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REGULARITY AND INDEX THEORY

FOR DIRAC-SCHRÖDINGER SYSTEMS

WITH LIPSCHITZ COEFFICIENTS

WERNER BALLMANN, JOCHEN BRÜNING, AND GILLES CARRON

Dedicated to Robert Seeley on the occasion of his 75. birthday.

Abstract. Dirac-Schrödinger systems play a central role when
modeling Dirac bundles and Dirac-Schrödinger operators near the
boundary, along ends or near other singularities of Riemannian
manifolds. In this article we develop the Fredholm theory of Dirac-
Schrödinger systems with Lipschitz coefficients.

Introduction

A Dirac system d consists of a bundle H → R+ of separable complex
Hilbert spaces together with a differential operator, its Dirac operator

(0.1) D = γ(∂ + A),

where γ = (γt)t∈R+
is a family of unitary operators on the fibers Ht of

H with γ−1
t = −γt, (At)t∈R+

is a family of self-adjoint operators on the
fibers Ht with discrete spectrum and anti-commuting with γ, and ∂ is
a metric connection on H derived from these data. The Dirac operator
is symmetric on sections with compact support in (0,∞).

The notion of Dirac system is traditionally connected with the finite
dimensional versions of (0.1) which derived from separating variables
in Dirac’s original equation describing the relativistic electron. A very
influential discussion of an infinite dimensional case was carried out
in the celebrated work of Atiyah, Patodi, and Singer [APS], where
manifolds with cylindrical ends are considered. More generally, Dirac
systems arise in the study of Dirac operators on Dirac bundles in the
sense of Gromov-Lawson when studying boundary value problems or
ends with special geometric features. This is the motivation underlying
the investigation of Dirac systems we present here.
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In many situations encountered in geometry, the data of the relevant
Dirac system do not depend smoothly on the parameter t ∈ R+. For
example, if M is a complete, non-compact Riemannian manifold with
finite volume and pinched negative sectional curvature, then the Buse-
mann functions associated to the ends of the manifold are only C2, so
that the tangent and normal bundles of their level surfaces are only C1.
This is the situation studied in [BB1] and [BB2]. The natural setup
seems to be Dirac systems with (locally) Lipschitz coefficients as we
consider them here. The present work leads to generalizations of the
results in [BB1] and [BB2]. We will discuss this in a future publication.

After [APS], where the so-called APS-projection is introduced, it
became customary to state boundary conditions for Dirac systems in
terms of orthogonal projections in H = H0. The regularity theory of
boundary conditions defined by orthogonal projections in H plays a
central role in [BL2], see for example Theorem 4.3 in [BL2], an im-
portant predecessor of this article regarding the regularity theory of
boundary conditions.

The first main contribution of the present work consists in a new way
of looking at boundary value problems for Dirac systems. LetD0 be the
restriction of D to Lipschitz sections of H which vanish at t = 0. Then
D0 is symmetric and contained in Dmax := D∗

0, the maximal extension
of D0, with domain Dmax. Denote by Hs, s ∈ R, the domain of the
operator (I+|A0|2)s/2. For I ⊂ R, denote by QI the spectral projection
of A0 associated to I ∩ specA0 and set Hs

I := QI(H
s). We show that

the space Ȟ := {σ(0) : σ ∈ Dmax} of admissible initial values is the
hybrid Sobolev space

(0.2) Ȟ = H
1/2
(−∞,0] ⊕H

−1/2
(0,∞).

This leads us to say that a boundary value problems or a boundary
condition for D is a closed subspace of Ȟ. By (0.2), the topology
of the space Ȟ is a mixture of the topologies of the spaces H1/2 and
H−1/2 and is therefore not compatible with the topology of H or the
Sobolev spaces Hs, which causes considerable technical problems when
discussing boundary value problems given by projections.

Our first observation is that the closed extensions of D0 are precisely
the operators DB,max with domain

(0.3) DB,max := {σ ∈ Dmax : σ(0) ∈ B},
given by boundary conditions B ⊂ Ȟ as defined above. We show this in
our discussion of constant coefficient Dirac systems (Proposition 1.50),
but the same arguments also apply in the case of Dirac systems with
Lipschitz coefficients, cf. Theorem B below. This characterization of
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closed extensions of D0 is a first confirmation that our way of defining
boundary value problems is the appropriate one.

The adjoint operator, D∗
B,max, arises from the boundary form

(Dmaxσ1, σ2)L2(H) − (σ1, Dmaxσ2)L2(H) = 〈σ1(0), γ0σ2(0)〉H
=: ω(σ1(0), σ2(0)),

(0.4)

a non-degenerate skew-Hermitian form on Ȟ . We show that

(0.5) D∗
B,max = DBa,max,

where Ba denotes the annihilator of B with respect to ω.
With H1

loc(d) the natural Sobolev space associated to d, we show an
important regularity property of Dmax,

(0.6) Dmax ∩H1
loc(d) = {σ ∈ Dmax : σ(0) ∈ H1/2}.

Consequently we say that a boundary value problem B for D is regular
if B ⊂ H1/2. We say that a boundary value problem B is elliptic if
B and its adjoint boundary value problem Ba are both regular. We
prove next that elliptic boundary conditions coincide with the bound-
ary conditions introduced in [BäB] (Proposition 1.65).

We say that a boundary condition B is self-adjoint if B = Ba. By
definition, a self-adjoint boundary condition is elliptic if it is regular.
In one of our main results on boundary value problems we character-
ize elliptic self-adjoint boundary conditions (Theorem 1.83 and Corol-
lary 1.84). Part of this characterization is the following result.

Theorem A. Let H± := {x ∈ H : iγx = ±x}. Then Ȟ contains an
elliptic self-adjoint boundary condition if and only if the restriction A+

0

of A0 to H+ is a Fredholm operator to H− (in general unbounded) with
index indA+

0 = 0.

Let d = ((Ht), (At), (γt)) be a Dirac system with Lipschitz coeffi-
cients, and denote by d0 the Dirac system with constant coefficients
(H0, A0, γ0) and associated Dirac operator D0. Our second main con-
tribution to Dirac systems is the regularity theory for Dirac systems
with Lipschitz coefficients. The first part of our work in this direc-
tion is concerned with the regularity theory of the maximal domain
(Theorem 2.29):

Theorem B. Let Dmax and D0
max be the domains of the maximal ex-

tension of D and D0, respectively. If σ ∈ L2(H) has compact support,
then σ ∈ Dmax if and only if σ ∈ D0

max.

This result underlies the asserted equalities in (0.2) and (0.6) above
which we show for constant coefficients first and then extend to Lip-
schitz coefficients, by Theorem B.



4 WERNER BALLMANN, JOCHEN BRÜNING, AND GILLES CARRON

For a satisfactory analysis of the index theory of Dirac systems it is
necessary to consider extended solutions. This goes back to the work
of Atiyah, Patodi, and Singer in [APS]. Here we rely on the approach
of the third author and his related notion of non-parabolicity, compare
[Ca1] and [Ca2]. The domain of the corresponding extended Dirac
operator Dext is denoted W , the operator and subdomain associated to
a boundary condition B by DB,ext and WB, respectively.

