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THE EQUIVARIANT INDEX THEOREM FOR TRANSVERSALLY ELLIPTICOPERATORS AND THE BASIC INDEX THEOREM FOR RIEMANNIANFOLIATIONSJOCHEN BR�UNING, FRANZ W. KAMBER, AND KEN RICHARDSONAbstrat. In this expository paper, we explain a formula for the multipliities of the index of an equivarianttransversally ellipti operator on a G-manifold. The formula is a sum of integrals over blowups of the strataof the group ation and also involves eta invariants of assoiated ellipti operators. Among the appliationsis an index formula for basi Dira operators on Riemannian foliations, a problem that was open for manyyears.1. Introdution. In this note we announe two new results in index theory, namely an equivariant indextheorem for transversally ellipti operators relative to a ompat Lie group ation and the basi index theoremfor transversal Dira operators in Riemannian foliations. The latter has been a well{known open problem infoliation theory for more than twenty years. Complete proofs of these results appear in [12℄ and [13℄.Suppose that a ompat Lie group G ats by isometries on a ompat, onneted Riemannian manifoldM , and let E = E+ � E� be a graded, G-equivariant Hermitian vetor bundle over M . We onsider a �rstorder G-equivariant di�erential operator D = D+ : � (M;E+) ! � (M;E�) that is transversally ellipti,and let D� be the formal adjoint of D+.The groupG ats on � (M;E�) by (gs) (x) = g�s �g�1x�, and the (possibly in�nite-dimensional) subspaesker (D+) and ker (D�) areG-invariant subspaes. Let � : G! U (V�) be an irreduible unitary representationof G, and let �� = tr (�) denote its harater. Let � (M;E�)� be the subspae of setions that is thediret sum of the irreduible G-representation subspaes of � (M;E�) that are unitarily equivalent to therepresentation �. It an be shown that the extended operatorsD�;s : Hs �� �M;E+���! Hs�1 �� �M;E����are Fredholm and independent of s, so that eah irreduible representation of G appears with �nite multi-pliity in kerD�. Let a�� 2 Z�0 be the multipliity of � in ker (D�).The study of index theory for suh transversally ellipti operators was initiated by M. Atiyah and I. Singerin the early 1970s ([2℄). The virtual representation-valued index of D is given byindG (D) :=X� �a+� � a�� � [�℄ ;where [�℄ denotes the equivalene lass of the irreduible representation �. The index multipliity isind� (D) := a+� � a�� = 1dimV� ind�Dj�(M;E+)�!�(M;E�)�� :In partiular, if �0 is the trivial representation of G, thenind�0 (D) = ind�Dj�(M;E+)G!�(M;E�)G� ;where the supersript G implies restrition to G-invariant setions.Atiyah's distributional index an be expanded in terms of the index multipliities, whih play the role ofgeneralized Fourier oeÆientsind� (D) (�) =X� ind� (D) ZG � (g) �� (g) dg :Date: January 7, 2011.2000 Mathematis Subjet Classi�ation. 58J20; 53C12; 58J28; 57S15; 54H15.Key words and phrases. equivariant, index, transversally ellipti, eta invariant, strati�ation, foliation.Work of the �rst author was partly supported by the grant SFB647 \Spae-Time-Matter".1
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2 J. BR�UNING, F. W. KAMBER, AND K. RICHARDSONFrom this formula, we see that the multipliities determine the distributional index. Conversely, let � : G!U (V�) be an irreduible unitary representation. Thenind� (D) (��) =X� ind� (D) ZG �� (g)�� (g) dg = ind�D;so that in priniple omplete knowledge of the distributional index is equivalent to knowing all of themultipliities ind� (D). Beause the operator Dj�(M;E+)�!�(M;E�)� is Fredholm, all the indies ind� (D)depend only on the stable homotopy lass of the prinipal transverse symbol of D.Consider now the heat kernel expression for the index multipliities. The usual MKean-Singer argumentshows that, in partiular, for every t > 0, the index ind� (D) may be expressed as the following iteratedintegral: ind� (D) = Zx2M Zg2G str g �K �t; g�1x; x� �� (g) dg jdxj= Zx2M Zg2G �tr g �K+ �t; g�1x; x�� tr g �K� �t; g�1x; x�� �� (g) dg jdxj (1)where K� (t; �; �) 2 � �M �M;E� � (E�)�� is the kernel for e�t(D�D�+C���) on � (M;E�), letting jdxjdenote the Riemannian density over M .A priori, the integral above is singular near sets of the form[Gx2[H℄ x�Gx �M �G;where the isotropy subgroup Gx is the subgroup of G that �xes x 2 M , and [H ℄ is a onjugay lass ofisotropy subgroups.Over the last twenty years numerous papers have appeared that express ind� (D) andZM �tr g �K+ �t; g�1x; x�� tr g �K� �t; g�1x; x�� jdxjin terms of topologial and geometri quantities, as in the Atiyah-Segal-Singer index theorem for elliptioperators [4℄ or the Berline-Vergne Theorem for transversally ellipti operators [6℄,[7℄. However, until nowthere has been very little known about the problem of expressing ind� (D) in terms of topologial or geometriquantities whih are determined at the di�erent strata of the G-manifold M . The speial ase when all ofthe isotropy groups are the same dimension was solved by M. Atiyah in [2℄, and this result was utilized byT. Kawasaki to prove the Orbifold Index Theorem (see [26℄). Our analysis is new in that the integral overthe group in (1) is performed �rst, before integration over the manifold, and thus the invariants in our indextheorem are very di�erent from those seen in other equivariant index formulas.Our main theorem (Theorem 11) expresses ind� (D) as a sum of integrals over the di�erent