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Abstract—We use the semiclassical approach to study the spectral problem for the Schrödinger
operator of a charged particle confined to a two-dimensional compact surface of constant negative
curvature. We classify modes of classical motion in the integrable domain E < Ecr and obtain a
classification of semiclassical solutions as a consequence. We construct a spectral series (spectrum
part approximated by semiclassical eigenvalues) corresponding to energies not exceeding the
threshold value Ecr; the degeneration multiplicity is computed for each eigenvalue.
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1. INTRODUCTION

The motion of a charged particle in a magnetic field on the hyperbolic plane L satisfies the standard
Hamiltonian system

ẋi =
∂H

∂pi
,

ṗi = −∂H

∂xi
,

i = 1, 2, x1 = x, x2 = y, p1 = px, p2 = py.

The magnetic field is given by a closed 2-form on the hyperbolic plane; we assume that it is a multiple
(with coefficient w) of the volume form. Then the Hamiltonian in the upper half-plane model has the form

H =
y2

2
(px − Ax)2 +

y2

2
(py − Ay)2, Ax =

w

y
, Ay = 0, w > 0. (1)

Isometries of the hyperbolic plane take trajectories to trajectories, and so the motion can be
“factorized,” i.e., considered on an arbitrary quotient surface M of L by a freely1 acting subgroup Γ of
the isometry group. We consider only compact orientable surfaces M , i.e., surfaces of constant negative
curvature K = −1; the genus g of such a surface is greater than 1.

The motion in the corresponding phase space is determined by the Hamiltonian system with
Hamiltonian HM = p2/2 on the cotangent bundle T ∗M equipped with the symplectic structure [1]

Ω = dpi ∧ dxi + wπ∗dS,

where dS is the area form on M and π is the natural projection.

1That is, without fixed points.
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QUANTIZATION OF PERIODIC MOTIONS ON COMPACT SURFACES 29

The quantum system is given by the magnetic Schrödinger operator. On the hyperbolic plane, it is
defined on functions and has the form

̂H = −y2

2

{(

ih
∂

∂x
+

w

y

)2

+ h2 ∂2

∂x2

}

: L2(L) → L2(L); (2)

here h is a parameter arising in the construction of the semiclassical approximation below.
The “quotient” quantum system on M is determined by an operator acting on sections of a U(1)-

bundle over M with connection form α whose curvature is equal to iw dS. There exists a connection
with this property, provided that the total magnetic flux through M is an integer [2],

n =
w(2g − 2)

h
∈ Z; (3)

the number n determines the first Chern class of the chosen bundle. The bundle also depends on 2g
parameters λi in H1(M,U(1)) � U2g(1), known as Aharonov–Bohm vortices (e.g., see [2]), and
to each bundle there corresponds its own connection α; therefore, associated with the surface M

is the family of operators ̂HM = h2
̂HM,n(λi), each of which acts on L2-sections of the respective

bundle. Sufficiently smooth connected domains on L are coordinate neighborhoods on M in which
the operator ̂HM corresponding to the connection α = iA with potential A chosen in (1) has the
form (2). Since the spectral series in question depend on the magnetic field alone [3], we shall simplify
the computations by using different connections and omit the parameters λi in the operators to make
notation shorter.

The motion of a charged particle on the hyperbolic plane coincides with the motion along curves
of constant curvature (e.g., see [4]), which are described in [5]. The problem on the classical motion
on a closed orientable surface M of constant negative curvature in the magnetic field specified by the
volume form was studied in [1]. In particular, it was proved there that the system is integrable for
E < Ecr = w2/2.

The spectrum, resolvent, and eigenfunctions of the operator ̂H on the hyperbolic plane were studied
in [4] and [6]. The paper [3] gives exact formulas for series of eigenvalues of ̂HM satisfying the condition
E < Ecr.

The main result of the present paper is the construction of a semiclassical approximation describing
the spectrum and the degeneration of the spectrum of the quantum Hamiltonian ̂HM (in the integrable
domain E < Ecr). The corresponding formulas can be useful in the classification of spectral series and
states of the operator ̂HM,n as well as in the study of the perturbed problem (say, with a small electric
potential).

