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Abstract. Asymptotic formulas for the eigenvalues (energy levels) of the 2D and 3D station-
ary Schrödinger operators describing the states of a quantum particle in the waveguide formed
by soft walls characterized by a periodic parabolic confinement potential slowly varying along
the waveguide axis are presented. The formulas are derived by a unified procedure based on
adiabatic approximation and are illustrated in the first part of this paper by an example of a
2D straight waveguide. This waveguide can be used for simulating some effects in nanostruc-
tures and can be viewed as a simple linear model describing electronic transport in a long
molecule consisting of so-called “sites.” The accuracy of the obtained asymptotic eigenvalues
and the possibility of using the adiabatic approximation are discussed. Examples of quantum
states with large energies to which the adiabatic approximation does not apply are given.
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INTRODUCTION

In this paper, we construct asymptotic solutions to the spectral problem for thin quantum
waveguides with so-called “soft walls” described by a periodic parabolic confinement potential
slowly varying along the waveguide axis. We apply a unified procedure based on the version of
adiabatic approximation suggested in [17, 6–9] and in closed form in [34, 38] for a wide class of
multi-dimensional problems in various fields of mathematical and theoretical physics as well as on
the semiclassical approach. It is divided into the following two steps: (1) the so-called operator sepa-
ration of variables (“generalized adiabatic principle”) reducing the original equation to differential
or pseudodifferential equations of smaller dimension; (2) the construction of various asymptotic
solutions of the simplified equations.

The goal of this paper is to obtain asymptotic formulas for the eigenvalues (energy levels) of
the 2D and 3D stationary Schrödinger operators describing the states of a quantum particle in a
waveguide formed by soft walls described above. In some sense, one can view this paper as a specific
implementation of the above-mentioned general adiabatic approach. We illustrate the main ideas
and formulas in the first part of this paper considering a 2D straight waveguide. This waveguide can
be used for the simulation of some nanostructure effects which do not appear in regular waveguides
[42, 13, 20, 40, 28]. On the other hand, such a quantum waveguide can be viewed as a simple
linear model describing electronic transport in a long molecule consisting of so-called “sites” [26].
We derive a 1D “effective spectral problem for the longitudinal motion” of the quantum particle
and then find semiclassical solutions of the equation, which correspond to various wave modes and
quantum energy levels. We show that if the confinement potential changes varies only slightly,
then there exist so-called slow modes which satisfy a “limit” 1D equation similar to the equations
obtained and discussed in [29, 24, 12, 21, 31, 28, 43]. We also give some estimates of the accuracy
of the asymptotic eigenvalues constructed with the use of the adiabatic approximation. Finally, we
present examples of quantum states with large energies (we call them “superexcited modes”), where
the adiabatic approximation is not applicable. Using these examples and methods in [30, 2, 41],
we describe one possible mechanism of destruction of the adiabatic approximation.
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The second, main part of our paper, is focused on the consideration of a 3D toric waveguide
subjected to the action of a magnetic field.

1. OPERATOR SEPARATION OF VARIABLES FOR A STRAIT WAVEGUIDE

We study stationary states Ψ(x, y) exp(−iE
�
t) describing the quantum motion of a particle with

mass m and energy E = const in a straight 2D plane waveguide with periodic soft walls. Here � is
the Plank constant and t is time. We assume that the characteristic width of the waveguide is d
and its period is L. The so-called soft walls (e.g., see [12, 24, 28]) are described by the parabolic
confinement potential

2π2
�

md2
Ω2(x)y2,

where Ω(x) is a smooth 2π-periodic function. We introduce dimensionless variables x and y with
scales L/(2π) and d/(2π), respectively; the coordinate x-axis is taken along the longitudinal direc-
tion of the waveguide, and the y-axis is orthogonal to the x-axis. We assume that the “adiabatic
parameter” μ = d/L is the main small parameter of the problem.

The wave function Ψ(x, y) satisfies the 2D equation

ĤΨ(x, y, μ) = EΨ(x, y, μ), (1.1)

where E = 4π2h2

md2 E is the energy eigenvalue and Ĥ is the Schrödinger operator

Ĥ ≡ 1
2

[
−μ2 ∂2

∂x2
− ∂2

∂y2
+ Ω2(x)y2

]
. (1.2)

Imposing the Born–Karman periodicity conditions

Ψ(x + 2π, y, μ) = Ψ(x, y, μ), (1.3)

we consider the spectral problem for E and Ψ(x, y, μ) ∈ L2(Sx × Ry), where the cylinder Sx × Ry

is the configuration space.
Taking into account the smoothness of the function Ω(x), we can use the adiabatic approximation

for solving the 2D singularly perturbed problem (1.1)–(1.3). As we said before, we use the so-called
generalized method of separation of variables (the generalized adiabatic principle) [6–9, 38] based
on operator methods [33]. We seek approximate solutions to the spectral problem (1.1)–(1.3) in the
form

Ψ(x, y, μ) = χ̂ψ(x, μ). (1.4)

Here χ̂ = χ(
1

−iμ∂/∂x,
2
x, y, μ) is a pseudodifferential operator with symbol χ(p, x, y, μ), and the

function ψ(x, μ) is a solution of the 1D spectral problem

L̂ψ(x, μ) = Eψ(x, μ), ψ(x + 2π, μ) = ψ(x, μ), ψ ∈ L2(Sx), (1.5)

where

L̂ = L(
1

−iμ∂/∂x,
2
x, μ) (1.5′)

is a pseudodifferential operator with symbol L(p, x, μ). We use Feynman’s notation [33, 35], and so
the operator −iμ∂/∂x acts first and the operator x̂ = x acts second in the expressions

χ̂ = χ(
1

−iμ∂/∂x,
2
x, y, μ) and L̂ = L(

1

−iμ∂/∂x,
2
x, μ).

Note that Eq. (1.5′) is known in quantum mechanics as Peierls substitution [39, 27], and the
operator L̂ is called the effective adiabatic Hamiltonian. (Sometimes, this name is used only for its
leading term.) The representation of Ψ in the form (1.4) and Eqs. (1.5) and (1.5′) form a basis of
the “generalized adiabatic principle.”
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The main difference between (1.4) and standard forms of adiabatic approximation is that χ in
(1.4) is not a function but an operator. The problem is now to obtain the symbols L and χ.

The substitution of (1.4) and (1.5) into (1.1) gives the operator equation

Ĥχ̂ = χ̂L̂ (1.6)

for the operators χ̂ and L̂.
According to the approach in [32, 6–8], we introduce the operator-valued symbol

H(p, x,−i∂/∂y, y)

for the Schrödinger operator

Ĥ = H(
1

−iμ∂/∂x,
2
x,−i∂/∂y, y),

the symbol χ(p, x, y, μ) for

χ̂ = χ(
1

−iμ∂/∂x,
2
x, y, μ),

and the symbol L(p, x, μ) for the effective adiabatic Hamiltonian

L̂ = L(
1

−iμ∂/∂x,
2
x, μ).