In the second part of our work on the regularity theory of Dirac
systems we study the space of Cauchy data of the spaces kerDmax

and kerDext. Before we formulate our results in this direction, some
comments seem in order. Let M be a smooth compact manifold with
boundary N and E → M be a smooth Hermitian vector bundle. Let
D : C∞(M,E)→ C∞(M,E) be an elliptic pseudo-differential operator
of order one. In [Ca, Se], A. Calderón and R. Seeley studied the space
of Cauchy data of kerD. Let Cs be the space of such data which belong
to the Sobolev space Hs+1/2(M,E). By the Trace Theorem, Cs is a sub-
space of Hs(N,E). Calderón and Seeley showed that there is a pseudo-
differential projector P in Hs(N,E) (of order 0) onto Cs and that the
principal symbol of P is the projection onto the positive eigenspace
of a certain operator derived from the symbol of D 1. The projection
P is obtained with a single layer potential and is not the orthogonal
projection onto the L2-closure of Cs. However, B. Booß-Bavnbek and
K. Wojciechowski remarked that the L2-orthogonal projection has the
same properties, see Lemma 12.8 in [BW]. Our result for Dirac systems
with Lipschitz coefficients (and its adaptation to manifolds in Chapter
5) is a generalization of this result to a non-smooth setting (Theorems
3.6, 3.7, and 3.9); we emphasize that this generalization is achieved
without any recourse to pseudo-differential techniques.

Theorem C. Let d be a non-parabolic Dirac system with Lipschitz
coefficients. Let Čmax and Čext be the Calderón spaces of Cauchy data
σ(0) ∈ Ȟ with σ ∈ kerDmax and σ ∈ kerDext, respectively. Then

C1/2
max := Čmax ∩H1/2 and C1/2

ext := Čext ∩H1/2

are mutually adjoint elliptic boundary conditions.
Let Cmax and Cext be the orthogonal projections in H onto the closure

of Cmax := Čmax ∩H and onto Cext := Čext ∩H, respectively. Then Cmax

and Cext restrict to Hs and extend to H−s, 0 ≤ s ≤ 1/2, and

Cmax −Q(0,∞) and Cext −Q(0,∞)

1 Actually, Calderón and Seeley considered also elliptic operators of higher order
and treat the Lp theory as well, see Theorem 2 in [Pa, p. 287] or Theorem 12.4 in
[BW].
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are compact in Hs for all |s| ≤ 1/2.

Recall Kato’s notion of a Fredholm pair of closed subspaces in a
Banach space [Ka, Section IV.4], compare Appendix A. Our main
index formula is formulated in terms of such pairs (Theorem 3.12).

Theorem D. Let d be a non-parabolic Dirac system with Lipschitz
coefficients and B be an elliptic boundary condition. Then (B̄, Cext) is
a Fredholm pair in H and

indDB,ext = ind(B̄, Cext),

where B̄ denotes the closure of B in H.

The boundary value problem considered by Atiyah, Patodi, and

Singer corresponds to BAPS := H
1/2
(−∞,0]. Another main index formula is

of Agranovič-Dynin type and shows the fundamental character of the
Atiyah-Patodi-Singer boundary condition (Theorem 3.14):

Theorem E. Let d be a non-parabolic Dirac system with Lipschitz
coefficients and B be an elliptic boundary condition. Then

indDB,ext = indDBAPS ,ext + ind(B̄,H(0,∞)).

The Cobordism Theorem for the chiral Dirac operator D+ on the
space of spinor fields of a closed spin manifold M of even dimension
states that indD+ = 0 if M is cobordant to a compact spin manifold,
compare [BW, Corollary 21.6]. We prove a version of the Cobordism
Theorem for Dirac systems with Lipschitz coefficients (Theorem 3.19).
As in Theorem A above, let H± := {x ∈ H : iγx = ±x} and A+

0 be
the restriction of A0 to H+, a Fredholm operator to H−.

Theorem F (Cobordism Theorem). Let d be a Dirac system with Lip-
schitz coefficients. If the associated Dirac operator D is of Fredholm
type in the sense that d is non-parabolic with W = Dmax, then

indA+
0 = 0.

When cutting a manifold M into pieces M1 and M2 along a compact
hypersurface N = M1 ∩ M2, we may ask for the index of a Dirac
operator D on sections of a Hermitian bundle E over M in terms of
its restrictions to the pieces. The corresponding boundary condition
along N , the so-called transmission boundary condition, requires that
sections σ1 and σ2 of E over M1 and M2, respectively, coincide along N .
In terms of Dirac systems, the decomposition of M and D corresponds
to the direct sum of two Dirac systems which have compatible initial
conditions at t = 0. Our first result concerning this type of boundary
value problem is of Bojarski type (Theorem 3.23):
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Theorem G. Let d1 and d2 be non-parabolic Dirac systems with Lip-
schitz coefficients and Calderón spaces C1,ext and C2,ext, respectively.
Suppose that the initial conditions of d1 and d2 satisfy

H := H1,0 = H2,0, A := A1,0 = −A2,0, and γ1,0 = −γ2,0.

Then (C1,ext, C2,ext) is a Fredholm pair in H.
Consider the Dirac operator D on d = d1 ⊕ d2 with transmission

boundary condition B = {(x, x) : x ∈ H1/2}. Then B is an elliptic
and self-adjoint boundary condition and

indDB,ext = ind(C1,ext, C2,ext).

Another convenient way of determining the index of a Dirac operator
via decompositions is by decoupling the boundary conditions on the
pieces M1 and M2. Our relevant result in this direction (Theorem 3.24)
generalizes Theorem 4.3 of [BL1].

Theorem H. Let d1 and d2 be non-parabolic Dirac systems with Lip-
schitz coefficients as in Theorem G. Then

indDB,ext = indD1,B1,ext + indD2,B2,ext,

where B is the transmission boundary condition, B1 is any elliptic
boundary condition for d1, and B2 = B⊥

1 ∩H1/2.

The above results are discussed and proved in Chapters 1–3 of the
text. Many of our arguments and results here extend and simplify what
is known from the literature. In Chapter 4, we discuss supersymmetric
Dirac systems and derive the corresponding index formulas. In Chap-
ter 5, we describe a geometric setup for non-smooth boundary value
problems for differential operators of Dirac type and explain how our
results extend to this situation. This will be important for our geo-
metric applications in a forthcoming article, in which we will extend
the results from [BB1, BB2]. We believe that it will also be useful in
further work on boundary value problems and index theory of Dirac
type operators. We derive our results not only for Dirac operators,
but for the more general class of Dirac-Schrödinger operators, that is,
operators of the form D + V , where D is a Dirac operator and V is a
symmetric potential, see Definition 2.26.

In two appendices, we derive some results which are used in the
main text and seem to be of independent interest, but are not closely
connected with the program we are pursuing here.

In all our estimates, generic constants may change from line to line.
WB and JB would like to use this occasion to refer to the article

[Kas], which already contains one of the main observations underlying
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the proof of Theorem B of [BB2] and also similar applications. We
would like to thank Tobias Ebel for pointing this out to us.

WB, JB, and GC would like to thank the MPI für Mathematik in
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1. Dirac systems with constant coefficients

1.1. Generalities. Let H be a separable complex Hilbert space with
Hermitian inner product 〈·, ·〉H = 〈·, ·〉 and norm || · ||H = || · ||. Let
A be a self-adjoint operator in H with domain HA such that, with re-
spect to the graph norm || · ||A, the embedding HA → H is compact;
equivalently, A is discrete in the sense that specA consists only of iso-
lated eigenvalues with finite multiplicity. The pair e := (H,A) will
be referred to as an evolution system since we will associate an evolu-
tion operator to it. To that end we note first that any local Lipschitz
function σ : R+ := [0,∞) → H is weakly differentiable with locally
uniformly bounded weak derivative σ′ a.e.; this is a well known fact,
but for the sake of completeness we will give a proof below. Then we
can introduce the space

(1.1) Lloc(e) := Liploc(R+, H) ∩ L∞
loc(R+, HA)

and the operator

(1.2) L = L(e) := ∂t + A : Lloc(e)→ L∞
loc(R+, H),

where ∂tσ = σ′ denotes the derivative of σ with respect to t. We call L
the evolution operator associated to the evolution system e = (H,A).