2. SEMICLASSICAL APPROXIMATION
To a set of invariant isotropic submanifolds of a Hamiltonian system, one can assign semiclassical

solutions; the relevant procedure is given by Maslov’s theory of canonical operator and complex
germ [7]–[9].

2.1. Geometry of the Foliation of the Phase Space into Trajectories and Invariant Submanifolds
As described in [1], all trajectories in T ∗M are closed for 0 < E < Ecr, and their natural projections

into M have constant geodesic curvature equal to kg = w/
√

2E. Hence the system is not only integrable
for 0 ≤ E < Ecr (because, along with HM , there exists an additional integral of motion for these E) but
also degenerate.

For an additional integral F : T ∗M → R one can take a function depending only on the trajectory
center [1] and hence specified by an arbitrary function F0 : M → R; we assume that F0 is an analytic
Morse function.

Each level set HM = E, F = f is an invariant set of the Hamiltonian flow on T ∗M , and its connected
components (in general position) are Liouville tori. Thus, the neighborhood

U∗(M) =
{

(x,p) ∈ T ∗M :
p2

2
≤ Ecr ⇐⇒ p ≡ |p| < w

}
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30 BRÜNING et al.

Figure: A surface of genus g = 2 and the Reeb graph R of the function F .

of the subset M = {(x,p) ∈ T ∗M : p = 0} is foliated into invariant leaves. Let us show how U∗(M) is
foliated into such tori as well as singular leaves (equilibrium points, and bifurcations of Liouville tori).
Owing to degeneration, this foliation depends on the choice of the additional integral F .

The surface M , i.e., the set of equilibria (E = 0), is foliated into closed curves and vertices, the
latter being points of local maximum or minimum of the function F0 = F |E=0. The set of leaves can be
visualized (e.g., see the example in the figure on the Reeb graph R of the function F0 (e.g., see [10]). Each
point of the graph corresponds to a connected component of a level set; more precisely, the interior points
of the edges correspond to closed curves without self-intersections (topological circles), and vertices
correspond to isolated points or separatrix curves.

For 0 < E < Ecr, the (E, f)-level set is the union of trajectories whose projections into M are
circles (in the constant curvature metric) of radius

√
2E/w centered on the f-level line, and each of its

connected components is a union of trajectories centered on a connected component of the f-level line.
If the f-component is a circle, then the (E, f)-component is a Liouville torus; an isolated point gives rise
to a single circle (a “degenerate torus”), and a separatrix curve to a singular component (a separatrix,
where a 2-to-1 or 1-to-2 bifurcation of tori occurs). Thus, the same R specifies the foliation of any energy
level E, 0 < E < Ecr, and the topology of the entire foliation U∗(M) is specified by [0, Ecr) × R. Hence
all connected components Λ (including Liouville tori) of this foliation are parametrized by the pair (E, r),
where E ∈ [0, Ecr) and r ∈ R.

Finally, let us describe two action variables I1 and I2 for the Liouville tori of this foliation,

I1 = I1(E, r) = I1(E), I2 = I2(E, r), r ∈ R, E ∈ [0, Ecr).
To this end, from M we delete the point b of global maximum of F ; then one can introduce a potential A
on Mb = M \ b and the 1-form α = pi dxi + A, dα = Ω, on T ∗Mb.

On each Liouville torus, we pick a pair of basis cycles consisting of an arbitrary trajectory l0 oriented
by the direction of motion and an arbitrary cycle c that does not meet the boundaries of the natural
projection of the Liouville torus (the cycle of singularities) and is oriented by its projection. (The sense
of the projection supplemented by the gradient of F should give a positive frame in M , i.e., a frame on
which the volume form dS is positive.) Then the expressions

I1 =
1
2π

∮

l0

α, I2 =
1
2π

∮

c
α

are well defined; the variable I1 can additionally be defined in a similar way on all leaves, and I2 can be
defined on the leaves corresponding to interior points of edges of R.

Of the elementary properties of the action–angle variables (e.g., see [10]), we need the following.