strata of theation of G on M , and it involves the eta invariant of assoiated equivariant ellipti operators on spheresnormal to the strata. The result is the following.Equivariant Index Theorem. The equivariant index ind� (D) is given by the formulaind� (D) = ZG�gM0 A�0 (x) gjdxj + rXj=1 � ���j � ;� ���j� = 12dimV� Xb2B 1nbrank W b ��� �DS+;bj �+ h�DS+;bj ��ZG�g��j A�j;b (x) gjdxj :The notation will be explained later; e.g. the integrands A�0 (x) and A�j;b (x) are the familar Atiyah-Singerintegrands orresponding to loal heat kernel supertraes of indued ellipti operators over losed manifolds.Even in the ase when the operator D is ellipti, this result was not known previously. Further, the formulaabove gives a method for omputing eta invariants of Dira-type operators on quotients of spheres by ompatgroup ations; these have been omputed previously only in some speial ases. We emphasize that everypart of the formula is expliitly omputable from loal information provided by the operator and manifold.Even the eta invariant of the operator DS+;bj on a sphere is alulated diretly from the prinipal symbol



THE EQUIVARIANT INDEX 3of the operator D at one point of a singular stratum. Examples show that all of the terms in the formulaabove are nontrivial.The de Rham operator provides an important example illustrating the omputability of the formula, yield-ing a new theorem expressing the equivariant Euler harateristi in terms of ordinary Euler harateristisof the strata of the group ation (Theorem 12).One of the primary motivations for obtaining an expliit formula for ind� (D) was to use it to produea basi index theorem for Riemannian foliations, thereby solving a problem that has been open sine the1980s. In fat the basi index theorem is a onsequene of the invariant index theorem orresponding to thetrivial representation �0. This theorem is stated below, with more details in Setion 6.Basi Index Theorem. The basi index is given by the formulaindb �DEb � = ZgM0�F A0;b (x) gjdxj+ rXj=1 � (Mj)� (Mj) = 12X� 1n� rank W � ��� �DS+;�j �+ h�DS+;�j ��ZfMj�F A�j;b (x) gjdxj;where the sum is over all omponents of singular strata and over all anonial isotropy bundles W � , only a�nite number of whih yield nonzero terms A�j;b.Several tehniques in this paper are new and have not been previously explored. First, the fat thatind� (D) is invariant under G-equivariant homotopies is used in a very spei� way, and we keep trak of thee�ets of these homotopies so that the formula for the index reets data oming from the original operatorand manifold. In Setion 4 we desribe a proess of blowing up, utting, and reassembling the G-manifoldinto what is alled the desingularization, whih also involves modifying the operator and vetor bundles nearthe singular strata as well. The result is a G-manifold that has less intriate struture and for whih theheat kernels are easier to evaluate. The key idea is to relate the loal asymptotis of the equivariant heatkernel of the original manifold to the desingularized manifold; at this stage the eta invariant appears througha diret alulation on the normal bundle to the singular stratum. More preisely, we ompute the loalontribution of the supertrae of a general onstant oeÆient equivariant heat operator in the neighborhoodof a singular point of an orthogonal group ation on a sphere. It is here that the equivariant index is relatedto a boundary value problem, whih explains the presene of eta invariants in the main theorem.Another new idea in this paper is the deomposition of equivariant vetor bundles over G-manifolds withone orbit type. A ruial step in the proof required the onstrution of a subbundle of an equivariant bundleover a G-invariant part of a stratum that is the minimal G-bundle deomposition that onsists of diret sumsof isotypial omponents of the bundle. We all this deomposition the �ne deomposition and de�ne it inSetion 2. A more detailed aount of this method will appear in [20℄.The relevant properties of the supertrae of the equivariant heat kernel are disussed in Setion 3. Weapply the heat kernel analysis, representation theory, and �ne deomposition to produe a heat kernelsplitting formula. This proess leads to a redution formula for the equivariant heat supertrae, from whihthe Equivariant Index Theorem 11 follows. Examples show that all the terms in the index formula are ingeneral nontrivial.We note that a reent paper of Gorokhovsky and Lott addresses this transverse index question on Rie-mannian foliations. Using a di�erent tehnique, they are able to prove a formula for the basi index of a basiDira operator that is distint from our formula, in the ase where all the in�nitesimal holonomy groups ofthe foliation are onneted tori and if Molino's ommuting sheaf is abelian and has trivial holonomy (see[18℄).We thank James Glazebrook, Efton Park and Igor Prokhorenkov for helpful disussions. The authorswould like to thank variously the Mathematishes Forshungsinstitut Oberwolfah, the Erwin Shr�odingerInternational Institute for Mathematial Physis (ESI), Vienna, the Department for Mathematial Sienes(IMF) at Aarhus University, the Centre de Reera Matem�atia (CRM), Barelona, and the Department ofMathematis at TCU for hospitality and support during the preparation of this work.2. The re�ned isotypial deomposition. Let X be a smooth Riemannian manifold on whih a ompatLie group G ats by isometries with single orbit type [H ℄ (see Setion 4). Let XH be the �xed point set of



