�	

�
1/2

Z�1

2
;
1

2
−

�

4�	�	 + C �C7�

ith a constant C�R. To determine C we compare �C7� with �C3� in the limit R�→−. Since
���=g�0;��, we have from �C3� and �C2�,

Q��� −
1

4�
�2�	�	 − ��1/2 → 0 as R� → −  .

n the other hand, by the Hermite relation �see �1.10.7� from Ref. 28� there holds Z�1/2 ,v�
1/2
2v →0 as Rv→ +. Comparing the two last relations with �C7�, we get C=0. Thus, �4.6� is
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roven. Note that the expression for Q��� was obtained at the physical level of rigor in Ref. 30 and
an be found also in Ref. 9.
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