Lemma 1. The variables I1 and I2 are independent of the choice of the cycles l0 and c and can be
supplemented by angle variables ϕ1, ϕ2 mod 2π on the Liouville torus, so that together they are
Darboux coordinates,

Ω = dIi ∧ dϕi. (4)
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QUANTIZATION OF PERIODIC MOTIONS ON COMPACT SURFACES 31

2.1.1. Computation of I1 and I2. The action I1 is invariant with respect to the choice of the
potential A, because a trajectory bounds the two-dimensional disk of trajectories with lower energy
and the same center and, by Stokes’ theorem, the integration of α over the boundary can be replaced by
the integration of Ω over the disk.

Obviously, each closed curve on L covers a closed curve on M under the projection P : L → M , and
each trajectory covers a trajectory. The converse, stronger assertion is also true.

Lemma 2. For each closed trajectory l0 on M , the hyperbolic plane contains a closed trajectory
(circle) l that is projected one-to-one into l0 under P .

Proof. Since the curvature of the covering curves is constant and less than 1, it follows that all these
curves are finite circles on L. Let a circle l cover l0 more than once; then l contains two equivalent2

points m2 and m1 such that m2 = gm1 for some g ∈ Γ. A sufficiently small arc in a neighborhood of m1

is taken to an arc in a neighborhood of m2, and hence the proper transformation g ∈ Γ takes the entire
circle l into itself. Consequently, the center m0 of the circle is a fixed point of g. This is a contradiction,
because the covering P : L → M is defined by a discrete group Γ acting freely (without fixed points).

Corollary. For each two-dimensional surface Σ0 ⊂ T ∗M bounded by the trajectory l0, there exists
a two-dimensional surface Σ ⊂ T ∗L projected one-to-one into Σ0 under P .

By this corollary, every disk can be “lifted” from T ∗M to T ∗L. Since the symplectic structure is
preserved by the covering as well as, conversely, by the “lifting,” one can integrate the form Ω over
the corresponding disk in T ∗L. We use Stokes’ theorem once more (to simplify the computations) and
evaluate I1 on the trajectories already lifted to T ∗L (cf. [4]).

Consider an arbitrary circle

x(ϕ) = x0 − R sinϕ,

y(ϕ) = y0 + R cos ϕ

on L; the corresponding trajectory is

x(ϕ) = x0 − R sin ϕ,

y(ϕ) = y0 + R cos ϕ,

px = −
√

2E
y0

+
w

y0
= const, py(ϕ) =

√
2E
y

sin ϕ.

Hence

I1 =
1
2π

∫ 2π

0

{

pxR cos ϕ +

√
2E sinϕ

y
R sinϕ

}

dϕ

=
R
√

2E
2πy0

∫ 2π

0

sin2 ϕ

1 + (R/y0) cos ϕ
dϕ =

√
2E

(

y0

R
−

√

y0

R
− 1

)

.

It is well known that

R

y0
=

1
kg

=

√
2E
w

,

and hence we eventually obtain

I1(E) = w −
√

w2 − 2E. (5)

2In the sense of the covering.
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32 BRÜNING et al.

Lemma 3. For E fixed, the variable I2 increases along the edges of the Reeb graph together
with F ,

r1, r2 ∈ R, r2 ∼ r1, F (r2) > F (r1) =⇒ I2(E, r2) − I2(E, r1) > 0,

and experiences jumps at the branching vertices r0 of R. These jumps satisfy Kirchhoff’s law:
the sum of right limits of I2 on incoming edges (with lower value of F) is equal to the sum of
left limits on the outgoing edges (with larger value of F). For example, if the ri, i = 2, 3, 4, are
arranged as shown in the figure, then

I2(E, r3) + I2(E, r4) − I2(E, r2) → 0 as F (ri) → F (r0).