4 J. BR�UNING, F. W. KAMBER, AND K. RICHARDSONH , and for � 2 �0 �XH�, let XH� denote the orresponding onneted omponent of XH . Let N = N (H)be the normalizer.De�nition 1. We denote X� = GXH� , and X� is alled a omponent of X relative to G.Remark 2. The spae X� is not neessarily onneted, but it is the inverse image of a onneted omponentof G�X = N�XH under the projetion X ! G�X . Also, note that X� = X� if there exists n 2 N suhthat nXH� = XH� . If X is a losed manifold, then there are a �nite number of omponents of X relative toG.We now introdue a deomposition of a G-bundle E ! X over a G-spae with single orbit type [H ℄. LetE� be the restrition EjXH� . For � : H ! U (W�) an irreduible unitary representation, let �n : H ! U (W�)be the irreduible representation de�ned by�n (h) = � �n�1hn� :We let E[�℄� ���XH� denote the [�℄-isotypial omponent of E over XH� , meaning that eah E[�℄�;x is the subspaeof Ex that is a diret sum of irreduible H-representation subspaes of type [�℄. We de�neEN�;[�℄;x = spannE[�n℄�;x : n 2 N and nXH� = XH� o :The N -orbits yield an N -bundle EN�;[�℄ over NXH� � XH , and a similar bundle may be formed over eahdistint NXH� , with � 2 �0 �XH�. Further, observe that sine eah bundle EN�;[�℄ is an N -bundle over NXH� ,it de�nes a unique G bundle EG�;[�℄.De�nition 3. The G-bundle EG�;[�℄ over the submanifold X� is alled a �ne omponent or the �neomponent of E ! X assoiated to (�; [�℄).If G�X is not onneted, one must onstrut the �ne omponents separately over eah X�. If E has�nite rank, then E may be deomposed as a diret sum of distint �ne omponents over eah X�. In anyase, EN�;[�℄ is a �nite diret sum of isotypial omponents over eah XH� .De�nition 4. The diret sum deomposition of EjX� into subbundles Eb that are �ne omponents EG�;[�℄for some [�℄, written EjX� =Mb Eb ;is alled the re�ned isotypial deomposition (or �ne deomposition) of EjX� .In the ase where G�X is onneted, the group �0 (N�H) ats transitively on the onneted omponents�0 �XH�, and thus X� = X . We omment that if [�;W� ℄ is an irreduible H-representation present in Exwith x 2 XH� , then E[�℄x is a subspae of a distint Ebx for some b. The subspae Ebx also ontains E[�n℄x forevery n suh that nXH� = XH� .Remark 5. Observe that by onstrution, for x 2 XH� the multipliity and dimension of eah [�℄ presentin a spei� Ebx is independent of [�℄. Thus, E[�n℄x and E[�℄x have the same multipliity and dimension ifnXH� = XH� .Remark 6. The advantage of this deomposition over the isotypial deomposition is that eah Eb is aG-bundle de�ned over all of X�, and the isotypial deomposition may only be de�ned over XH� .De�nition 7. Now, let E be a G-equivariant vetor bundle over X , and let Eb be a �ne omponent as inDe�nition 3 orresponding to a spei� omponent X� = GXH� of X relative to G. Suppose that anotherG-bundle W over X� has �nite rank and has the property that the equivalene lasses of Gy-representationspresent in Eby; y 2 X� exatly oinide with the equivalene lasses of Gy-representations present in Wy, andthat W has a single omponent in the �ne deomposition. Then we say that W is adapted to Eb.Lemma 8. In the de�nition above, if another G-bundle W over X� has �nite rank and has the propertythat the equivalene lasses of Gy-representations present in Eby; y 2 X� exatly oinide with the equivalenelasses of Gy-representations present in Wy, then it follows that W has a single omponent in the �ne



THE EQUIVARIANT INDEX 5deomposition and hene is adapted to Eb. Thus, the last phrase in the orresponding sentene in the abovede�nition is superuous.Proof. Suppose that we hoose an equivalene lass [�℄ of H-representations present in Wx, x 2 XH� . Let[�0℄ be any other equivalene lass; then, by hypothesis, there exists n 2 N suh that nXH� = XH� and[�0℄ = [�n℄. Then, observe that nW [�℄x = W [�n℄nx = W [�n℄x , with the last equality oming from the rigidity ofirreduible H-representations. Thus, W is ontained in a single �ne omponent, and so it must have a singleomponent in the �ne deomposition. �In what follows, we show that there are naturally de�ned �nite-dimensional vetor bundles that areadapted to any �ne omponents. We enumerate the irreduible representations ���j ; V�j �	j=1;2;::: of G. Let[�;W� ℄ be any irreduible H-representation. Let G�HW� be the orresponding homogeneous vetor bundleover the homogeneous spae G�H . Then the L2-setions of this vetor bundle deompose into irreduibleG-representations. In partiular, let ��j0 ; V�j0 � be the equivalene lass of irreduible representations that ispresent in L2 (G�H;G�H W�) and that has the lowest index j0. Then Frobenius reiproity implies0 6= HomG �V�j0 ; L2 (G�H;G�H W�)� �= HomH �VRes(�j0 );W�� ;so that the restrition of �j0 to H ontains the H-representation [�℄. Now, for a omponent XH� of XH ,with X� = GXH� its omponent in X relative to G, the trivial bundleX� � V�j0is a G-bundle (with diagonal ation) that ontains a nontrivial �ne omponent W�;[�℄ ontaining XH� ��V�j0 �[�℄.De�nition 9. We allW�;[�℄ ! X� the anonial isotropy G-bundle assoiated to (�; [�℄) 2 �0 �XH��bH . Observe that W�;[�℄ depends only on the enumeration of irreduible representations of G, the irreduibleH-representation [�℄ and the omponent XH� .Lemma 10. Given any G-bundle E ! X and any �ne omponent Eb of E over some X� = GXH� , thereexists a anonial