1.3. Lemma. If f : R+ → H is locally Lipschitz, then f is weakly differ-
entiable almost everywhere with locally uniformly bounded derivative.
More precisely, if L[a,b](f) denotes the Lipschitz constant of f on [a, b],
then

||f ′(t)||H ≤ L[a,b](f),

for almost all t ∈ [a, b].

Proof. Since H is separable, there is a countable orthonormal basis
(en)n∈N of H . By Lebesgue’s Theorem, there exists a measurable subset
R ⊂ R+ of full measure such that the functions t 7→ 〈f(t), en〉 are
differentiable in all points of R for all n ∈ N. Hence the functions
t 7→ 〈f(t), u〉, where u is in the dense subspace of H generated by the
chosen basis, are also differentiable in all points of R. We have

|〈h−1(f(t+ h)− f(t)), u〉| ≤ L[0,T ](f)||u||,

for all u ∈ H and t, h ∈ R+ with t, t + h ∈ [0, T ]. It follows that
t 7→ 〈f(t), u〉 is differentiable in R for all u ∈ H and thus that the
function f has a weak derivative, f ′(t) ∈ H , in each t ∈ R and with
the asserted norm estimate. �
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We will also need the spaces

Lc(e) := {σ ∈ Lloc(e) : supp σ compact},(1.4)

L0,c(e) := {σ ∈ Lc(e) : σ(0) = 0}.(1.5)

On Lc(e), we define the scalar product

(1.6) (σ1, σ2) :=

∫ ∞

0

〈σ1(t), σ2(t)〉 dt,

and we denote by L2(R+, H) the Hilbert space arising by completion.
The formal adjoint of L in L2(R+, H) is −∂t + A, hence L does not

induce a symmetric operator on L0,c(e). This defect can be cured if
there is an operator γ ∈ L(H) ∩ L(HA) which satisfies the following
two relations:

−γ = γ∗ = γ−1 on H,(1.7)

Aγ + γA = 0 on HA.(1.8)

Note that (1.8) implies that specA is symmetric with respect to 0.
Then the triple d := (H,A, γ) is called a Dirac system. The associated
Dirac operator is defined as

(1.9) D = D(d) := γ(∂t + A) : Lloc(e)→ L∞
loc(R+, H).

We find, for σ1, σ2 ∈ Lc(e),
(1.10) 〈γσ1, σ2〉′ = 〈Dσ1, σ2〉 − 〈σ1, Dσ2〉,
hence

(1.11) (Dσ1, σ2)− (σ1, Dσ2) = 〈σ1(0), γσ2(0)〉 =: ω(σ1(0), σ2(0)),

and therefore the restriction D0,c of D to L0,c(e) is symmetric. The
adjoint operatorDmax := (D0,c)

∗ of D0,c is called the maximal extension
ofD0,c; its domain is denoted byDmax. The closureDmin ofD0,c is called
the minimal extension of D0,c, the domain of Dmin is denoted by Dmin.
By definition,

(1.12) D0,c ⊂ Dmin = (Dmax)
∗ ⊂ Dmax.

For later purposes it is useful to note that norm estimates for Lσ also
hold for Dσ,

(1.13) ||Dσ(t)||H = ||Lσ(t)||H
for all σ ∈ Lloc(e) and t ∈ R+.

We denote by H1(e) the closure of Lc(e) under the norm

(1.14) ‖σ‖2H1(e) := ‖σ‖2L2(R+,H) + ‖∂tσ‖2L2(R+,H) + ‖Aσ‖2L2(R+,H),
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which is naturally associated to the data defining the evolution system2.
We will also use the space

(1.15) H1
loc(e) :=

{σ : R+ → H measurable : ψσ ∈ H1(e) for all ψ ∈ Lipc(R+)}.
Note that the norm of H1(e) is stronger than the graph norm of D. In
particular, we have a continuous extension

(1.16) D : H1(e)→ L2(R+, H).

Moreover, if the domain D̄ of some closed extension D̄ of D0,c is con-
tained in H1(e), then the H1(e)-norm and the graph norm of D̄ are
equivalent on D̄, by the Closed Graph Theorem. This fact will be used
repeatedly.

Spectral projections of A will play a specific role; we reserve the
letter Q for these. For a subset J ⊂ R, QJ = Q∗

J denotes the associated
spectral projection of A in H . As shorthand, we use, for Λ ∈ R,

Q>Λ := Q(Λ,∞), Q≥Λ := Q[Λ,∞),

Q<Λ := Q(−∞,Λ), Q≤Λ := Q(−∞,Λ],
(1.17)

We also use Q0 := Q{0} and

Q> := Q>0, Q≥ := Q≥0, Q< := Q<0, Q≤ := Q≤0,

Q6= = Q< +Q> = I −Q0.
(1.18)

Since γ anticommutes with A, we have γ∗QJγ = Q−J . In particular,

(1.19) γ∗Q>γ = Q<, γ∗Q≤γ = Q≥, and γ∗Q0γ = Q0.

Furthermore, we set H< := Q<(H) and use a similar notation in the
other cases and for the Sobolev spaces associated to A below.

1.2. Sobolev spaces associated to A. Let H and A be as above.
For s ≥ 0, let Hs ⊂ H be the domain of |A|s. Then H = H0 and
HA = H1. We set H∞ = ∩s≥0H

s, which is a dense subspace of H .
For s ∈ R, we define a scalar product 〈·, ·〉s on H∞,

(1.20) 〈x, y〉s := 〈(I + A2)s/2x, (I + A2)s/2y〉.
For s ≥ 0, the norm || · ||s associated to 〈·, ·〉s is equivalent to the graph
norm of |A|s and Hs is equal to the completion of H∞ with respect
to || · ||s. For s < 0, we define Hs to be the completion of H∞ with
respect to || · ||s and set H−∞ := ∪s∈RH

s. The pairing

(1.21) Bs : Hs×H−s → C, Bs(x, y) := 〈(I+A2)s/2x, (I+A2)−s/2y〉,
2 The notation H1(R+, A) is also common and was used e.g. in [BL2].



DIRAC-SCHRÖDINGER SYSTEMS 11

is perfect, that is, it identifies H−s with the dual space of Hs. In
particular, any S ∈ L(Hs) admits a dual operator S ′ ∈ L(H−s) with

(1.22) Bs(Sx, y) = Bs(x, S
′y).

This defines an algebra antimorphism L(Hs) → L(H−s). More gener-
ally, for S ∈ L(Hs1, Hs2), we obtain a dual operator S ′ ∈ L(H−s2, H−s1);
in particular, if s = s1 = −s2, then S, S ′ ∈ L(Hs, H−s).

Since A is discrete, the embedding it,s : H t →֒ Hs is compact for
s < t. For 0 ≤ θ ≤ 1 and r = θs + (1 − θ)t, Hr is (isomorphic to)
the interpolation space [Hs, H t]θ, see for example [Ta, Chapter 4.2]. If
S ∈ L(Hs) satisfies S(H t) ⊂ H t, then S : H t → H t is continuous,
by the Closed Graph Theorem. Moreover, S(Hr) ⊂ Hr for any r as
above, by interpolation. Note also that (it,s)

′ = i−s,−t.
We say that an operator S ∈ L(H) is s-smooth, for s ≥ 0, if both S

and S∗ restrict to Hs; this implies that S, S∗ restrict to H t and extend
(continuously) to H−t for 0 ≤ t ≤ s. In fact, the dual of the restriction
of S and S∗ to Hs extends S∗ and S to H−s, respectively.

An s-smooth operator S is said to be (−s, s)-smoothing if S maps
H−s into Hs; if S is (−s, s)-smoothing, then so is S∗. In the special case
s = 1/2 we simply speak of smoothing operators. Note that S ∈ L(H)
is smoothing if S extends to H−1/2 with image in H1/2.