The total variation of I2 over all edges is equal to

ΔI2(E) =
(

w − I1(E)
)

(2g − 2). (6)

Proof. It is easier to see this for the zero energy level E = p = 0. Then one can assume that α = A
and Ω = wdS are forms on M and compute the difference in the values of I2 for two level lines c1 and c2

(“degenerate tori”) of the function F (F (c1) < F (c2)) on a common edge of R by Stokes’ theorem,

I2(0, r2) − I2(0, r1) =
1
2π

∫∫

ϑ
w dS =

wS(ϑ)
2π

> 0,

where ϑ is the cylinder on M bounded by the cycles c1 and c2 and S is the area measure. To prove
“Kirchhoff’s law,” one considers, in a similar way, cycles on all edges adjacent to a given vertex, uses
Stokes’ theorem, and lets the area of the surface on M tend to zero by shrinking to the vertex the cycles
bounding the surface. Finally, the maximum value wS(M)/(2π) (which is equal to w(2g − 2) by Gauss–
Bonnet) can be obtained from the first two assertions and, again, Stokes’ theorem, applied this time to
the entire surface M .

Now let us describe how to compute the difference in I2 for two tori Δ(E, r1) and Δ(E, r2) that have
a same energy E > 0 and correspond to a same edge.

To this end, we consider not only the energy level but also smaller values. Thus, in the phase space, we
have a four-dimensional region Q consisting of tori between c1, c2 with various energy E from 0 to p2/2.
The region Q is bounded by the maximum energy level surface and by two surfaces of the tori over c1

and c2. The integral of the phase volume form Ω ∧ Ω over Q is equal to the volume V (p) = πp2ΔS of Q.
But the phase volume of Q can be computed by the formula (see (4))

V (p) = 4π2

∫∫

Q
dI1 dI2,

and the volume increment dV = πΔS dp2 is equal to

4π2ΔI2(E, r2) dI1.

We find the increment of I1 from (5) and finally obtain

I2(E, r2) − I2(E, r1) =
√

w2 − p2
S(ϑ)
2π

> 0,

which gives “Kirchhoff’s law” and the maximum variation in I2 for surfaces bounded by cycles on distinct
edges.

2.2. Quantization of the Symbol HM

Let us describe the relationship between the symbol HM given by the Hamiltonian of classical motion
and the operator h2

̂HM,n, n ∼ 1/h; we intend to construct an approximation in the spectral problem for
the latter by using information about the classical motion.

By definition, to pseudodifferential operators in Rk one can assign symbols, which are smooth
functions in R2k. The inverse operation H(x, p) → ̂H = H(x, p̂) is known as quantization of symbols.
There is a deeper semiclassical-approximation relationship between symbols and operators: solutions
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QUANTIZATION OF PERIODIC MOTIONS ON COMPACT SURFACES 33

of the Schrödinger equation with a given operator are approximated by well-known WKB–Maslov
constructions [8], [9] involving solutions of the Hamiltonian system with the corresponding symbol.
Semiclassical approximation can readily be generalized to Schrödinger equations on Riemannian
manifolds Mk instead of Rk. Solutions of the Schrödinger equation are then constructed with the use
of solutions of the Hamiltonian equations in T ∗Mk with some symbol. Although in this case there are
already no unambiguous invariant procedures assigning an operator to a symbol, all choices of such a
procedure are equivalent in the semiclassical sense: semiclassical solutions approximate exact solutions
of the Schrödinger equations for various operators corresponding to the same symbol equally well.

In the more general case of operators acting on sections of bundles over the configuration space Mk,
there is no assignment of this type at all. The most general quantization of a symbol W on an arbitrary
symplectic manifold [7] gives operators ˜W with more complicated domains than sections of U(1)-
bundles over Mk; the operators ˜W are defined on the so-called wave packet sheaf Π(T ∗Mk) (see [7]
for details).

Locally, in connected domains D of the phase space, one can introduce Darboux coordinates (x,p) ∈
Rk

x × Rk
p . The restriction of the sheaf Π(T ∗Mk) to such coordinate neighborhoods gives so-called

local sheaves over these neighborhoods, i.e., functions ψ ∈ C0(Rk
x) modulo O(h∞) in D, i.e., cosets

of functions, where two functions ψ1 and ψ2 are said to be equivalent if we have (ψ1, χ̂ψ2) = O(h∞) for
all χ ∈ C0(D). It is on these local sheaves that the operator ˜W can be represented as a pseudodifferential
operator with symbol W (x,p).