isotropy G-bundle W�;[�℄ adapted to Eb ! X�.3. Equivariant heat kernel and equivariant index. We now review some properties of the equivariantindex and equivariant heat kernel that are known to experts in the �eld (see [2℄, [10℄, [11℄, [5℄). With notationas in the introdution, let E = E+ � E� be a graded, G-equivariant vetor bundle over M . We onsider a�rst order G-equivariant di�erential operator D+ : � (M;E+) ! � (M;E�) whih is transversally ellipti,and let D� be the formal adjoint of D+. The restrition D�;� = D�j�(M;E)� behaves in a similar way toan ellipti operator. Let fX1; :::; Xrg be an orthonormal basis of the Lie algebra of G. Let LXj denote theindued Lie derivative with respet to Xj on setions of E, and let C =Pj L�XjLXj be the Casimir operatoron setions of E. Let �� � 0 be the eigenvalue of C assoiated to the representation type [�℄. The followingargument an be seen in some form in [2℄. Given a setion � 2 � (M;E+)�, we haveD�D+� = �D�D+ + C � ����:Then D�D++C��� is self-adjoint and ellipti and has �nite dimensional eigenspaes onsisting of smoothsetions. The [�℄-part K [�℄ of the heat kernel of e�tD�D+ is the same as the [�℄-part of the heat kernelK (t; �; �) of e�t(D�D++C���). One an show thatind� (D) = Zx2M Zg2G str g �K �t; g�1x; x� �� (g) dg jdxj ; (2)where �� (g) Sine the heat kernel K hanges smoothly with respet to G-equivariant deformations of themetri and of the operator D and the right hand side is an integer, we see that ind� (D) is stable under suhhomotopies of the operator D+ through G-equivariant transversally ellipti operators. This implies that theindies indG (D) and indg (D) mentioned in the introdution depend only on the G-equivariant homotopylass of the prinipal transverse symbol of D+. Sine the integral above is independent of t, we may omputeits asymptotis as t! 0+ to determine ind� (D).



6 J. BR�UNING, F. W. KAMBER, AND K. RICHARDSONOne important idea is that the asymptotis of K �t; g�1x; x� as t ! 0 are ompletely determined by theoperator's loal expression along the minimal geodesi onneting g�1x and x, if g�1x and x are suÆientlylose together. If the distane between g�1x and x is bounded away from zero, there is a onstant  > 0 suhthat K �t; g�1x; x� = O �e�=t� as t! 0. For these reasons, it is lear that the asymptotis of the supertraeind� (D) are loally determined over spaes of orbits in M , meaning that the ontribution to the index is asum of t0-asymptotis of integrals of RU RG str �g �K �t; g�1w;w�� �� (g) dg jdwj over a �nite olletion ofsaturated sets U � M that are unions of orbits that interset a neighborhood of a point of M . However,the integral of the t0 asymptoti oeÆient of RG str �g �K �t; g�1w;w���� (g) dg over all of M is not theindex, and the integral of the t0 asymptoti oeÆient of RM str �g �K �t; g�1w;w�� dvolM over all of G isnot the index. Thus, the integrals over M and G may not be separated when omputing the loal indexontributions. In partiular, the singular strata of the group ation may not be ignored.4. Desingularizing along a singular stratum. In the �rst part of this setion, we will desribe somestandard results from the theory of Lie group ations (see [9℄, [25℄). Suh G-manifolds are strati�ed spaes,and the strati�ation an be desribed expliitly. As above, G is a ompat Lie group ating on a smooth,onneted, losed manifold M . We assume that the ation is e�etive, meaning that no g 2 G �xes all of M .(Otherwise, replae G with G� fg 2 G : gx = x for all x 2Mg.) Choose a Riemannian metri for whih Gats by isometries; average the pullbaks of any �xed Riemannian metri over the group of di�eomorphismsto obtain suh a metri.For x 2M , the isotropy or stabilizer subgroup Gx < G is de�ned to be fg 2 G : gx = xg. The orbit Ox ofa point x is de�ned to be fgx : g 2 Gg. Sine Gxg = gGxg�1, the onjugay lass of the isotropy subgroupof a point is �xed along an orbit.On any suh G-manifold, the onjugay lass of the isotropy subgroups along an orbit is alled the orbittype. On any suh G-manifold, there are a �nite number of orbit types, and there is a partial order on theset of orbit types. Given subgroups H and K of G, we say that [H ℄ � [K℄ if H is onjugate to a subgroup ofK, and we say [H ℄ < [K℄ if [H ℄ � [K℄ and [H ℄ 6= [K℄. We may enumerate the onjugay lasses of isotropysubgroups as [G0℄ ; :::; [Gr℄ suh that [Gi℄ � [Gj ℄ implies that i � j. It is well-known that the union of theprinipal orbits (those with type [G0℄) form an open dense subsetM0 of the manifoldM , and the other orbitsare alled singular. As a onsequene, every isotropy subgroup H satis�es [G0℄ � [H ℄. Let Mj denote theset of points of M of orbit type [Gj ℄ for eah j; the set Mj is alled the stratum orresponding to [Gj ℄. If[Gj ℄ � [Gk℄, it follows that the losure of Mj ontains the losure of Mk. A stratum Mj is alled a minimalstratum if there does not exist a stratum Mk suh that [Gj ℄ < [Gk ℄ (equivalently, suh that Mk (Mj). Itis known that eah stratum is a G-invariant submanifold of M , and in fat a minimal stratum is a losed(but not neessarily onneted) submanifold. Also, for eah j, the submanifold M�j := S[Gk℄�[Gj ℄Mk is alosed, G-invariant submanifold. To prove the main theorem of this paper, we deompose the G-manifoldusing tubular neighborhoods of the minimal strata.We will now onstrut a new G-manifold N that has a single stratum (of type [G0℄) and that is a branhedover of M , branhed