Then, from the operator equation (1.6), we derive the equation [33]

H(
1

p − iμ∂/∂x,
2
x,−i∂/∂y, y) χ(p, x, y, μ) = χ(

1

p − iμ∂/∂x,
2
x, y, μ) L(p, x, μ) (1.7)

for the symbols χ(p, x, y, μ) and L(p, x, μ).
To solve the last equation, one can use perturbation techniques. The operator-valued symbol

H(p − iμ∂/∂x, x,−i∂/∂y, y) is written in the form

H(p − iμ∂/∂x, x,−i∂/∂y, y) = H0(p, x,−i∂/∂y, y) + μp
(
− i

∂

∂x

)
+

μ2

2

(
− i

∂

∂x

)2

, (1.8)

where

H0(p, x,−i∂/∂y, y) = −1
2

∂2

∂y2
+

Ω2(x)
2

y2 +
p2

2
, (1.9)

and solutions of (1.7) are sought in the form of asymptotic series

χ(p, x, y, μ) = χ0(p, x, y) + μχ1(p, x, y) + μ2χ2(p, x, y) + · · · , (1.10)

L(p, x, μ) = L0(p, x) + μL1(p, x) + μ2L2(p, x) + · · · . (1.11)

The periodicity condition (1.3) requires that

χj(p, x + 2π, y) = χj(p, x, y), j = 0, 1, . . . , ψ(x + 2π, μ) = ψ(x, μ). (1.12)

By substituting (1.8)–(1.11) into (1.7) and by matching the coefficients of like powers of μ, one suc-
cessively obtains spectral problems for the symbols χ0(p, x, y) and L0(p, x), χ1(p, x, y) and L1(p, x),
χ2(p, x, y) and L2(p, x), etc. After the desired number J of terms in the expansions (1.10) and (1.11)
has been found, the approximate value of L̂(p, x, μ) is substituted into the spectral problem (1.5)
for the eigenvalues of the energy E and eigenfunctions ψ(x, μ).

As will be clear in the following sections, to formally obtain the asymptotic formulas for E, one
has to find the first two terms in the expansions (1.10), (1.11); to justify these formulas, one should
also calculate the term L(ν)

2 (p, x) in (1.11).

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 13 No. 4 2006
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In the spectral problem for the symbols χj(p, x, y) and Lj(p, x), the symbol χj(p, x, y) is regarded
as an unknown function of y belonging to L2(Ry) and parametrically depending on p and x.
The symbol Lj(p, x) is regarded in this problem as an unknown constant and is determined from
the condition of solvability of the problem for χj(p, x, y). When constructing the successive spectral
problem for the symbols χj+1(p, x, y) and Lj+1(p, x), one takes into account the explicit dependence
of χj(p, x, y) and Lj(p, x) on p and x.

Equating the terms of the order of μ0 in (1.7) gives the spectral problem for χ0(p, x, y) and
L1(p, x):

H0(p, x,−i∂/∂y, y)χ0(p, x, y) = L0(p, x)χ0(p, x, y), χ0 ∈ L2(Ry). (1.13)

The last problem can be written in view of (1.9) as

[
−1

2
∂2

∂y2
+

Ω2(x)
2

y2

]
χ0(p, x, y) = veffχ0(p, x, y), veff ≡ L0(p, x)− p2

2
, χ0 ∈ L2(Ry), (1.14)

where p and x are considered as constants.
The eigenvalues and normalized eigenfunctions of (1.14) are

v
(ν)
eff (x) = Ω(x)

(
ν +

1
2

)
, ν = 0, 1, 2, . . . ,

χ
(ν)
0 (x, y) =

[
Ω(x)

π

]1/4 1√
2νν!

exp
(
− η2

2

)
Hν(η), η =

√
Ω(x)y,

(1.15)

where Hν(η) is the νth Hermite polynomial of the argument η. Thus

L(ν)
0 =

p2

2
+ v

(ν)
eff (x). (1.16)

The number ν in (1.15) is called the “transverse quantum number.” We choose and fix some ν,
which should be of the order of unity for the adiabatic approximation to apply.

It should be noted that the symbol χ
(ν)
0 (x, y) is a function of x, y. Hence the operator χ̂

(ν)
0

generated by this symbol is simply the operator of multiplication by a function of x, y.
As will be clear in the following sections, to formally obtain the asymptotic formulas for E, one

has to find terms of the order of μ in the expansions (1.10) and (1.11); to justify these formulas,
one should also calculate the term L(ν)

2 (p, x) in (1.11).

Equating the terms of the order of μ1 in (1.7) gives the following problem for χ
(ν)
1 (p, x, y) and

L(ν)
1 (p, x):

H0(p, x,−i∂/∂y, y)χ(ν)
1 (p, x, y) − L(ν)

0 (p, x)χ(ν)
1 (p, x, y)

= L(ν)
1 (p, x)χ(ν)

0 (x, y) + p

(
i

∂

∂x

)
χ

(ν)
0 (x, y), χ

(ν)
1 ∈ L2(Ry). (1.17)

The last problem can be rewritten in view of (1.9) as

[
−1

2
∂2

∂y2
+

Ω2(x)
2

y2

]
χ

(ν)
1 (p, x, y)

=
[
L(ν)

0 (p, x) − p2

2

]
χ

(ν)
1 (p, x, y) + L(ν)

1 (p, x)χ(ν)
0 (x, y) + ip

∂χ
(ν)
0 (x, y)
∂x

, χ
(ν)
1 ∈ L2(Ry),
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or, once ∂χ
(ν)
0 (x, y)/∂x has been computed, as

[
− 1

2
∂2

∂y2
+

Ω2(x)
2

y2
]
χ

(ν)
1 (p, x, y)

=
[
L(ν)

0 (p, x) − p2

2

]
χ

(ν)
1 (p, x, y) + L(ν)

1 (p, x)χ(ν)
0 (x, y) + ipgν(x, y), χ

(ν)
1 ∈ L2(Ry),

gν(x, y) =
1
4

(
Ω′

Ω

)
(
√

(ν + 2)(ν + 1)χν+2
0 +

√
ν(ν − 1)χν−2

0 ), Ω′ =
dΩ
dx

, (1.18)

where p and x are regarded as constants.

Since the system of functions χ
(l)
0 (p, x, y), l = 1, 2, . . . , is complete in L2(Ry) and the function

χ
(ν)
0 (x, y) satisfies the homogeneous equation (1.14), from (1.18) we obtain

L(ν)
1 (p, x) = 0, χ

(ν)
1 (p, x, y) = ipgν(x, y). (1.19)

Note that the symbol χ
(ν)
1 (p, x, y) contains the variable p, which corresponds to the differential

operator −iμ∂/∂x, as one of its arguments. Hence the operator χ̂
(ν)
1 generated by this symbol is

an operator rather than a function, as was the case with χ̂
(ν)
0 .

Equating the terms of the order of μ2 in (1.7) gives a nonhomogeneous problem for χ
(ν)
2 (p, x, y)

and L(ν)
2 (p, x). This problem can be solved by the same method as problems (1.13) and (1.17),

which gives

L(ν)
2 (0, x) =

1
8

(
Ω′

Ω

)2

(3ν2 + 5ν + 3). (1.20)

We give the value of L(ν)
2 (p, x) at p = 0, because, as will be discussed below, to construct the main

term of the asymptotic formulas, it suffices to find L(ν)
2 (0, x).