We say that an operator S ∈ L(H) has order 0, if S and S∗ restrict
to Hs for any s > 0; that is, S is of order 0 if and only if S is s-smooth
for all s ≥ 0. The space of operators of order 0 is denoted Op0(A). By
definition, all spectral projections of A have order 0.

We are primarily interested in the cases s = −1/2, 0, 1/2 and s = 1.
If S ∈ L(H) extends continuously to H−1/2, then the extension is

denoted by S̃,

(1.23) S̃ : H−1/2 → H−1/2;

if S ∈ L(H) restricts to H1/2, then the restriction is denoted by Ŝ,

(1.24) Ŝ : H1/2 → H1/2.

If there is no danger of confusion, we also write S instead of Ŝ or S̃.
If the adjoint operator S∗ of S ∈ L(H) restricts to H1/2, then S

extends continuously to H−1/2,

(1.25) S̃ = (Ŝ∗)′.

In particular, if S = S∗ and S(H1/2) ⊂ H1/2, then S̃ = Ŝ ′. If Q is
a spectral projection of A, then Q(Hs) ⊂ Hs for any s ∈ R, by the

definition of Hs. Since Q∗ = Q, we have Q̃ = Q̂′ for any such Q.
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The following lemma and corollary will only be used in the discussion
of regular pairs of projections in Section 1.6.

1.26. Lemma. Let S ∈ L(H) be 1/2-smooth. Then the following con-
ditions are equivalent:

(1) Let x ∈ H−1/2. If S̃x ∈ H1/2 or S̃∗x ∈ H1/2, then x ∈ H1/2.

(2) ker S̃ = ker Ŝ, ker S̃∗ = ker Ŝ∗, and there is a constant C with

||x||1/2 ≤ C(||Ŝx||1/2 + ||x||−1/2)

||x||1/2 ≤ C(||Ŝ∗x||1/2 + ||x||−1/2)
for all x ∈ H1/2.

(3) Ŝ and Ŝ∗ are Fredholm operators with ind Ŝ + ind Ŝ∗ = 0.
(4) There are a 1/2-smooth operator U and smoothing operators

Kr, Kl in L(H) such that

S̃Ũ = Ũ∗S̃∗ = I − K̃l and Ũ S̃ = S̃∗Ũ∗ = I − K̃r.

Proof. (1) ⇒ (2). The assertion on the kernels is an obvious conse-

quence of (1). Consider next Ŝ(∗) as an unbounded operator in H−1/2

with domain and target space H1/2. Then it follows from (1) that Ŝ(∗)

is closed. The projection π1 : H−1/2 × H1/2 → H−1/2 takes values in

H1/2 when restricted to the graph of Ŝ(∗). Applying the Closed Graph
Theorem to this map we derive the asserted inequalities in (2).
(2) ⇒ (3). By Lemma A.11 in Appendix A, the a priori estimate in

(2) implies that Ŝ and Ŝ∗ have finite-dimensional kernels and closed
images in H1/2. From the assumption on the kernels and duality we
deduce that

codim Ŝ = dim (im Ŝ)0 = dim ker S̃∗ = dim ker Ŝ∗,

codim Ŝ∗ = dim ker Ŝ,

where the superscript 0 indicates the annihilator (or polar set) inH−1/2.
This establishes (3).

(3) ⇒ (4). It is immediate from the assumptions that ker S̃ = ker Ŝ

and ker S̃∗ = ker Ŝ∗. Choose a basis (e
(∗)
j ) ⊂ H1/2 of ker Ŝ(∗) which is

orthonormal in H and set

Kr(l)x :=
∑

B−1/2(x, e
(∗)
j ) e

(∗)
j , x ∈ H−1/2.

Then Kr(l) ∈ L(H−1/2, H1/2) is a projection in H−1/2 onto ker Ŝ(∗) and

S̃ : kerKr → kerKl is an isomorphism. It follows that there is a
1/2-smooth operator U ∈ L(H) with

S̃Ũ = I − K̃l and Ũ S̃ = I − K̃r.
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Restricting to H1/2 and computing the dual operators gives the remain-
ing identities in (4).

(4)⇒ (1). Consider x ∈ H−1/2 with y := S̃x ∈ H1/2. Then we obtain
from (4)

x = Ûy +Krx ∈ H1/2,

since Kr is smoothing; a similar argument works for S̃∗. �

Since, by complex interpolation, both S̃ and Ũ restrict to Hs, for
|s| ≤ 1/2, we have the following consequence.

1.27. Corollary. Under the conditions of Lemma 1.26, S̃(∗) restricts
respectively extends to a Fredholm operator on each Hs, |s| ≤ 1/2, with
kernel and index independent of s.

1.3. The domain of the maximal extension. In our approach,
boundary conditions at 0 will play a prominent role; for that reason, the
existence of restriction maps is of interest. We begin with the following
regularity lemma; its third part reflects the usual trace properties of
Sobolev spaces.

1.28. Lemma (Regularity I). We have

(1) Lloc(e) ⊂ C0+1/2(R+, H
1/2).

(2) H1(e) ⊂ C(R+, H
1/2).

(3) R : H1(e)→ H1/2, Rσ := σ(0), is continuous.

Proof. By the Cauchy-Schwarz inequality, we have, for any x ∈ HA,

||x||2H1/2 ≤ ||x||HA
||x||H.

Hence if σ ∈ Lloc(e) with ||σ||HA
≤ K and ||σ′||H ≤ L on [0, T ], then

||σ(s)− σ(t)||2H1/2 ≤ ||σ(s)− σ(t)||HA
||σ(s)− σ(t)||H

≤ 2KL|s− t|,
for all s, t ∈ [0, T ]. This shows the first claim.

As for the proof of the second and third claim, we choose an or-
thonormal basis, (en)n∈N, for H , consisting of eigenvectors of A, i.e.
Aen = anen for some an ∈ R. For σ ∈ Lc(e) we set σn(t) := 〈σ(t), en〉.
Then σn ∈ Lipc(R+) and hence, by (B.3),

|an||σn(t)− σn(s)|2 ≤ 2||σ′
n||2L2([s,t]) + 2a2

n||σn||2L2([s,t]).

Therefore

(1.29) ||σ(t)− σ(s)||2H1/2

≤ C
(
||σ||2L2([s,t],H) + ||σ′||2L2([s,t],H) + ||Aσ||2L2([s,t],H)

)
.
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Since σ has compact support,

(1.30) ||σ(s)||H1/2

≤ C
(
||σ||2L2([s,∞],H) + ||σ′||2L2([s,∞],H) + ||Aσ||2L2([s,∞],H)

)
.

In particular,
||σ(0)||H1/2 ≤ C||σ||H1(e).

Since H1(e) is the closure of Lc(e) in the H1(e)-norm, (1.29) and (1.30)
hold for all σ ∈ H1(e). Claims (2) and (3) follow. �

To get a satisfactory description of the domain Dmax ⊂ L2(R, H) of
the maximal extension Dmax of D0,c, we employ the solution theory of
the evolution operator L. For σ ∈ L2(R+, H) we set

(1.31) (SLσ)(t) :=

∫ t

0

e(s−t)A>σ(s)ds−
∫ ∞

t

e(s−t)A<σ(s)ds,

where we have written A> := AQ> and A< := AQ<. The solution
operator SL has been studied in [APS, Proposition (2.5)] via the corre-
sponding ordinary differential equations in the eigenspaces of A. The
result is that

SL : L2(R+, H 6=)→ {σ ∈ Q6=(H1(e)) : σ(0) ∈ H1/2
< }

is continuous and bijective with inverse L. We conclude:

1.32. Lemma. The solution operator SD := SLγ
∗ : L2(R+, H)→ H1(e)

of D is continuous with (Q>SDσ)(0) = 0 and

(1.33) DSDσ = Q6=σ

for all σ ∈ L2(R+, H). Moreover,

(1.34) SDDσ = Q6=σ

for all σ ∈ H1(e) with Q>σ(0) = 0. In particular, the map

(1.35) RSD : L2(R+, H)→ H
1/2
< , σ 7→ (SDσ)(0),

is surjective. �

We also use the extension operator

(1.36) Ex(t) := e−t(|A|+Q0)x,

which is defined for x ∈ H−∞ and t ≥ 0. We note that Ex(t) ∈ H∞ for
all t > 0. The following assertions are readily verified by studying the
respective ordinary differential equations in the eigenspaces of A.