over the singular strata. A distinguished fundamental domain of M0 in N is alledthe desingularization of M and is denoted fM . We also refer to [1℄ for their reent related explanationof this desingularization (whih they all resolution). To simplify this disussion, we will assume that theodimension of eah singular stratum is at least two.A sequene of modi�ations is used to onstrut N and fM � N . Let Mj be a minimal stratum. LetT" (Mj) denote a tubular neighborhood of radius " around Mj , with " hosen suÆiently small so that allorbits in T" (Mj) nMj are of type [Gk℄, where [Gk ℄ < [Gj ℄. LetN1 = (M n T" (Mj)) [�T"(Mj ) (M n T" (Mj))be the manifold onstruted by gluing two opies of (M n T" (Mj)) smoothly along the boundary. Sine theT" (Mj) is saturated (a union of G-orbits), the G-ation lifts to N1. Note that the strata of the G-ation onN1 orrespond to strata inM nT" (Mj). If Mk\ (M n T" (Mj)) is nontrivial, then the stratum orrespondingto isotropy type [Gk℄ on N1 isN1k = (Mk \ (M n T" (Mj))) [(Mk\�T"(Mj )) (Mk \ (M n T" (Mj))) :



THE EQUIVARIANT INDEX 7Thus, N1 is a G-manifold with one fewer stratum than M , and M nMj is di�eomorphi to one opy of(M n T" (Mj)), denoted fM1 in N1. In fat, N1 is a branhed double over of M , branhed over Mj . If N1has one orbit type, then we set N = N1 and fM = fM1. If N1 has more than one orbit type, we repeat theproess with the G-manifold N1 to produe a new G-manifold N2 with two fewer orbit types than M andthat is a 4-fold branhed over of M . Again, fM2 is a fundamental domain of fM1 n fa minimal stratumg,whih is a fundamental domain of M with two strata removed. We ontinue until N = Nr is a G-manifoldwith all orbits of type [G0℄ and is a 2r-fold branhed over of M , branhed over M nM0. We set fM = fMr,whih is a fundamental domain of M0 in N .Further, one may independently desingularize M�j , sine this submanifold is itself a losed G-manifold.If M�j has more than one onneted omponent, we may desingularize all omponents simultaneously. Theisotropy type of all points of℄M�j is [Gj ℄, and℄M�j�G is a smooth (open) manifold.We nowmore preisely desribe the desingularization. IfM is equipped with aG-equivariant, transversallyellipti di�erential operator on setions of an equivariant vetor bundle overM , then this data may be pulledbak to the desingularization fM . Given the bundle and operator over N j , simply form the invertible doubleof the operator on N j+1, whih is the double of the manifold with boundary N j n T" (�), where � is aminimal stratum on N j .Spei�ally, we modify the metri equivariantly so that there exists " > 0 suh that the tubular neighbor-hood B2"� of � in N j is isometri to a ball of radius 2" in the normal bundle N�. In polar oordinates,this metri is ds2 = dr2 + d�2 + r2d�2�, with r 2 (0; 2"), d�2 is the metri on �, and d�2� is the metri onS (N��), the unit sphere in N��; note that d�2� is isometri to the Eulidean metri on the unit sphere. Wesimply hoose the horizontal metri on B2"� to be the pullbak of the metri on the base �, the �ber metrito be Eulidean, and we require that horizontal and vertial vetors be orthogonal. We do not assume thatthe horizontal distribution is integrable.Next, we replae r2 with f (r) = [~g (r)℄2 in the expression for the metri, where ~g is de�ned so that themetri is ylindrial for small r.In our desription of the modi�ation of the di�erential operator, we will need the notation for the(external) produt of di�erential operators. Suppose that F ,! X �! B is a �ber bundle that is loallya metri produt. Given an operator A1;x : � ���1 (x) ; E1� ! � ���1 (x) ; F1� that is loally given as adi�erential operator A1 : � (F;E1) ! � (F; F1) and A2 : � (B;E2) ! � (B;F2) on Hermitian bundles, wehave the produtA1;x �A2 : � (X; (E1 �E2)� (F1 � F2))! � (X; (F1 �E2)� (E1 � F2))as in K-theory (see, for example, [2℄, [27, pp. 384�℄), whih is used to de�ne the Thom Isomorphism invetor bundles.Let D = D+ : � �N j ; E+� ! � �N j ; E�� be the given �rst order, transversally ellipti, G-equivariantdi�erential operator. Let � be a minimal stratum of N j . Here we assume that � has odimension at leasttwo. We modify the metris and bundles equivariantly so that there exists " > 0 suh that the tubularneighborhood B" (�) of � in M is isometri to a ball of radius " in the normal bundle N�, and so that theG-equivariant bundle E over B" (�) is a pullbak of the bundle Ej� ! �. We assume that near �, after aG-equivariant homotopy D+ an be written on B" (�) loally as the produtD+ = (DN �D�)+ ;where D� is a transversally ellipti, G-equivariant, �rst order operator on the stratum �, and DN is aG-equivariant, �rst order operator on B" (�) that is ellipti on the �bers. If r is the distane from �, wewrite DN in polar oordinates as DN = Z �rE�r + 1rDS�where Z = �i� (DN ) (�r) is a loal bundle isomorphism and the map DS is a purely �rst order operatorthat di�erentiates in the unit normal bundle diretions tangent to Sx�.On �rst glane, the produt form above appears to be restritive, but as we show in [12℄, the produtassumption is satis�ed by most operators under fairly weak topologial onditions on the stratum.We modify the operator DN on eah Eulidean �ber of N� �! � by onverting the onial metri toa ylindrial metri via a radial blow-up; the result is a G-manifold fM j with boundary �fM j , a G-vetor