2. SHORT WAVES AND SEMICLASSICAL ASYMPTOTICS
FOR THE EQUATION OF LONGITUDINAL MOTION

Consider Eq. (1.5) with the effective Hamiltonian L̂ = L(
1

−iμ∂/∂x,
2
x, μ). By (1.11), (1.15), and

(1.19), for the symbol L(p, x, μ) of this operator, we have the asymptotic formulas

L(ν)
[2] (p, x) =

p2

2
+ v

(ν)
eff (x) + μ2L(ν)

2 (0, x), (2.1)

where v
(ν)
eff (x) and L(ν)

2 (p, x) are defined by (1.14) and (1.20), respectively.
We assign indexes ν and n to the function ψ in (1.5), where ν is the transverse quantum number

and n is the longitudinal quantum number, which will be defined below. Then, from (1.5) and (2.1),
we have the spectral problem

[
−μ2

2
∂2

∂x2
+ v

(ν)
eff (x) + μ2L(ν)

2 (0, x)
]
ψ(ν,n) = E(ν,n)ψ(ν,n),

ψ(ν,n)(x + 2π) = ψ(ν,n)(x), ψ(ν,n) ∈ L2(Sx) (2.2)

for ψ(ν,n).
We refer to (2.2) as the effective equation of adiabatic motion.
Let us discuss the asymptotic behavior of the spectrum of the Sturm–Liouville problem (2.2) as

μ → 0 on the interval −π � x � π. We assume that Ω(x) (and hence v
(ν)
eff (x)) is analytic on this
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interval and has only one nondegenerate point xmin of minimum; we denote V
(ν)
min = v

(ν)
eff (xmin). Then

there exists only one global point xmax ∈ [π, π]) for v
(ν)
eff (x) of maximum; we put V

(ν)
max = v

(ν)
eff (xmax).

To simplify the discussion, we assume momentarily that L(ν)
2 (p, x)

∣∣
p=0

= 0. This simplified problem
was studied in many monographs and papers (e.g., see [22, 11, 25]). Let us briefly recall the most
important results. The spectrum of eigenvalues E is discrete, so that n is a positive integer. The
distance O(μ) between eigenvalues located under some energy level E > V

(ν)
min is, generally speaking,

O(μ); this means that the number of eigenvalues increases as μ tends to zero, and n is allowed to
be large. The spectrum of E can be divided into four domains.

1. Lowest under-barrier region. Consider the eigenvalues E(ν,n) located above and very close
to V

(ν)
min. This means that nμ is small enough. To describe the eigenvalues and eigenfunctions in this

case, one can use the harmonic oscillator approximation and obtain

E(ν,n)= v
(ν)
eff (x)+μ

(
n+

1
2

)
ω0+O(μ2), ω0 =

√
2
∂2v

(ν)
eff

∂x2
(xmin) =

√
2
(
ν +

1
2

)∂2Ω
∂x2

(xmin). (2.3)

The wave functions are localized in a neighborhood of the point xmin and have the form

ψνn(x) = Cn exp(−ξ2/2)Hn(ξ), ξ =
√

ω0(x − xmin), (2.4)

where Cn is the normalizing constant.
The number n corresponds to the number of oscillations on the interval [−π, π].

2. Perturbed under-barrier region. Consider the eigenvalues Ek,n < V
(ν)
max − δ, where δ is a

small positive number. In this case, n ∼ μ−1, and using the standard semiclassical approximation,
we have

E(ν,n) = E(ν,n)
un + o(μ), (2.5)

where E(ν,n)
un is defined by the Bohr–Sommerfeld rule

1
π

∫ x+

x−

√
2
[
E(ν,n)
un − v

(ν)
eff (x)

]
dx = μ

(
n +

1
2

)
(2.6)

where the x± are solutions of the equation v
(ν)
eff (x) = E(ν,n)

un . On the interval (x−, x+) and outside
some neighborhood of the turning points x−, x+, the wave functions are

ψ(ν,n)(x) =
C(ν,n)

[
2
(
E(ν,n)
un − v

(ν)
eff (x)

)]1/4

[
cos

(
1
μ

∫ x

x−

√
2
[
E(ν,n)
un − v

(ν)
eff (x)

]
dx +

π

4

)
+ O(μ)

]
, (2.7)

where C(ν,n) is the normalizing constant. In the neighborhood of the turning points, one has to use
other representations for ψ(ν,n)(x), for instance, based on Airy functions or the Maslov canonical
operator (e.g., see [22, 25]).

Note that one can formally obtain (2.3) from (2.6) assuming that nμ � 1 and using the Taylor ex-
pansion. This is not the case for asymptotic formulas for the eigenfunctions. The Bohr–Sommerfeld
rule (2.6) also gives the asymptotics for eigenvalues corresponding to the passage from “small” to
“large” n [25, 11, 44].

Both cases 1 and 2 correspond to so-called “trapped waves” in the waveguide, which appear only
in the case of a nonconstant function Ω(x). In the semiclassical approximation, the eigenfunctions
ψ(ν,n) of these waves are localized on a subinterval [x−, x+] of the interval [−π, π] and are expo-
nentially small outside the interval. Thus if one considers the waveguide as an infinitely long one,
then the functions ψ(ν,n) can be viewed as “quasi-trapped” modes but not “true” eigenfunctions
decaying as |x1| → ∞.
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3. Transient layer. The eigenvalues belonging to a neighborhood of V
(ν)
max form a transient layer.

The Bohr–Sommerfeld rule does not apply to these states, and the asymptotics of eigenfunctions
has a more complicated structure than that given by (2.3) or (2.5). We do not discuss this case
here and refer to the papers [25, 15, 44, 36].

4. Over-barrier region. Consider the eigenvalues E(ν,n) > V
(ν)
max. One can again use the Bohr–

Sommerfeld rule to construct the asymptotics of eigenvalues. It is only necessary to take into account
the fact that, modulo O(μ∞), each eigenvalue is doubly degenerate. This means that, as a rule, along
with the eigenvalue E

(ν,n)
+ , there exists an eigenvalue E

(ν,n)
− such that E

(ν,n)
+ = E

(ν,n)
− + O(μ∞),

although sometimes the splitting between E
(ν,n)
+ and E

(ν,n)
− can be zero (e.g., see [22, 19, 11]). In

any case, one can write

E
(ν,n)
± = E(ν,n)

ov + O(μ2),
1√
2π

∫ 2π

0

√
E(ν,n)
ov − v

(ν)
eff (x)dx = μn. (2.8)

There are no turning points on the entire real axis, and there exist global representations of the
eigenfunctions:

ψ
(ν,n)
1 (x) =

C(ν,n)

[
2
(
E(ν,n)
ov − v(ν)eff(x)

)]1/4

[
cos

(
1
μ

∫ x

x0

√
2
[
E(ν,n)
ov − v

(ν,n)
eff (x)

]
dx

)
+ O(μ)

]
,

ψ
(ν,n)
2 (x) =

C(ν,n)

[
2
(
E(ν,n)
ov − v(ν)eff(x)

)]1/4

[
sin

(
1
μ

∫ x

x0

√
2
[
E(ν,n)
ov − v

(ν)
eff (x)

]
dx

)
+ O(μ)

]
.