1.37. Lemma. For any s ∈ R and x ∈ Hs,

(1) Ex ∈ C(R+, H
s) and ||(Ex)(t)||s ≤ ||x||s for all t ≥ 0.

(2) Ex ∈ C1(R+, H
s−1) with (Ex)′ = −(|A|+Q0)Ex.
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(3) C−1
s ||x||s− 1

2
≤ ||(|A|+Q0)

sEx||L2(R+,H) ≤ Cs||x||s− 1
2

. �

Since ||(|A|+Q0)x||s−1 ≤ ||x||s, the second equation implies that, for
any x ∈ HA = H1, the extension Ex : R+ → H is Lipschitz continuous
with Lipschitz constant 1. In particular, Ex ∈ Lloc(e) for any x ∈ HA.

1.38. Proposition. The map

E> : H
−1/2
> → kerDmax, E>x := Ex,

is a continuous isomorphism. The restriction map R extends to a
continuous map R on kerDmax with RE>x = x.

Proof. It follows from Lemma 1.37.2 that E> maps H1
> to kerDmax.

Lemma 1.37.3 implies that it extends to H
−1/2
> as a continuous and

injective map, where we recall that kerDmax ⊂ L2(R+, H) is closed.
To prove surjectivity, choose a unitary basis (en) of H of eigenvectors

of A, Aen = anen. Let σ ∈ kerDmax and set σn(t) := 〈σ(t), en〉. Then
σn solves the ordinary differential equation σ′

n + anσn = 0 weakly, and
hence σn(t) = e−tanxn, where xn = σn(0). Since σ is square integrable,

xn = 0 for an ≤ 0 and x =
∑

an>0 xnen ∈ H
−1/2
> . Hence σ = E>x.

The assertion about R is clear. �

We note that the Dirac operatorD commutes with Q0 and Q6=, hence

(1.39) Dmax = Q6=Dmax ⊕Q0Dmax.

Moreover Q0Dmax = H1(R+, Q0H), the standard Sobolev space.

1.40. Corollary (Representation Formula). The map

H
−1/2
> ⊕ L2(R+, H 6=)⊕H1(R+, Q0H)→ Dmax,

(x, τ, σ0) 7→ σ = E>x+ SDτ + σ0,

is a continuous isomorphism with Dmaxσ = τ + γσ′
0.

Proof. Clearly E>x+SDτ+σ0 ∈ Dmax for all x ∈ H−1/2
> , τ ∈ L2(R+, H 6=),

and σ0 ∈ H1(R+, Q0H). Vice versa, let σ ∈ Dmax and set τ = Dmaxσ
and σ0 = Q0σ. Then σ−SDτ −σ0 ∈ kerDmax, by Lemma 1.32. Hence
our map is a continuous isomorphism, by the continuity of SD and
Proposition 1.38. �

1.41. Proposition (Boundary Values). Let

Ȟ := H
−1/2
> ⊕Q0H ⊕H1/2

< .

Then R and E extend to respectively define continuous operators

R : Dmax → Ȟ and E : Ȟ → Dmax

with RE = I on Ȟ. In particular, R is surjective. �
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Now we can derive the precise regularity properties of elements in
Dmax which will make the special role of 0 even more apparent. For
ease of notation, we set Rσ =: σ(0).

1.42. Lemma (Regularity II). The maximal domain Dmax has the fol-
lowing properties:

(1) Lc(e) is dense in Dmax.
(2) H1(e) = {σ ∈ Dmax : σ(0) ∈ H1/2} ⊂ Dmax.
(3) Dmax ⊂ C(R+, Ȟ) ∩ C((0,∞), H1/2).
(4) limt→∞ σ(t) = 0 in H1/2 for any σ ∈ Dmax.
(5) If φ ∈ Lip(R+) is bounded and σ ∈ Dmax,

then φσ ∈ Dmax and (φσ)(0) = φ(0)σ(0).

Proof. (1) By definition, Lc(e) is dense in H1(e). Hence it suffices
to consider σ ∈ kerDmax, by Corollary 1.40. Write σ = E>x with

x ∈ H
−1/2
> . Choose a sequence (xn) in H1

> with xn → x in H−1/2

and φ ∈ Lipc(R+) with φ = 1 near 0. Set φn(t) := φ(t/n), then by
Lemma 1.37, φnE>xn ∈ Lc(e). It is easy to see that φnE>xn → E>x in
Dmax.

(2) Clearly H1(e) ⊂ Dmax. Since the image of SD is contained
in H1(e), the asserted characterization of H1(e) is immediate from
Lemma 1.37.3 and Corollary 1.40.

(3) Dmax ⊂ C(R+, Ȟ) is clear from Lemma 1.37.1. By Lemma 1.28.2,
H1(e) is contained in C(R+, H

1/2), thus in C(R+, Ȟ). By Corollary 1.40,
it is hence sufficient to consider the image of E>. Now Ex(t) ∈ H∞

and Ex(t + t′) = E(Ex(t))(t′) for all x ∈ H−1/2 and t, t′ > 0. Hence
E>x ∈ C((0,∞), H1/2) for all x ∈ H−1/2, by Lemma 1.37.1.

(4) Let σ ∈ Dmax. It follows from (2) and (3) that σ shifted by t > 0,
τtσ(t′) := σ(t+ t′), is in H1(e). Hence by (1.30),

||σ(t)||2H1/2 = ||τtσ(0)||2H1/2 ≤ C||τtσ||2H1(e)

= C

∫ ∞

t

(||σ′||2 + ||Aσ||2 + ||σ||2).

Hence σ(t)→ 0 in H1/2 as t→∞.
(5) Let σ ∈ Dmax and φ ∈ Lip(R+) be bounded. Choose a sequence

(σn) in Lc(e) which converges to σ in Dmax. Then φσn ∈ Lc(e) and
φσn → φσ in Dmax, hence the claim. �

Now we can extend (1.11) (cf. [BL2, Lemma 2.15]) to Dmax. We only
have to use Part 1 of Lemma 1.42 and to note that the skew-Hermitian
form ω defined in (1.11) extends naturally to (x, y) ∈ Ȟ × Ȟ by

(1.43) ω(x, y) := B−1/2(Q>Λx, γQ<−Λy) +B1/2(Q≤Λx, γQ≥−Λy),
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where Λ ∈ R is arbitrary.

1.44. Corollary. For σ1, σ2 ∈ Dmax we have

(Dmaxσ1, σ2)− (σ1, Dmaxσ2) = ω(σ1(0), σ2(0)). �

We note that ω is non-degenerate on Ȟ . For a linear subspace B ⊂
Ȟ, the annihilator of B with respect to ω is

(1.45) Ba := {y ∈ Ȟ : ω(x, y) = 0 for all x ∈ B};
Ba ⊂ Ȟ is closed, and Baa is the closure of B in Ȟ . The description
of Ba is easy in the case where B is contained in H1/2.