8 J. BR�UNING, F. W. KAMBER, AND K. RICHARDSONbundle eEj , and the indued operator eDj , all of whih loally agree with the original ounterparts outsideB" (�). We may double fM j along the boundary �fM j and reverse the hirality of eEj as desribed in [8,Ch. 9℄. Doubling produes a losed G-manifold N j , a G-vetor bundle Ej , and a �rst-order transversallyellipti di�erential operator Dj . This proess may be iterated until all orbits of the resulting G-manifold areprinipal.In the tehnial proof of the main theorem in [12℄, we arefully trak the hanges to the heat kernel integral(2) throughout the desingularization proess. When the radial blowup ours, the manifold is replaed witha manifold with boundary and nonloal boundary onditions; this is the reason that eta invariants appearin the formula for the equivariant index multipliities. In spite of this, every part of the formula is expliitlyomputable from the prinipal transverse symbol of the operator restrited to small saturated neighborhoods.The ruial formula is as follows. In alulating the small t asymptotis ofZ strK (t; zp; zp)� = Z str (Et (D)�) (zp; zp) ;with Et (D)� = exp (�tD�D)�, it suÆes to alulate the right hand side of the formula above over a smalltubular neighborhood B" (U) � M of a saturated open set U � �� � � in a most singular stratum. Wethen sum over �ne omponents b 2 B (see De�nition 3), using the heat kernel oming from the blown upmanifold B̂" (U). As t! 0, ZB"(U) strK (t; zp; zp)� � ZB̂"(U) strK (t; zp; zp)�+Xb 12nbrank (W b) ��� �DS+;b�+ h �DS+;b�� Zp2U strKb� (t; p; p)� ; (3)with strKb� (t; p; p)� = str �Et �1b 
D���� (p; p) is the loal heat supertrae orresponding to the operator1b
D� on � �U;W b 
E���. The eta invariant � �DS+;b� is the equivariant eta invariant of DS+ restritedto isotropy representation types present in W b; sine the eigenvalues of DS+ are integers, this quantity isonstant over omponents of the stratum relative to G. Similarly, the dimension h �DS+;b� of the kernel ofDS+ restrited to those setions is loally onstant.5. The Equivariant Index Theorem. To evaluate ind� (D) as in Equation (2), we apply formula (3)repeatedly, starting with a minimal stratum and then applying to eah double of the equivariant desingular-ization. After all the strata are blown up and doubled, all of the resulting manifolds have a single stratum,and the G-manifold is a �ber bundle with homogeneous �bers. We obtain the following result. In whatfollows, if U denotes an open subset of a stratum of the ation of G on M , U 0 denotes the equivariantdesingularization of U , and eU denotes the fundamental domain of U inside U 0, as in Setion 4. We also referthe reader to De�nitions 1 and 9. For the sake of simpliity of exposition, we assume that the odimensionof eah stratum is at least two.Theorem 11. (Equivariant Index Theorem) Let M0 be the prinipal stratum of the ation of a ompat Liegroup G on the losed Riemannian M , and let ��1 ,...,��r denote all the omponents of all singular stratarelative to G. Let E !M be a Hermitian vetor bundle on whih G ats by isometries. Let D : � (M;E+)!� (M;E�) be a �rst order, transversally ellipti, G-equivariant di�erential operator. We assume that neareah ��j , D is G-homotopi to the produt DN �D�j , where DN is a G-equivariant, �rst order di�erentialoperator on B"� that is ellipti and has onstant oeÆients on the �bers and D�j is a global transversallyellipti, G-equivariant, �rst order operator on the ��j . In polar oordinatesDN = Zj �rE�r + 1rDSj � ;where r is the distane from ��j , where Zj is a loal bundle isometry (dependent on the spherial parameter),the map DSj is a family of purely �rst order operators that di�erentiates in diretions tangent to the unit



THE EQUIVARIANT INDEX 9normal bundle of �j . Then the equivariant index ind� (D) is given by the formulaind� (D) = ZG�gM0 A�0 (x) gjdxj + rXj=1 � ���j� ;� ���j� = 12dimV� Xb 1nbrank W b ��� �DS+;bj �+ h�DS+;bj ��ZG�g��j A�j;b (x) gjdxj ;where the sum is over all anonial isotropy bundles W b, a �nite number of whih yield nonzero A�j;b, andwhere(1) A�0 (x) is the Atiyah-Singer integrand, the loal supertrae of the ordinary heat kernel assoiated tothe ellipti operator indued from D0 (blown-up and doubled from D) on the quotient M 00�G, wherethe bundle E is replaed by the �nite-dimensional spae of setions of type � over an orbit.(2) Similarly, A�i;b is the loal supertrae of the ordinary heat kernel assoiated to the ellipti operatorindued from (1
D�j )0 (blown-up and doubled from 1 
 D�j , the twist of D�j by the anonialisotropy bundle W b ! ��j ) on the quotient �0�j�G, where the bundle is replaed by the spae ofsetions of type � over eah orbit.(3) � �DS+;bj � is the eta invariant of the operator DS+j indued on any unit normal sphere Sx��j ,restrited to setions of isotropy representation types in W bx, whih is onstant on ��j .(4) h�DS+;bj � is the dimension of the kernel of DS+;bj , restrited to setions of isotropy representationtypes in W bx , again onstant on on ��j .(5) nb is the number of di�erent inequivalent Gx-representation types present in eah W bx, x 2 ��j .We now give a simple appliation of our result. It is well known that if M is a Riemannian manifold andf : M !M is an isometry that is homotopi to the identity, then the Euler harateristi of M is the sumof the Euler harateristis of the �xed point sets of f . We generalize this result as follows. We onsider thede Rham operator d+ d� : 
even (M)! 