(2.9)

Here the point x0 should be chosen in a special way (see [19]), and C(ν,n) is the normalizing constant.
Over the barrier, there are no focal points. We shall return to these formulas later.

Remark. We considered the wave regimes 1–4 on the basis of the 1D equation (2.2), which
had been derived from the original 2D equation (1.1) with the use of the generalized adiabatic
approximation. It should be noted that, at first, similar asymptotic solutions were obtained from
Eq. (1.1) directly. For instance, regime 1 fits exactly into the framework of the well-known Born–
Oppenheimer method [10]. Indeed, from the view point of this method, we have “trapped waves” in
a deep potential well. Thus, lowest trapped modes are localized near the point xmin, which imme-
diately leads to the oscillator approximation as long as one can neglect other terms. The deepness
of the potential well formally means that we can divide both sides of Eq. (2.2) by μ2 and obtain
an equation with a “high” barrier. From the physical point of view, this means that the energy of
so-called “size quantization,” which is an amplitude of the effective potential, is much greater than
the energy of the ground state of “free” Schrödinger equation with the Born–Karman boundary
condition at the distance L. In dimensional variables, this means that

�
2

mL2
� max(v(ν)

eff ) ∼ |ΔE⊥| ∼
�

2

md2
.

Here m is the mass of a quantum particle in the waveguide. We obtain the ground state for a
potential satisfying the condition

�
2

mλ2
∼ κλ2

2
,

�
2

md2
∼ κL2

2
, λ ∼

√
Ld,

where κ is the elastic coefficient.
The general approach to the construction of asymptotic eigenvalues and eigenfunctions of the

original operator for the case in which n ∼ 1/μ was given by Maslov [32]. Note also that although
the Bohr–Sommerfeld rule works for various n (including small n ∼ 1), there are different physical
causes (and consequently different parameters) that lead to this formula. For regimes 2 and 4, the
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cause is that locally one can represent the eigenfunction in a form of a “plane wave”, while for
regime 1, the main argument is the “weakness” of cubic and other terms in the Taylor expansion of
the effective potential near the point of minimum. When passing from regimes 2 and 4 to regime 1,
the wave functions are transformed from the WKB-type (“distorted plane waves”) to the oscillator
type. At the same time, the accuracy of spectrum determination, generally speaking, changes during
the passage. Thus it is a natural result that the quantization rule that works in the limits 2, 4,
and 1 also works between these regimes, while the eigenfunctions are transformed significantly.

3. ASYMPTOTIC SOLUTION OF THE EQUATION OF LONGITUDINAL
MOTION FOR A WAVEGUIDE OF NEARLY CONSTANT WIDTH

The function Ω(x) describing the parabolic confinement potential was assumed in the preceding
section to be a function of the variable x alone. But the procedure used in these sections applies
to the more general case in which Ω also depends on the parameter μ. Consider a waveguide,
important for applications, of nearly constant width for which

Ω(x) = Ω0 + μ2αΩ1(x), Ω0 = const > 0, α > 0. (3.1)

In view of (1.15) and (3.1), Eq. (2.2) can we rewritten as

[
−μ2

2
∂2

∂x2
+ μ2αΩ1(x)

(
ν +

1
2

)
− μ2L(ν)

2 (0, x)
]
ψ(ν,n) = μ2αẼ(ν,n)ψ(ν,n),

ψ(ν,n)(x + 2π) = ψ(ν,n)(x), ψ(ν,n) ∈ L2(Sx), (3.2)

where
Ẽ(ν,n) = μ−2α

[
E(ν,n) − Ω0

(
ν +

1
2

)]
.

In (3.2), the term with L(ν)
2 (p, x) = 0 can be omitted, since it is proportional to the derivative Ω′(x)

and hence, by (3.1), is of the order of μ2+2α.
First, consider the following two cases: (1) 0 < α < 1 and (2) α = 1. We introduce the new

parameter
h = μ1−α, (3.3)

and rewrite (3.2) in the form

[
−h2

2
∂2

∂x2
+ Ω1(x)

(
ν +

1
2

)]
ψ(ν,n) = Ẽ(ν,n)ψ(ν,n),

ψ(ν,n)(x + 2π) = ψ(ν,n)(x), ψ(ν,n) ∈ L2(Sx). (3.4)

The parameter h can be viewed as the dimensionless wave length along the x-axis; we refer to it as
a semiclassical parameter. In case 1, which can be called the “short-wave limit”, all results obtained
in the previous section, which were based on the semiclassical or harmonic oscillator approximation,
remain valid.

In case 2, where α =1 and h =1, there is no small parameter in (3.2) and the equation cannot
be analyzed asymptotically. This case can be called the “long wave limit” (or the “limiting” case).
The equations corresponding to this case were obtained (in more complicated situations, e.g., with
curved axis of the waveguide) and studied in the papers [29, 31, 43, 28, 21], etc. In this case, it is
possible to construct so called “trapped modes” in the infinite waveguide (see [29, 31, 21, 23]).

In case 3, where α > 1 and h > 1, one can treat the term μ2αΩ1(x)(ν + 1/2) in (3.2) as a small
perturbation and use perturbation theory.

The semiclassical parameter h characterizes the “longitudinal function” ψ(ν,n) and, generally
speaking, is independent of μ, although the formulas for the asymptotic solution of the definitive
equation depend on the relationship between μ and h.
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Remark 1. The possibility of using the adiabatic approximation is ensured by the nonzero part
Ω0 of Ω(x, μ). Actually, the correction μ2αΩ1(x) can be moved into the corrections L1 or even into
L2 (for α � 2). Also in more complicated cases, some terms from L1 and L2 could appear in the
“limiting” equation.1 We consider this situation in Part II of the present paper.

Using our approach, we “serve” this whole situation “free of charge,” although sometimes ex-
ceeding the accuracy; it is only necessary to take into account these terms correctly. It is possible
to prove that, in our example, the functions Lj are polynomial in p, but sometimes this is not the
case. (We consider this situation in Part II of this paper.) Moreover, sometimes it is impossible to
find explicit formulas even for L0. On the other hand, for h 	 μ, the passage to Eq. (3.4) from
Eq. (2.2) is similar to the replacement of the quantum “adiabatic” momentum p̂ = −iμ ∂

∂x by the
quantum “semiclassical” momentum p̂h = h

μ p̂ = −ih ∂
∂x (along with the renormalization of energy).

Assume that we consider solutions of Eq. (3.4) such that p̂hψνn = O(1). Then we can say that
instead of functions (symbols of operators) L(p, x, μ) or L0(p, x), L1(p, x), etc., in formulas (1.16),
(1.19), (1.20), etc., we have L(μ

hph, x, μ), L0(μ
hph, x), L1(μ

hph, x), etc. with bounded ph. Thus we
can replace L0(p, x), L1(p, x), etc. by their Taylor or even asymptotic expansions with respect to
the small parameter μ/h or the small “adiabatic” momentum p and use regular perturbation theory
to construct these functions as well as the functions (symbols) χj . It is this fact that underlies ho-
mogenization theory, some version of averaging, some approaches in solid state physics, etc. (see [7]
and the bibliography therein).