1.46. Lemma. If B ⊂ H1/2 ⊂ Ȟ, then Ba = (γB0) ∩ Ȟ, where

B0 = {y ∈ H−1/2 : B1/2(x, y) = 0 for all x ∈ B}.
In particular, Ba ∩H1/2 = γ(B⊥ ∩H1/2), where B⊥ is the orthogonal
complement of B ⊂ H in H.

Proof. For x, y ∈ Ȟ with x ∈ H1/2, we have ω(x, y) = B1/2(x, γy). �

1.4. Boundary conditions and Fredholm properties. With any
linear subspace, B ⊂ Ȟ, we now associate various extensions of D0,c.
We define:

LB,c(e) : = {σ ∈ Lc(e) : σ(0) ∈ B},(1.47)

DB,c : = D|LB,c(e);
DB : = {σ ∈ Dmax : σ(0) ∈ B ∩H1/2}(1.48)

= {σ ∈ H1(e) : σ(0) ∈ B},
DB : = D|DB;

DB,max : = {σ ∈ Dmax : σ(0) ∈ B},(1.49)

DB,max : = Dmax|DB,max.

Since the restriction map R : Dmax → Ȟ is continuous, DB,max is a
closed operator if B is a closed subspace of Ȟ . Vice versa, we have:

1.50. Proposition. Let D̄ ⊂ Dmax be a closed extension of D0,c and
D̄ be the domain of D̄. Then D̄ = DB,max, where B = {σ(0) : σ ∈ D̄}
is a closed subspace of Ȟ.

Proof. Since D̄ is a closed extension of D0,c, the closure of L0,c(e) in
the H1(e)-norm is contained in D̄,

H1
0 (e) := {σ ∈ H1(e) : σ(0) = 0} ⊂ D̄.
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Since the difference of any two elements from Dmax with the same value
at 0 is in H1

0 (e), by Lemma 1.42.2, we conclude that

D̄ = {σ ∈ Dmax : σ(0) ∈ B},
hence that D̄ = DB,max. Suppose now that (xn) is a sequence in B such
that xn → x in Ȟ . Then, by what we just said, (Exn) is a sequence
in D̄ and Exn → Ex in Dmax, by Proposition 1.41. Since D̄ is a closed
operator and R is continuous, we get that x ∈ B. �

1.51. Definition. A (linear) boundary condition for a Dirac system is
a closed linear subspace B ⊂ Ȟ .

1.52. Remark. Since the seminal article [APS] of Atiyah, Patodi, and
Singer, it is customary to state boundary conditions for Dirac systems
in terms of projections in H . In our setup, the boundary condition
introduced by Atiyah, Patodi, and Singer is given by the subspace
BAPS := Ȟ≤ of Ȟ . We will discuss boundary conditions given by pro-
jections in Section 1.6. Our approach to the description of boundary
conditions for Dirac systems, however, does not only seem to be more
general but will also lead to a more satisfying analysis of the corre-
sponding operators, as we are going to explain.

For any σ ∈ Lc(e), σ(0) ∈ HA = H1. Vice versa, for any x ∈ HA

there is σ ∈ Lc(e) with σ(0) = x. Similarly, for any x ∈ H1/2 there
is σ ∈ H1(e) with σ(0) = x. Let B ⊂ Ȟ be a boundary condition.
We conclude, using (1.44), that the adjoint operators of the above
operators are

(DB,c)
∗ = DB1,max with B1 = (B ∩HA)a,(1.53)

(DB)∗ = DB2,max with B2 = (B ∩H1/2)a,(1.54)

(DB,max)
∗ = DBa,max.(1.55)

Since the closure of a linear subspace of Ȟ is the annihilator of its
annihilator, the closures of the above operators are

DB,min = (DB,c)
∗∗ = DC1,max,(1.56)

(DB)∗∗ = DC2,max,(1.57)

(DB,max)
∗∗ = DB,max.(1.58)

where C1 is the closure of B ∩HA in Ȟ in (1.56) and C2 is the closure
of B ∩H1/2 in Ȟ in (1.57). In particular,

(1.59) DB,min = DB,max ⇐⇒ B ∩HA is dense in B.
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1.60. Definition. We say that a boundary condition B ⊂ Ȟ is regular
if DB,max = DB. We say that a boundary condition B is elliptic if B
and Ba are regular.

By the representation formula 1.40, the boundary condition BAPS =
Ȟ≤ of Atiyah, Patodi, and Singer is the most natural regular boundary
condition. The following reformulations of regularity are immediate
from the definition of regularity and the properties of the maximal
domain.

1.61. Proposition. A closed linear subspace B of Ȟ is a regular bound-
ary condition iff any of the following equivalent conditions is satisfied:

(1) DB,max = DB.
(2) DB,max ⊂ H1(e).
(3) B ⊂ H1/2 ⊂ Ȟ.

A closed linear subspace B of H1/2 is a regular boundary condition iff
one of the following two equivalent conditions is satisfied:

(4) The H1/2 and Ȟ-norms are equivalent on B.
(5) For some or, equivalently, any Λ ∈ R, there is a constant C

such that, for all x ∈ B,

||Q>Λx||1/2 ≤ C(||Q>Λx||−1/2 + ||Q≤Λx||1/2). �

1.62. Lemma. Let B ⊂ Ȟ be a regular boundary condition and Λ ∈ R.

Then the map Q≤Λ : B → H
1/2
≤Λ is a left-Fredholm operator, that is, has

finite-dimensional kernel and closed image. Moreover, (H
1/2
>Λ , B) is a

left-Fredholm pair in H1/2 with

null(H
1/2
>Λ , B) = dim ker(Q≤Λ : B → H

1/2
≤Λ ) = dim(H

1/2
>Λ ∩ B),

def(H
1/2
>Λ , B) = dim coker(Q≤Λ : B → H

1/2
≤Λ ) = dim(Ȟ≥−Λ ∩Ba).

Proof. We use Hörmander’s Criterion, see Lemma A.11. Suppose that

(xn) is a bounded sequence in B such that Q≤Λ(xn) converges in H
1/2
≤Λ .

Since the inclusion H1/2 → H−1/2 is compact and (xn) is bounded in
H1/2, we may assume, by passing to a subsequence if necessary, that
(xn) converges in H−1/2. But then (Q>Λxn) is a Cauchy sequence in

H1/2, by Proposition 1.61.5. It follows that Q≤Λ : B → H
1/2
≤Λ is a left-

Fredholm operator and hence, by Proposition A.12, that (H
1/2
>Λ , B) is a

left-Fredholm pair. The formulas for the nullity and the first formula

for the deficiency of the pair (H
1/2
>Λ , B) are clear. As for the last equality,
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we have, using (A.6),

(H
1/2
>Λ +B)0 = (H

1/2
>Λ )0 ∩ B0 = H

−1/2
≤Λ ∩ B0

= {x ∈ H−1/2
≤Λ : B−1/2(x, y) = 0 for all y ∈ B}

= γ({x ∈ Ȟ≥−Λ : ω(x, y) = 0 for all y ∈ B})
= γ(Ȟ≥−Λ ∩Ba). �

1.63. Proposition. Let Λ be a real number, Û ⊂ H
1/2
≤Λ be a closed

subspace, F ⊂ H
1/2
<−Λ be a finite-dimensional subspace, V̂ := F 0∩H1/2

<−Λ,

and let g : Û → V̂ be a continuous linear map. Then

B = γF ⊕ {u+ γgu : u ∈ Û}
is a regular boundary condition, and all regular boundary conditions
arise in this way.