odd (M)on a G-manifold, and the invariant index of this operator is the equivariant Euler harateristi �G (M),the Euler harateristi of the ellipti omplex onsisting of invariant forms. If G is onneted and theEuler harateristi is expressed in terms of its �-omponents, only the invariant part �G (M) = ��0 (M)appears. This is a onsequene of the homotopy invariane of de Rham ohomology. Thus �G (M) = � (M)for onneted Lie groups G. In general the Euler harateristi is a sum of omponents� (M) =X[�℄ �� (M) ;where �� (M) is the alternating sum of the dimensions of the [�℄-parts of the ohomology groups (or spaes ofharmoni forms). Sine the onneted omponentG0 of the identity in G ats trivially on the harmoni forms,the only nontrivial omponents �� (M) orrespond to representations indued from unitary representationsof the �nite group G�G0.Using Theorem 11 and the formula ind� (d+ d�) = 1dimV��� (M), we obtain the following result.Theorem 12. Let M be a ompat G-manifold, with G a ompat Lie group and prinipal isotropy subgroupHpr. Let M0 denote the prinipal stratum, and let ��1 ,...,��r denote all the omponents of all singularstrata relative to G. Then�� (M) = �� (G�Hpr)� (G�M;G�singular strata)+Xj �� �G�Gj ;LNj�� �G���j ; G�lower strata� ;where LNj is the orientation line bundle of normal bundle of the stratum omponent ��j .In the formula above, the � (X;Y ) refers to the relative Euler harateristi (see [12℄ for details andexamples).



10 J. BR�UNING, F. W. KAMBER, AND K. RICHARDSON6. The Basi Index Theorem for Riemannian foliations. The ontent of this setion is disussed andproved in detail in [13℄. LetM be an n-dimensional, losed, onneted manifold, and let F be a odimension qfoliation onM . Let Q denote the quotient bundle TM�TF overM . Suh a foliation is alled a Riemannianfoliation if it is endowed with a metri on Q (alled the transverse metri) that is holonomy-invariant ; thatis, the Lie derivative of that transverse metri with respet to every leafwise tangent vetor is zero. Themetri on Q an always be extended to a Riemannian metri on M ; the extended metri restrited to thenormal bundle NF = (TF)? agrees with the transverse metri via the isomorphism Q �= NF . We referthe reader to [28℄, [31℄, and [32℄ for introdutions to the geometri and analyti properties of Riemannianfoliations.Let M be the transverse orthonormal frame bundle of (M;F), and let p be the natural projetion p :M ! M . The Bott onnetion is a natural onnetion on Q that indues a onnetion on M (see [28,pp. 80�℄ ). The manifold M is a prinipal O(q)-bundle over M . Given x̂ 2 M , let x̂g denote the well-de�ned right ation of g 2 G = O(q) applied to x̂. Assoiated to F is the lifted foliation bF on M ; thedistribution T bF is the horizontal lift of TF . By the results of Molino (see [28, pp. 105-108, p. 147�℄ ), thelifted foliation is transversally parallelizable (meaning that there exists a global basis of the normal bundleonsisting of vetor �elds whose ows preserve bF), and the losures of the leaves are �bers of a �ber bundleb� : M ! W . The manifold W is smooth and is alled the basi manifold. Let bF denote the foliation of Mby leaf losures of F , whih is shown by Molino to be a �ber bundle. The leaf losure spae of (M;F) isdenoted W =M�F = W�G. p�E E& #O (q) ,! �M; bF� b��! W#p 	 #E ! (M;F) ��! WEndow (M; bF) with the transverse metri gQ� gO(q), where gQ is the pullbak of metri on Q, and gO(q)is the standard, normalized, biinvariant metri on the �bers. We require that vertial vetors are orthogonalto horizontal vetors. This transverse metri gives eah of (M; bF) and (M; bF) the struture of a Riemannianfoliation. The transverse metri on (M; bF) indues a well{de�ned Riemannian metri on W . The ation ofG = O(q) on M indues an isometri ation on W .For eah leaf losure bL 2 bF and bx 2 bL, the restrited map p : bL ! L is a prinipal bundle with �berisomorphi to a subgroup Hbx � O(q), whih is the isotropy subgroup at the point b�(x̂) 2 W . The onjugaylass of this group is an invariant of the leaf losure L, and the strata of the group ation on W orrespondto the strata of the leaf losures of (M;F).A basi form over a foliation is a global di�erential form that is loally the pullbak of a form on the leafspae; more preisely, � 2 