Remark 2. For two potentials with different α1 and α2 at the same energy level, we have
n1/n2 ∼ μα1−α2 . Thus for a “softer potential,” there are more levels lying under a certain energy
level.

4. ACCURACY OF ASYMPTOTIC EXPANSIONS

In this section, we discuss the accuracy of the asymptotic expansions and the minimum reason-
able number of their terms.

Since we construct not an asymptotic eigenvalue but a subsequence of eigenvalues or an asymp-
totic spectral series, it is convenient to give the following formal definition of such a series.

Definition. We say that a subsequence of asymptotic eigenvalues (spectral series) is reasonable
if the possible error of an asymptotic eigenvalue is less than the minimum distance between the
closest eigenvalues in the series.

We estimate the minimum number J of terms in the expansions (1.10) and (1.11) necessary to
construct a reasonable spectral series.

Suppose that, using the method in Section 2, we have found the terms L(ν)
j (p, x, μ) and

χ
(ν)
j (p, x, y, μ), j = 0, 1, . . . , J , in the expansions (1.11) and (1.10). Denote

L(ν)
[J] (p, x, μ) =

J∑
j=0

μjL(ν)
j (p, x), χ

(ν)
[J] (p, x, y, μ) =

J∑
j=0

μjχ
(ν)
j (p, x, y), (4.1)

and denote by χ̂
(ν)
[J] and L̂(ν)

[J] the operators generated by the symbols χ
(ν)
[J] (p, x, y, μ) and L(ν)

[J] (p, x, μ).

Let the functions ψ
(ν,n)
as and numbers E

(ν,n)
as be approximate solutions of the spectral problem

(1.5) with the asymptotic effective Hamiltonian L̂(ν)
[J] . Then ψ

(ν,n)
as satisfy the equation

(L̂(ν)
[J] − E(ν,n)

as )ψ(ν,n)
as (x) = f[J+1](x), (4.2)

where the difference f[J+1](x) between the exact and approximate solutions of (4.2) depends on the
number J , the quantum numbers ν and n, and also on the values of the parameters μ and h. To
simplify the notation, we do not show this dependence.

1In this Example 1 according to (1.19), (1.20), L1 = 0 and for α = 1 L2 = O(μ4).
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Proposition 1. Denote
Ψ(ν,n)

as ≡ χ̂
(ν)
[J] ψ

(ν,n)
as . (4.3)

Then Ψ(ν,n)
as satisfies the equation

[
Ĥ − E(ν,n)

as

]
Ψ(ν,n)

as = μJ+1F̂ (ν)
[J+1]ψ

(ν,n)
as + χ̂

(ν)
J f[J+1], (4.4)

where F̂ (ν)
[J] is an operator whose symbol regularly depends on μ.

Proof. The substitution of (1.10) and (1.11) into (1.6) gives

Ĥχ̂
(ν)
J − χ̂

(ν)
[J] L̂

(ν)
[J] = μJ+1F̂ (ν)

[J+1], (4.5)

where F̂ (ν)
[J] is an operator whose symbol regularly depends on μ.

Now, taking into account (4.3) and (4.2), we have
[
Ĥ − E(ν,n)

as

]
Ψ(ν,n)

as =
[
Ĥ − E(ν,n)

as

]
χ̂

(ν)
[J] ψ̂

(ν,n)
as

=
[
Ĥχ̂

(ν)
[J] − χ̂

(ν)
[J] L̂

ν
(ν)

]
ψ(ν,n)

as + χ̂
(ν)
[J] f[J+1] = μJ+1F̂ (ν)

[J] ψ(ν,n)
as + χ̂

(ν)
[J] f([J+1]. (4.6)

Proposition 2. Let Â be a self-adjoint operator acting in an appropriate Hilbert space with
some norm ‖ · ‖, and let a function ϕ with norm ‖ϕ‖ = 1 satisfy the equation

Âϕ = λϕ + f, (4.7)

where λ is any number and f is any function. Then the distance between the spectrum of Â and
λ does not exceed ‖f‖. If the spectrum of Â is discrete, then this means that there exists at least
one eigenvalue λ̃ of the operator Â such that λ̃ − λ = ‖f‖. Thus if one finds a solution ϕ of the
equation Âϕ = λϕ + f with the discrepancy f , ‖f‖ = O(ε), then λ approximates the eigenvalue λ̃

of the operator Â modulo f = O(ε) (see [37]).

It follows from Proposition 2 that different asymptotic eigenvalues λi and λj of the spectral
series approximate different points of the spectrum if

min
i �=j

|λi − λj | 	 ‖f‖. (4.8)

An application of (4.8) and (4.4) leads to the following assertion.

Proposition 3. Let E
(ν,n±1)
J be the asymptotic eigenvalue closest to E

(ν,n)
J . The spectral series

E
(ν,n)
J is reasonable provided that

|E(ν,n±1)
J − E

(ν,n)
J | 	 ‖μk+1F̂ (ν)

[J] ψ(ν,n)
as + χ̂

(ν)
[J] f[J]‖. (4.9)

We point out that the above considerations are valid without any assumptions about the structure
of (ψ(ν,n)

as , E
(ν,n)
as ). Therefore, one can see that (2.2) does not guarantee the validity of (4.9).

Consider the case in which (ψ(ν,n)
as , E

(ν,n)
as ) are obtained by the semiclassical approximation.

Recall that |∂ψ
(ν,n)
as /∂x| ∼ h−1 in this case. Let us apply these estimates to asymptotic solutions

constructed above for the spectral problem (1.1).
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It is easy to verify that, as a rule, the distance between the closest eigenvalues determined by
the Bohr–Sommerfeld rules (2.6) and (2.8) with parameter h is O(h); thus, the distance between
the closest numbers (2.3), (2.5), (2.6), and (2.8) is μ2/h, and the discrepancy on the right hand
side in Eq. (1.1) should be at least o(μ2/h) (e.g., O(μ2) for h � 1 and O(μ3) and h = 1).

If one assumes that ‖F̂ (ν)
[J] ψ

(ν,n)
as ‖ < C1‖ψ(ν,n)

as ‖ and ‖χ̂(ν)
[J] f[J]‖ < C2‖f[J]‖, where C1 and C2 do

not depend on any small parameters, then on the right hand side in (4.9), we will have

O(μJ+1) + O(‖f[J]‖) = O(μJ+1) + o(μ2/h).

Thus we see that one has to put J = 1 for the case in which h � 1 and J = 2 for the case in which
h = O(1). These considerations fail for ψ

(ν,n)
as (still with small ‖fJ‖) such that

μJ+1F̂
(ν)
[J] ψ(ν,n)

as = O(μ2/h).

In Example 1, F̂ (ν)
[J] = O(p̂J+1), χ̂

(ν)
[J] =

∑J
j=0 μjO(p̂j), where h < μ, and hence

μJ+1‖F̂ (ν)
[J] ψF

as‖ = O
(
(μ2/h)J+1

)
, ‖χ̂(ν)f[J]‖ = o(μ2/h) + o

(
(μ2/h)J+1

)
.