Proof. It is clear that any boundary condition B of the given form is
regular. Conversely, let B ⊂ H1/2 be a regular boundary condition.
By Lemma 1.62,

Û := im(Q≤Λ : B → H
1/2
≤Λ )

is a closed subspace of H
1/2
≤Λ and

F := γ(B ∩H1/2
>Λ ) = γ(ker(Q≤Λ : B → H

1/2
≤Λ ))

is a finite-dimensional subspace ofH
1/2
<−Λ. It follows thatG = (γF⊥)∩B

is a complement of γF in B and that Q≤Λ : G→ Û is an isomorphism.

Hence there is a continuous linear map g : Û → H
1/2
<−Λ such that

G = {u+ γgu : u ∈ Û}.
Since G ⊂ γF⊥, g takes values in V̂ . �

1.64. Remark. In Proposition 1.63 above and Proposition 1.65 below,
the roles of weak and strong inequalities can be interchanged.

1.65. Proposition. Let Λ be a real number and let

H≤Λ = E ⊕ U and H<−Λ = F ⊕ V
be orthogonal decompositions, where E,F ⊂ H

1/2
<−Λ are finite-dimensional

subspaces, and g : U → V be a 1/2-smooth linear map. Then

B = γF ⊕ {u+ γgu : u ∈ U ∩H1/2}
is an elliptic boundary condition with

Ba = γE ⊕ {v + γg∗v : v ∈ V ∩H1/2}.
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All elliptic boundary conditions arise in this way.

1.66. Remark. In previous work, but in a different context, the first
author and Christian Bär considered boundary conditions of precisely
this form. For details see the forthcoming article [BäB].

Proof of Proposition 1.65. With data as in Proposition 1.63, write

B = γF ⊕ {u+ γĝu : u ∈ Û},
where the map g there is decorated with a hat here. Since F ⊂ H

1/2
<−Λ

is of finite dimension,

F ⊕ Ṽ = H
−1/2
<−Λ , F ⊕ V = H<−Λ, F ⊕ V̂ = H

1/2
<−Λ,

where

Ṽ = F 0 ∩H−1/2
<−Λ , V = F 0 ∩H<−Λ, V̂ = F 0 ∩H1/2

<−Λ.

Let x ∈ γB0 ⊂ H−1/2. Then there exist f ∈ F and v ∈ Ṽ with
Q<−Λx = f + v. We compute B−1/2(x, f) = |f |2. Since f ∈ γB, we
conclude that f = 0 and hence that

Q<−Λ(γB0) ⊂ Ṽ .

Conversely, let v ∈ Ṽ . Then B−1/2(v + γw, f) = 0 for all w ∈ H−1/2
≤Λ

and f ∈ F , by the definition of Ṽ and since F ⊂ H
1/2
<−Λ. With u ∈ Û ,

we compute

B−1/2(v + γw, γu− ĝu) = B−1/2(γw, γu)− B−1/2(v, ĝu)

= B−1/2(w, u)− B−1/2(v, ĝu)

= B−1/2(w, u)− B−1/2(u
′, u)

for some appropriate u′ ∈ H−1/2
≤Λ , by the duality (H

1/2
≤Λ )′ = H

−1/2
≤Λ . We

conclude that v + γu′ ∈ γB0. In particular,

Ṽ = Q<−Λ(γB0).

Since Ȟ = H
1/2
<−Λ⊕H

−1/2
≥Λ , we have v+γu′ ∈ Ȟ if and only if v ∈ H1/2

<−Λ.

We now use that B is elliptic. Then Ba = (γB0) ∩ Ȟ is regular and
hence (γB0) ∩ Ȟ = (γB0) ∩ H1/2. It follows that v + γu′ ∈ γB0 as
above belongs to H1/2 if and only if v ∈ H1/2, and therefore

V̂ = Q<−Λ(Ba).

By the symmetry of the roles of B = (Ba)a and Ba and switching the
roles of weak and strong inequalities, see Remark 1.64, we get

Û = Q≤Λ(B) = E0 ∩H1/2
≤Λ ,
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where E = γ(Ba ∩ H1/2
≥Λ ). By Lemma 1.62, E is finite-dimensional.

Hence the sesquilinear form B−1/2 identifies Ũ = E0 ∩H−1/2
≤Λ with the

dual space of Û . In particular, in the above v+u′, we may take u′ = ĝ′v,
where ĝ′ : Ṽ → Ũ is the dual map of ĝ.

We now recall that u′ = ĝ′v is in H1/2 if v ∈ H1/2, by the regularity
of Ba. By interpolation we get that ĝ′ is the extension of a 1/2-smooth
linear map g∗ : V → U . By symmetry, g∗ is the adjoint of a 1/2-smooth

map g : U → V and ĝ is the restriction of g to Û . �

1.67. Corollary. Let B ⊂ Ȟ be an elliptic boundary condition and
Λ ∈ R. Then γB⊥ is the closure of Ba in H and

(1) B̄ ∩H≥Λ = B ∩H1/2
≥Λ , B⊥ ∩H<Λ = γ(Ba ∩H1/2

>−Λ),

where B̄ denotes the closure of B in H. Moreover, (B̄,H≥Λ) is a
Fredholm pair in H with index

ind(B̄,H≥Λ) = dim(B̄ ∩H≥Λ)− dim(B⊥ ∩H<Λ)(2)

= dim(B ∩H1/2
≥Λ )− dim(Ba ∩H1/2

>−Λ). �

It is natural to ask whether the index formula in (1.67.2) gives the
index of DB,max for suitable Λ; this is in fact true for Λ = 0 if kerA = 0.

1.68. Proposition. Let kerA = 0. If B ⊂ Ȟ is a regular boundary
condition, then DB = DB,max is a left-Fredholm operator with

(1) (imDB)⊥ = kerDBa,max.

If B is elliptic, then DB is a Fredholm operator with

(2) indDB = dim B̄ ∩H≥ − dimB⊥ ∩H<.

Proof. We again use Hörmander’s Criterion from Lemma A.11. Since
the kernel of A vanishes, we have the representation formula

σ = EQ>σ(0) + SDDmaxσ,

characterizing elements σ ∈ Dmax. Furthermore,

SD : L2(R+, H)→ {σ ∈ H1(e) : Q>σ(0) = 0}
is an isomorphism, by Lemma 1.32. Let (σn) be a bounded sequence
in DB,max such that Dmaxσn converges in L2(R+, H). Then (σn(0))
is a bounded sequence in B and (SDDmaxσn) converges in H1(e). It
follows that the sequence (Q≤σn(0) = (SDDmaxσn)(0)) converges in

H
1/2
≤ . By Lemma 1.62 and Hörmander’s criterion again, (σn(0)) has

a convergent subsequence in B. Hence (σn = EQ>σn(0) + SDDmaxσn)
has a convergent subsequence in DB,max. This shows that DB is a
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left-Fredholm operator. Now D∗
B = DBa,max, see (1.54), therefore

(imDB)⊥ = kerDBa,max as claimed. �

We note that the image of DB,max is not closed if kerA 6= 0 while the
index formula in (1.67.2) holds in general. This suggests a possible ex-
tension of Proposition 1.68 which we achieve by conveniently enlarging
the domain of Dmax. We recall that Q0 and Q6= commute with Dmax

and that Dmax splits perpendicularly with components H1(R+, Q0H)
and Q6=Dmax. As is well known, the source of trouble is the part

Dmax : H1(R+, Q0H)→ L2(R+, Q0H).

ofDmax. We restore Fredholm properties ofD by enlargingH1(R+, Q0H).
Our discussion is motivated by the work of the third author on non-
parabolic Dirac operators, compare [Ca2] and Section 2.3 below.