The following conditions are necessary for the existence of the sheaf Π(T ∗Mk) (see [7]):

1
2πh

∫

Σ
Ω = n ∈ Z ∀Σ : ∂Σ = 0. (7)

In our case, it suffices to verify these conditions only for surfaces Σ ⊂ M , since on can smoothly shrink
each surface to p = 0. Then M is the only nonzero surface without boundary, and condition (7) acquires
the form (3).

The construction of such sheaves is ambiguous. Distinct nonequivalent sheaves Π(T ∗M) are
parameterized by elements of the cohomology group H1(T ∗M,U(1)) � U2g(1), which is in our case
isomorphic to the set H1(M,U(1)) parametrizing the original operator. Thus, the quantized operator
(which is an operator family with a small parameter h) is also defined only for a discrete set of values of
the ratio w/h, and, up to the choice of parameters in U2g(1), one has

˜HM = ˜HM,n : Π(T ∗M) → Π(T ∗M), n ∼ 1
h

, h → 0.

Although the operators themselves do not coincide (they are defined on distinct spaces), ˜HM,n acts

in “coordinate” representations in exactly the same way as h2
̂HM,n. Indeed, by representing the action

of the operator ˜HM,n in neighborhoods of the form D = T ∗U ⊂ T ∗M with the Darboux coordinates

p′ = p + A, x′ = x,

we obtain the operator p2/2 acting on C∞
0 (U) as the differential operator with symbol (p− A)2/2,

exactly in the same way as this is defined in the Introduction for the action of the operator ̂HM,n in U . Of
course, the global sheaf is patched together by the same methods as bundles over M .

Thus, quantization of the symbol HM gives operators ˜HM,n whose action on sections on the

sheaf Π(T ∗U) exactly coincides in “coordinate” representations with the action of h2
̂HM,n. It follows

that approximate solutions of the spectral problem for the operator ˜HM,n automatically give equally
approximate solutions of the spectral problem for h2

̂HM,n. The semiclassical approximation for ˜HM

(just as for arbitrary ˜W ) is known; it is based on the construction of Maslov’s canonical operator.
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2.3. Outline of the Semiclassical Approximation

In the construction of asymptotic solutions on the basis of Liouville tori, one encounters yet another
obstruction when trying to patch together the canonical operators locally defined on the Liouville tori in a
semiclassically well-defined way. This is essentially the quantization of the Liouville tori themselves. For
each value of the parameter h, this quantization singles out a set of Liouville tori, and the global canonical
operators KΛ : C∞

0 (Λ) → Π(T ∗M) defined for these tori explicitly specify asymptotic solutions Ψ =
KΛ[1], E = HM(Λ).

Let a set of basis cycles Γi, i = 1, 2, . . . , 2g, in H1(T ∗M) be fixed. Consider surfaces Σ ⊂ T ∗M such
that the boundary of Σ consists of a cycle on Λ and, possibly, some set of cycles Γi,

Σ : Σ \ Λ =
⋃

i∈I

Γi, I ⊂ {1, 2, . . . , 2g}. (8)

The torus Λ is quantized if

1
2πh

∫

Σ
Ω = n +

IndΣ
4

(9)

for each surface of the form (8), where the index IndΣ is defined in [7]. We need only the additivity of
the index (if we treat a surface as two surfaces glued together along some common boundary on Λ, then
the sum of their indices is equal to the index of the original surface), the fact that the index of a closed
surface is zero [7], and the invariance of the index under continuous deformations of the surface (which
is obvious, since otherwise these conditions cannot hold, say, for neighboring surfaces).

The semiclassical results obtained below are justified by the assertion that the section Ψ = KΛ[1]
satisfies, modulo O(h2), the spectral equation for ˜HM,n with some fixed (by the choice of basis cycles)
parameters in H1(T ∗M,U(1)) (see. [7, Chap. IV, Theorem 3.2]).

2.4. Asymptotic Spectrum. Degeneration

Let us use the quantization rules (9) to compute the asymptotic spectrum (and its degeneration) for
the operator h2

̂HM,n, n ∼ 1/h.