If h > μ2, then the discrepancy is o(μ2/h), but if h � μ2, then the discrepancy will be equal to
O

(
(μ2/h)J+1

)
� μ2/h. Thus in this situation, the adiabatic approximation no longer works.

Let us illustrate this reasoning by the simplest example corresponding to the solutions (2.7);
first, we give several important remarks.

Remarks. First, all these considerations pertain only to asymptotic eigenvalues but not to
asymptotic eigenfunctions. Generally speaking, the functions constructed are not necessarily as-
ymptotic to the actual eigenfunctions. That is why they are usually called “quasimodes.” For
instance, instead of the functions (2.7), one can take the functions

ψ
(ν,n)
± (x) = A(ν,n) exp

[
iS(ν,n)

h

]
, S(ν,n) = ±

∫ x

x0

√
E(ν,n)
ov − v

(ν)
eff (x)dx,

A(ν,n) =
C(ν,n)

[
Eνn
ov − v

(ν)
eff (x)

]1/4
, C(ν,n) = const,

(4.10)

which, as a rule, are not asymptotic to exact eigenfunctions of the operator (3.4) but are the
asymptotics of their linear combination (2.7). It is these functions that will be used in our example.
We refer the reader to [1, 37, 14, 11, 19], where this question is discussed in more detail.

Second, the smallness of the discrepancy |f[J+1]| in Eq. (4.2) or Eq. (2.2) does not guarantee
appropriate estimates for the original problem Eq. (1.1): there exists a correction due to F̂ (ν), and
it is necessary to take at least two terms in the expansion of χ(ν). This also means that, for this aim,
it does not suffice to substitute the leading asymptotic term χ̂

(ν)
0 ψ(ν,n) into the original equation;

the first correction χ̂
(ν)
1 ψ(ν,n) is needed. We return to this question at the end of this subsection.

Third, the above discussion resembles heuristic considerations and ideas. To implement them,
one has to introduce appropriate Hilbert spaces, describe the domains of the operators Ĥ and L̂,
etc. Then one can choose one of two ways. The first way is to estimate the operators χ

(ν)
[J] , L

(ν)
[J] , F̂

(ν)
J

in an appropriate scale of (Hilbert) spaces and then establish the relationship between the discrep-
ancy fJ+1 in Eq. (4.2) and full discrepancy in the original equation (1.1). The second way is to
find the “final” function Ψ(ν,n)

[J] = χ̂
(ν)
[J]ψ

(ν,n
[J] and then directly estimate the “final” discrepancy in

the original equation (1.1). The choice depends on the specific situation. We illustrate the ideas of
obtaining rigorous estimates by the simplest example below; some more general and complicated
cases can be found, e.g., in [32, 35].
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Example. Estimating of the difference between asymptotic and exact “over-barrier”
eigenvalues.

Let us estimate the accuracy of the asymptotic eigenvalues found by our method for the waveg-
uide considered in Section 4 under the assumption that α > 1, i.e., for the “over-barrier” region of
the spectrum. For the operator on the left-hand side in (2.2), we take the asymptotic eigenvalues
in the form

E(ν,n) = Ω0(ν + 1/2) + μ2αE(ν,n)
ov ≡ Ω0(ν + 1/2) +

(μ

h

)2

E(ν,n)
ov , (4.11)

where E(ν,n)
ov is determined from the Bohr–Sommerfeld rule (2.8) with parameter h instead of μ,

and the asymptotic eigenfunctions in the form of quasimodes ψ
(ν,n)
± (x) in (4.10).

The substitution of ψ
(ν,n)
± (x) into (3.4) gives

[
− h2

2
∂2

∂x2
+ Ω1(x)

(
ν +

1
2

)
− E(ν,n)

ov

]
ψ(ν,n) = h2f

(n)
[1] , (4.12)

where the discrepancy f
(n)
[1] is

f
(n)
[1] = −1

2
exp

[
iS(ν,n)

h

]
∂2A(ν,n)

∂x2
. (4.13)

Hence, by Proposition 1, there exists an exact eigenvalue Ẽ(ν,n) of the operator given by the formula
−h2

2
∂2

∂x2 + Ω1(x)(ν + 1/2) such that Ẽ(ν,n) − E(ν,n)
ov = O(h2). But, as we mentioned above, it does

not suffice to say that the value E(ν,n)
ov approximates some eigenvalue of the full original operator.

Let us take k = 1 in formulas (4.4). Then

F
(ν)
[1] =

[
∂g(ν)

∂x
p2 − 1

2
∂2χ

(ν)
0

∂x2
− g(ν)Ω′(x)

(
ν +

1
2

)]
. (4.14)

According to formulas (1.10) and (1.18), the functions (4.10) give the quasimodes Ψ(ν,n)
± of the

original equations in the form

Ψ(ν,n)
± =

(
χ

(ν)
0 (x, y) + μχ

(ν)
1 (

1

−iμ∂/∂x,
2
x, y)

)
ψ

(ν,n)
± (x)

= exp
( iS(ν,n)

h

)(
χ

(ν)
0 (x, y) +

iμ2

h
p(ν,n)g(ν)(x, y)

)
A(ν,n) + μ2 exp

( iS(ν,n)

h

)∂A(ν,n)

∂x
g1(x, y).

(4.15)

Here p(ν,n) = ∂S(ν,n)

∂x and g(ν)(x, y) is defined in Eq. (1.18). Likewise,

F̂
(ν)
[J] ψ

(ν,n)
± =

[
−μ2 ∂g(ν)

∂x

∂2

∂x2
− 1

2
∂2χ

(ν)
0

∂x2
− g(ν)Ω′(x)

(
ν +

1
2

)]
exp

( iS(ν,n)

h

)
A(ν,n)

=
[∂g(ν)

∂x

(μ2

h2
(p(ν,n))2A(ν,n) + 2i

μ2

h
p(ν,n) ∂A(ν,n)

∂x
+ i

μ2

h

∂p(ν,n)

∂x
A(ν,n) − μ2 ∂2A(ν,n)

∂x2

)

+
(
−1

2
∂2χ

(ν)
0

∂x2
− g(ν)Ω′(x)

(
ν +

1
2

))
A(ν,n)

]
exp

( iS(ν,n)

h

)
, (4.16)

χ̂
(ν)
1 f[J] =

[
−μ2

2

(
χ

(ν)
0 (x, y) +

iμ2

h
p(ν,n)g(ν)(x, y)

)∂2A(ν,n)

∂x2
− μ4

2
∂3A(ν,n)

∂x3
g1(x, y)

]
exp

( iS(ν,n)

h

)
.