� (M) is basi if for any vetor tangent to the foliation, the interior produtwith both � and d� is zero. A basi vetor �eld is a vetor �eld V whose ow preserves the foliation. In aRiemannian foliation, near any point it is possible to hoose a loal orthonormal frame of Q represented bybasi vetor �elds.A vetor bundle E ! (M;F) that is foliated may be endowed with a basi onnetion rE (one for whihthe assoiated urvature forms are basi { see [21℄). An example of suh a bundle is the normal bundle Q.Given suh a foliated bundle, a setion s 2 � (E) is alled a basi setion if for every X 2 TF , rEXs = 0.Let �b (E) denote the spae of basi setions of E. Note that the basi setions of Q orrespond to basinormal vetor �elds.An example of another foliated bundle over a omponent of a stratumMj is the bundle de�ned as follows.Let E ! M be any foliated vetor bundle. Let ��j = b� �p�1 (Mj)� be the orresponding stratum on thebasi manifold W , and let W � ! ��j be a anonial isotropy bundle (De�nition 9). Consider the bundleb��W � 
 p�E ! p�1 (Mj), whih is foliated and basi for the lifted foliation restrited to p�1 (Mj). Thisde�nes a new foliated bundle E� !Mj by letting E�x be the spae of O (q)-invariant setions of b��W � 
p�Erestrited to p�1 (x). We all this bundle the W � -twist of E !Mj .



THE EQUIVARIANT INDEX 11Suppose that E is a foliated C l (Q) module with basi C l (Q) onnetion rE over a Riemannian foliation(M;F). Then it an be shown that Cli�ord multipliation by basi vetor �elds preserves �b (E), and wehave the operator DEb : �b �E+�! �b �E��de�ned for any loal orthonormal frame fe1; :::; eqg for Q byDEb = qXj=1  (ej)rEej �������b(E) :Then DEb an be shown to be well-de�ned and is alled the basi Dira operator orresponding to the foliatedC l (Q) module E (see [17℄). We note that this operator is not symmetri unless a zeroth order term involvingthe mean urvature is added; see [22℄, [23℄, [24℄, [17℄, [30℄, [19℄, [13℄ for more information regarding essentialself-adjointness of the modi�ed operator and its spetrum. In the formulas below, any lower order termsthat preserve the basi setions may be added without hanging the index.De�nition 13. The analyti basi index of DEb isindb �DEb � = dimkerDEb � dim ker �DEb �� :It is well-known that these dimensions are �nite (see [16℄, [24℄, [15℄, [13℄), and it is possible to identifyindb �DEb � with the invariant index of a �rst order, O (q)-equivariant di�erential operator bD over a vetorbundle over the basi manifold W . By applying the equivariant index theorem (Theorem 11), we obtain thefollowing formula for the index. In what follows, if U denotes an open subset of a stratum of (M;F), U 0denotes the desingularization of U very similar to that in Setion 4, and eU denotes the fundamental domainof U inside U 0.Theorem 14. (Basi Index Theorem for Riemannian foliations [13℄) Let M0 be the prinipal stratum ofthe Riemannian foliation (M;F), and let M1, ... , Mr denote all the omponents of all singular strata,orresponding to O (q)-isotropy types [G1℄, ... ,[Gr℄ on the basi manifold. With notation as in the disussionabove, we haveindb �DEb � = ZgM0�F A0;b (x) gjdxj+ rXj=1 � (Mj)� (Mj) = 12X� 1n� rank W � ��� �DS+;�j �+ h�DS+;�j ��ZfMj�F A�j;b (x) gjdxj;where the sum is over all omponents of singular strata and over all anonial isotropy bundles W � , only a�nite number of whih yield nonzero terms A�j;b, and where(1) A0;b (x) is the Atiyah-Singer integrand, the loal supertrae of the ordinary heat kernel assoiated tothe ellipti operator indued from gDEb (a desingularization of DEb ) on the quotient fM0�F, where thebundle E is replaed by the spae of basi setions of over eah leaf losure;(2) � �DS+;bj � and h�DS+;bj � are de�ned in a similar way as in Theorem 11, using a deompositionDEb = DN �DMj at eah singular stratum;(3) A�j;b (x) is the loal supertrae of the ordinary heat kernel assoiated to the ellipti operator induedfrom �1
DMj �0 (blown-up and doubled from 1
DMj , the twist of DMj by the anonial isotropybundle W � ) on the quotient fMj�F, where the bundle is replaed by the spae of basi setions overeah leaf losure; and(4) n� is the number of di�erent inequivalent Gj-representation types present in a typial �ber of W � .Referenes[1℄ P. Albin and R. Melrose, Equivariant ohomology and resolution, preprint arXiv:0907.3211v2 [math.DG℄.[2℄ M. F. Atiyah, Ellipti operators and ompat groups, Leture Notes in Mathematis 401, Berlin: Springer-Verlag, 1974.[3℄ M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spetral asymmetry and Riemannian geometry. I, Math. Pro. Camb. Phil.So. 77 (1975), 43{69.[4℄ M. F. Atiyah and G. B. Segal, The index of ellipti operators: II, Ann. of Math. (2) 87(1968), 531{545.
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