Theorem. Let

I1 = h
(

m +
1
2

)

, I2 = hl + C, m, l ∈ Z, (10)

where the constant C depends only on the edge of the Reeb graph and on the choice of the cycles Γi

(and hence on the choice of parameter values in H1(T ∗M,U(1)) for the operator ˜HM,n). Then
the Liouville torus Λ = Λ(I1, I2) satisfies the quantization condition, and the section Ψ = KΛ[1]
satisfies the spectral equation for ˜HM,n modulo O(h2),

˜HMΨ = EΨ + O(h2).

Proof. 1. Necessity. If the surface Σ lies entirely in a subset of the phase space where the symplectic
form Ω has a primitive, Ω = dα, then Stokes’ theorem reduces the integral on the left-hand side in (9) to
the form

1
2π

∮

∂Σ
α,

and the quantization rules for a connection with unit Aharonov–Bohm vortex parameters should become
the ordinary Bohr–Sommerfeld rules. In other words, the index on the left-hand side is equal to the
Maslov index of the curve γ = ∂Σ ∩ Λ, and hence the following assertion requires no further proof.
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Lemma 4. If the surface Σ entirely lies in a subset of the phase space where the symplectic form Ω
has a primitive, Ω = dα, then (9) is equivalent to the equation

1
2π

∮

γ
α = h

(

n +
Ind γ

4

)

+ C, (11)

where

C = − 1
2π

∮

∂Σ\γ
α.

For the subset on which Ω is exact we take the set T ∗Mb described in Sec. 2.
Let us indicate surfaces bounded by the basis cycles of the torus Λ, satisfying the assumptions of

Lemma 4, and such that Eqs. (11) acquire the form (10).
The first surface is either the disk already mentioned in the computation of I1 or, if the projection of

the disk into M contains the point b, its complement in Σ � M . Since γ = l0 is the only boundary of this
surface, we obtain C = 0, and the left-hand side of (11) coincides with the definition of I1.

The second surface is a surface spanning the basis cycles Γi and the cycle γ = c and lying in T ∗Mb.
For this surface, the constant C is nonzero in general.

2. Sufficiency. If a surface Σ with boundary γ on the torus can be smoothly deformed from T ∗M
into T ∗Mb (for example, if Σ ⊂ T ∗Mb from the very beginning) and conditions (11) hold for all basis
cycles on the torus, the conditions (11) also hold for γ, and hence Σ satisfies condition (9) by Lemma 4.

If Σ cannot be deformed in such a way, then (provided that the basis cycles Γi and the boundaries
of Σ on the torus Λ itself are chosen so as to ensure that their projections into M neither contain
the point b nor have self-intersections, which is easy to achieve), then there exists a closed surface Σ
obtained from Σ by attaching another surface Σ0 such that Σ0 ⊂ T ∗Mb. Conditions (9) for Σ and Σ0 are
equivalent by (7), additivity of the index, and the fact that the index of Σ is zero. Again, condition (9)
for Σ0 is satisfied by Lemma 4.

The second part of the assertion is a consequence of [7, Chap. IV, Theorem 3.2].

Corollary. The number E approximates a spectral point of the operator ˜HM,n and hence of the
desired operator h2

̂HM,n,

dist(E,Spec(h2
̂HM,n)) ≤ O(h2).

From (10) and (5), up to the constant correction term R = −h2/8, we obtain the known exact
formula [3] for lower energy levels (E < Ecr).

Proposition 1. One has

Em = hw
(

m +
1
2

)

− h2

2

(

m +
1
2

)2
, m +

1
2
≤ w

h
. (12)

The degeneration with respect to the second quantum number l can be computed separately for each
edge of the Reeb graph R, and then one takes the sum.

Proposition 2. The semiclassical degeneration (i.e., the number of states described by the
canonical operator) of the mth energy level is equal to

(2g − 2)
(

n − m − 1
2

)

.

Proof. By taking different connections (i.e., the terms C in (11)) for different h, one can always ensure
that the quantized values of the variable I2 do not arrive at any vertices of the Reeb graph. Then, by
Lemma 3, the total number of quantized states is

ΔI2

2πh
= (2g − 2)

(

n − m − 1
2

)

,

as desired.
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From the exact degeneration [3]

dimKer(h2
̂HMn − Em) = (2g − 2)

(

n − m − 1
2

)

,

we see that the states described by the canonical operator also form a complete set.
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