(4.17)
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Thus the substitution of the function Ψ(ν,n) into Eq. (1.1) gives(
Ĥ − E(ν,n)

)
Ψ(ν,n)

± =
[
μ2R1(x, y)+

μ4

h2
R1(x, y)+

μ4

h
R3(x, y)+μ4R4(x, y)

]
exp

( iS(ν,n)

h

)
, (4.18)

where Rj are smooth functions decaying at the rate of a Gaussian exponent as |y| → ∞.
Hence the L2-norm of the right hand side is equal to O(μ2) + O(μ4/h2). Now it is easy to find

the limit of the adiabatic approximation. On the one hand, Ψ(ν,n) = Ψ(ν,n)
0 + O(μ2/h), where

Ψνn
0 = χ

(ν)
0 (x, y)ψ(ν,n)(x). Thus the correction O(μ2/h) to the function Ψ(ν,n)

0 is small if μ2 	 h.
Only then we can say that the function Ψ(ν,n)

0 is the leading term of the asymptotic solution Ψνn. On
the other hand, we have the same result from the estimate of the right-hand side in (4.18). Indeed,
if μ2 	 h, then the L2-norm of the right-hand side is equal to o(μ), and by Proposition 1, we desire
the existence of an exact eigenvalue Ẽνn such that Ẽ(ν,n) = E(ν,n)+o(μ). If h = O(μ2) or hμ2 	 μ2,
then the distance between the asymptotic eigenvalues E(ν,n) and E(ν,(n±1)) is O(μ2/h), which is
less than the correction O(μ2/h), and the adiabatic approximation works no longer. Actually, the
study of the situation h = O(μ2), corresponding to “superexcited states,” is one the main goals of
this paper; we consider this situation in the next section.

Remark. We again point out that the adiabatic approximation permits one to construct some
(“regular” in the example considered, see the next subsection) part of spectrum of the operator Ĥ.
Thus the natural question arises: do the described adiabatic and semiclassical approaches allow
one to find all eigenvalues lying below some fixed energy E(ν′,n′)? This question is not trivial
(e.g., see [14]) even for our simple example. We can only say that the answer seems to be “yes”; at
least physicists usually believe so. Assuming that the answer is in the positive for the operator Ĥ
in Eq. (1.1), let us find the so-called density of low states.

The density of states plays an important role in solid state physics and also in nanophysics [42].
Since we have a “regular” structure of the spectrum near its bottom, one can obtain simple formulas
for the density. For the given “subband” corresponding to the effective Hamiltonian with number ν,
we have

(1) dn/dE ∼ 1/μ1+α for low-lying states.
(2) dn/dE ∼ 1/(μ

√
E) for ultrashort modes.

Let us also repeat that in practice the parameters μ and h are numbers and the relation (3.1) is
rather artificial. Thus it is possible to include some parts of the power μα in the potential (or other
coefficients) of the original equation and relate it to the “canonical” cases mentioned in Section 1.

Conclusions. From the above considerations, we can make the following conclusions.
1. To obtain the main asymptotic formulas for the eigenvalues of energy E for a thin quantum

waveguide, one should find the first three terms L(ν)
0 (p, x), L(ν)

1 (p, x), and L(ν)
2 (0, x) in the expan-

sion (1.11), where the last term L(ν)
2 (0, x) is calculated at p = 0 and is needed in the long-wave

approximation.
2. To reconstruct the main part of the operator χ̂(ν), one should find the first three terms

χ
(ν)
0 (p, x, y), χ

(ν)
1 (p, x, y), and χ

(ν)
2 (0, x, y) in the expansion (1.10) of its symbol, where the last

term χ
(ν)
2 (0, x, y) is calculated at p = 0 and is needed in the long-wave approximation.

It should also be noted that although the effective equation (3.2), (3.4) of adiabatic motion
can be analyzed for h ∼ 1/n as small as desired, its solutions cannot sometimes be used in the
construction of the asymptotic solution of the original equation (1.1). One of these cases corresponds
to the situation in which the term μχ

(ν)
1 in the expansion (1.10) is of the order of the term χ

(ν)
0 , so

that the expansion (1.10) is unusable. This case will be considered in the next section.

5. SUPEREXCITED STATES, THE ORIGIN OF
INSTABILITY, AND FERMI ACCELERATION

The WKB approximation can be applied to Eq. (2.2) not only for n ∼ 1/μ (as was done above)
but also for n 	 1/μ, e.g., for n = 1/μ3/2. Since E(ν,n)

ov 	 v
(ν)
eff (x) in these cases, one can apply
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formulas (4.10) and then, using the Taylor expansion, obtain

E(ν,n)
ov = (nμ)2 + Ωav

(
ν +

1
2

)
+

(
(μn)−2

)
, Ωav =

1
2π

∫ 2π

0

Ω(x)dx, (5.1)

Ψ(ν,n)
+ (x) � Ω1/4(x)

π3/4
√

2kk!
cos(nx) exp

(
−Ω(x)y2

2

)
Hν(

√
Ω(x)y),

Ψ(ν,n)
− (x) � Ω1/4(x)

π3/4
√

2kk!
sin(nx) exp

(
−Ω(x)y2

2

)
Hν(

√
Ω(x)y).

(5.2)

To obtain this formula, one can also use a version of the Born approximation for the construction
of eigenvalues and eigenfunctions [10]. Now the problem is in the precision of adaptability of for-
mula (1.4) as well as the adiabatic approximation in general for these numbers n. Let us analyze the
first correction μχ̂(ν)ψ(ν,n) from this point of view. It is easily seen that p ∼ nμ. Thus we readily
find that, starting from n = 1/μ2, the term μχ̂(ν)ψ(ν,n) = O(1) is not the correction to the leading
term of the asymptotic solution of the original equation in spite of the fact that the function ψνn
is an asymptotic solution of Eq. (2.2).

Consider this situation in detail for the original equation (1.1). It is convenient to use the
parameter h = μ2, put x1 = x, x2 = μy from the very beginning, and rewrite Eq. (1.1) in the form

ĤΨ ≡ 1
2

[
−h2 ∂2

∂x2
1

−h2 ∂2

∂x2
2

+Ω2(x1)η2

]
Ψ = hE(ν,n)Ψ(ν,n), Ψ(ν,n)(x1+2π, x2) = Ψ(ν,n)(x1, x2),

(5.3)
where E(ν,n) is the same as in Eq. (1.1).

The classical Hamiltonian (or symbol), corresponding to the “h”-differential operator in (5.3)
has the form

H =
1
2
(
p2
1 + p2

2 + Ω(x1)x2
2

)
. (5.4)

Generally speaking, the Hamiltonian system

ẋ1 = p1, ṗ1 = −1
2
Ω′

1(x1)x2
2,

ẋ2 = p2, ṗ2 = −Ω(x1)x2

corresponding to (5.4) is not integrable, and, as we mentioned before, it is impossible to find an
analytical description of the spectrum not only exactly but also asymptotically. But in the phase
space, this Hamiltonian system has the family of (exact) trajectories Γ = (p1 = P1 ≡ q = const,
x1 = X1 ≡ qt, p2 = 0, x2 = 0) with the projection x2 = 0, which is the waveguide axis parametrized
by the parameter q. Thus, using the methods in [34, 2, 41, 5], one can try to construct the series
of eigenfunctions and eigenvalues of the operator (5.4) localized in a neighborhood of the line
x2 = 0 and corresponding to the trajectories Γ. Following [34], it is necessary to write out the
variational system for the complex functions Z = δx1 and W = δp1 describing the corrections to
the trajectory Γ:

Ż = W, Ẇ = −Ω2(X1)Z, X1 = qt. (5.5)

This system has periodic coefficients and therefore can be studied by methods of Floquet–Lyapunov
theory. According to [34, 41], one can construct the above-mentioned asymptotic eigenfunction if
system (5.5) is stable. This is equivalent to the assumption that (5.5) has Floquet solutions

W = W0(X1) exp(iβt), Z = Z0(X1) exp(iβt), W̄ 0Z0 − W 0Z̄0 = 2i,

where the Floquet index β(q) is real and W (x1) and Z(x1) are 2π-periodic functions of x1. Let us
assume that the stability condition holds. The functions W0(x1) and Z0(x1), as well as the Floquet
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index β(q), are not uniquely determined, and we fix them in the following way. The complex-valued
function Z0(x1) vanishes nowhere. Thus one can define a continuous branch Θ(x1) = Arg Z0(x1)
of its argument for x1 ∈ (−∞,∞), Arg Z0(0) = 0. We choose the function Z0 in such a way that
Arg Z0(x1 + 2π) − Arg Z0(x1) = 0. This condition also determines β(q):

β(q) =
q

2π
Arg Z|t+2π/q

t .

To find the asymptotic eigenvalues, one has to quantize the parameter q (i.e., the trajectory Γ)
using the Bohr–Sommerfeld rule 1

2π

∫
pdx = nh, where n is any integer, which gives q = qn = nh.

Then the asymptotic eigenvalues can be written as a sum of the kinetic energy (qn)2/2 = (nh)2/2
and the “Floquet correction” hβ(pn

1 )(ν + 1/2),

hE(ν,n) =
(nh)2

2
+ hβ(qn

1 )(ν + 1/2) + O(h2).

Turning back to notation in Section 2, we have qn = n
√

μ and

E(ν,n) =
(nμ)2

2
+ β(qn)(ν + 1/2) + O(μ2). (5.6)

The corresponding asymptotic eigenfunctions are

Ψ(ν,n)
+ =

1√
R

cos
(

nx1 +
nx2

2

2μ3/2R

∂R

∂x1
(x1) −

(
ν +

1
2

)
Θ(x1)

)
exp

(
− x2

2

2μ2R2(x1)

)
Hν

( x2

μR

)
,

Ψ(ν,n)
− =

1√
R

sin
(

nx1 +
nx2

2

2μ3/2R

∂R

∂x1
(x1) −

(
ν +

1
2

)
Θ(x1)

)
exp

(
− x2

2

2μ2R2(x1)

)
Hν

( x2

μR

)
,

(5.7)
where R(x1) = |Z0|(x1).

The form (5.6) of the asymptotic eigenvalues is very similar to the expression (5.7); it seems
that one only needs to change the “average” frequency Ωav by the Floquet number β. But there
exists a big difference between these formulas. First, the dependence on Ω(x) is more complicated
in the second case than the averaging in the first one, and in contrast to Ωav, β depends on the
frequency qn. The second difference is much more important: for frequencies qn belonging to some
gaps on the axis p1 = q, the classical motion along the waveguide axis becomes unstable and
formulas (5.7) fail. Since the classical trajectories in these gaps are unstable, we interpret this fact
as the destruction of adiabatic approximation corresponding to the regular quantum motion and the
passage to chaotic behavior.

Let us compare the behavior of the asymptotic eigenfunctions (5.2) and (5.7). Consider them on
the cross-section x1 = const of the waveguide. The functions (5.2) depend on the variable frequency
Ω(x1) locally: the dependence of eigenfunctions Ψ(ν,n)

± in the normal direction does not “feel” the
behavior of Ω(x1) at points x1 different from r. In the second case, (5.7), the dependence of
eigenfunctions Ψ(ν,n)

± in normal direction “feels” the dependence Ω(x1) (via the variational system)
on x1 along the entire waveguide.

It seems to be true that the length of the gaps increases together with q (or the longitudinal
energy), and finally the bands of stability become very small and disappear; this means that, for
high longitudinal energy, the quantum waveguide displays chaotic behavior.

One can interpret this situation as follows. Consider the motion of a classical particle near the
waveguide axis. If one chooses the system of coordinates related to the particle coordinate on the
x1-axis, then the dependence of Ω(x1) on x1 means the presence of “rapidly oscillating” walls,
and for “superexcited” states the frequency of “transverse” oscillations has the same order as the
“longitudinal” frequency.

This problem is well known in classical mechanics [45]. First it was considered by Fermi; therefore
the possible acceleration of the particle in such a problem is called “Fermi acceleration.” So it is
natural to say that the appearance of instability gaps for Eq. (5.5) is caused by an analog of Fermi
acceleration and hence, in this example, the Fermi acceleration destroys the regular spectrum and
the adiabatic approximation.
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Basel, 1994).

31. V. P. Maslov, Mathematical Aspects of Integral Optics (MIEM, Moscow, 1983) [in Russian]; Journal
version: Russ. J. Math. Phys. 8 (1), 83–105; (2), 180–238 (2001).

32. V. P. Maslov, Perturbation Theory and Asymptotic Methods (MGU, Moscow, 1965) [in Russian].

33. V. P. Maslov, Operational Methods (Nauka, Moscow, 1973) [in Russian].

34. M. V. Karasev, “New Global Asymptotics and Anomalies in the Problem of Quantization of Adiabatic
Invariant,” Funct. Anal. Appl. 24 (2), 24–36 (1990).

35. M. V. Karasev and V. P. Maslov, Russ. Math. Surveys 39, 133–205 (1984).

36. Ch. März, “Spectral Asymptotics for Hill’s Equation near Potential Maximum,” Asymp. Anal. 5 (3),
221–267.

37. V. P. Maslov, and M.V. Fedoryuk, Semiclassical Approximation in Quantum Mechanics (Reidel, Dor-
drecht).

38. G. Panati, H. Spohn, and S. Teufel, “Space-Adiabatic Perturbation Theory,” Adv. Theor. Math.
Phys. 7, 145–204 (2003).

39. R. E. Peierls, Quantum Theory of Solids (Oxford, 1955).

40. N. A. Poklonski, E. F. Kislyakov, G.G. Fedoruk, and S.A. Virko, “Model of an Electron Structure of
the Metal Doped Carbon Nanotube,” Fiz. Tverd. Tela 42 (10), 1911–1914 (2000).

41. J. V. Ralston, “On the Construction of Quasimodes Associated with Stable Periodic Orbits,” Commun.
Math. Phys. 51, 219–242 (1976).

42. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial
College, London, 1998).

43. P. C. Schuster and R. L. Jaffe, “Quantum Mechanics on Manifolds Embedded in Euclidean Space,”
Ann. Phys. (San Diego) 307, 132 (2003).

44. S. Yu. Slavyanov, Asymptotic Solutions to One-Dimensional Schrödinger Operator (Izdat. Leningr. Gos.
Univ., Leningrad; AMS, Providence, 1996).

45. G. M. Zaslavsky, Stochastisity of the Dynamical Systems (Nauka, Moscow, 1984) [in Russian].

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 13 No. 4 2006