By Corollary 1.40, we have equivalences of norms on Dmax,

||σ||2Dmax
≈ ||Q>σ(0)||2−1/2 + ||τ ||2L2(R+,H 6=) + ||σ0||2H1(R+,Q0H)

= ||Q>σ(0)||2−1/2 + ||Dmaxσ||2L2(R+,H) + ||σ0||2L2(R+,Q0H),(1.69)

≈ ||σ(0)||2Ȟ + ||Dmaxσ||2L2(R+,H) + ||σ0||2L2(R+,Q0H),(1.70)

where τ = DmaxQ6=σ and σ0 = Q0σ and where we note, for the last
equivalence, that R is continuous on Dmax. We now introduce a con-
tinuous seminorm || · ||W on Dmax,

(1.71) ||σ||2W := ||σ(0)||2Ȟ + ||Dmaxσ||2L2(R+,H) ≤ C · ||σ||2Dmax
.

Corollary 1.40 implies that || · ||W is actually a norm on Dmax. Clearly,
|| · ||W and the graph norm of Dmax are equivalent if kerA = 0. On the
other hand, if kerA 6= 0, then || · ||W is strictly weaker than the graph
norm of Dmax. However, one easily verifies that for any T > 0 there is
a constant CT such that

(1.72) ||σ||L2([0,T ],H) ≤ CT ||σ||W ,

for all σ ∈ Dmax.
We now let W be the closure of Dmax under the norm || · ||W . By

Lemma 1.42.1, Lc(e) is dense in W . By definition, Dmax extends to a
continuous operator

(1.73) Dext : W → L2(R+, H).

We observe now that

(1.74) W = Q6=W ⊕Q0W = Q6=Dmax ⊕Q0W.
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The linear map S0 : Q0H ⊕ L2(R+, Q0H)→ Q0W defined by

(1.75) S0(x, τ)(t) := x+ γ∗
∫ t

0

τ(s)ds,

is an isomorphism with DextS0(z, τ) = τ . In particular,

(1.76) Q0W ⊂ H1
loc(R+, Q0H).

With R(S0(x, τ)) := x we obtain a continuous extension

(1.77) R : W → Ȟ, Rσ =: σ(0),

of R to W . For a boundary condition B ⊂ Ȟ , we set

(1.78) WB := {σ ∈W : σ(0) ∈ B} and DB,ext := Dext|WB.

We see from the above that L2(R+, Q0H) ⊂ imDB,ext, irrespective of
the boundary condition B.

1.79. Theorem. If B is regular, then DB,ext is a left-Fredholm operator
with (imDB,ext)

⊥ = kerDBa,max.

Proof. Use the representation Ex + SDτ + S0(y, ρ) of elements of W ,

where x ∈ H
−1/2
> , τ ∈ L2(R, Q6=H), y ∈ Q0H , and ρ ∈ L2(R, Q0H),

and adapt the argument from the proof of Proposition 1.68. �

For any boundary condition B ⊂ Ȟ ,

kerDB,max = DB,max ∩ kerDmax,

kerDB,ext = WB ∩ kerDext = WB ∩ (kerDmax +Q0H).
(1.80)

In particular, we have isomorphisms

R : kerDB,max → B ∩ Ȟ>,

R : kerDB,ext → B ∩ Ȟ≥.
(1.81)

Recall that a boundary condition B is elliptic if B and Ba are regular.
As above, we let B̄ denote the closure of B in H .

1.82. Corollary and Definition. If B is elliptic, then DB,ext is a
Fredholm operator with index

indDB,ext = dim(B ∩H≥)− dim(B⊥ ∩H<) = ind(B̄,H≥),

the extended index of DB, also denoted by indextDB

Proof. Immediate from (1.81), Theorem 1.79, and Corollary 1.67. �
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1.5. Self-adjoint boundary conditions. We say that a boundary
condition B ⊂ Ȟ is self-adjoint if B = Ba. By definition, a regular
self-adjoint boundary condition is elliptic.

We say that (H0, ω) is a Hermitian symplectic vector space if the
±1-eigenspaces of the involution iγ of H0 have equal dimension. Then
a subspace L ⊂ H0 is Lagrangian if L ⊥ γL and L⊕ γL = H0.

1.83. Theorem. Regular self-adjoint boundary conditions exist if and
only if (H0, ω) is a Hermitian symplectic vector space (where H0 = 0 is
not excluded). Then regular self-adjoint boundary conditions are given
by the following data: a Lagrangian subspace L ⊂ H0, an orthogonal

decomposition H< = F ⊕ V , where F ⊂ H
1/2
< is of finite dimension,

and a 1/2-smooth map g : V ⊕ L → V ⊕ L with g∗ = g. The regular
self-adjoint boundary condition B given by such data is

B = γF ⊕ {w + γgw : w ∈ (V ⊕ L) ∩H1/2}.

Write H = H+⊕H−, where H± is the ±1 eigenspace of iγ. Since A
anti-commutes with γ, A maps H± to H∓ so that the restriction of A
to H+ is a Fredholm operator (in general unbounded) to H−. Since γ
intertwines eigenspaces of A with opposite eigenvalues, it follows easily
that (H0, ω) is a Hermitian symplectic vector space if and only if the
Fredholm operator A+ has index 0.

1.84. Corollary. With H± and A+ as above, Ȟ contains elliptic self-
adjoint boundary conditions if and only if indA+ = 0. �

Proof of Theorem 1.83. Any data as in the assertion give rise to a reg-
ular self-adjoint boundary condition. As for the existence, if L ⊂ H0 is
a Lagrangian subspace, then L⊕H< is a regular self-adjoint boundary
condition.

To prove the asserted characterization, we first observe that regular
self-adjoint boundary conditions are elliptic, so that we can use the
description of elliptic boundary conditions given in Proposition 1.65.

Let B be an elliptic boundary condition. By Proposition 1.65, there
are orthogonal decompositions

H≤ = E ⊕ U and H< = F ⊕ V,

where E,F ⊂ H1/2 are of finite dimension, and a 1/2-smooth linear
map b : U → V such that

B = γF ⊕ {u+ γbu : u ∈ U ∩H1/2},
Ba = γE ⊕ {v + γb∗v : v ∈ V ∩H1/2}.
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From now on we assume that B = Ba. Then the H-closure B̄ = γB⊥,
and hence any element in B̄ can be written in any of the following two
ways:

γf + u+ γbu = γf + u< + u0 + γbu,

where u< = Q<u and u0 = Q0u, and

γe+ v + γb∗v = γe< + γe0 + v + γb∗v,

where e< = Q<e and e0 = Q0e. We are going to compare the H<, H0,
and H> components of elements of B̄ in the above two representation:

We observe first that V = Q<(U) = {u< : u ∈ U}. Since E and F
are the orthogonal complements of U in H≤ and V in H<, it follows
that

F = E ∩H< ⊂ E.

Let L := U ∩H0 and

BL := {u+ γbu : u ∈ L} ⊂ B̄.

Let u ∈ L. Then u+ γbu ∈ B̄ and hence there exist e ∈ E and v ∈ V
such that

u+ γbu = γe+ v + γb∗v.

Clearly v = 0, hence b∗v = 0, and hence u = γe0 and bu = e<. We get
γu− bu = −e and hence

γBL = {γu− bu : u ∈ L} ⊂ E.

Let e ∈ E. Then γe ∈ B̄ and hence there exist f ∈ F and u ∈ U such
that

γe = γf + u< + u0 + γbu.

We obtain u< = 0, hence γe0 = u0 = u ∈ L and e< = f + bu. Since
F ⊂ E, we get

E = F ⊕ {γu− bu : u ∈ L} = F ⊕ γBL.

Since U is the orthogonal complement of E in H≤ and Q0(E) = γL, the
orthogonal complement of γL in H0 belongs to U , that is, to L, by the
definition of L. We conclude that we have an orthogonal decomposition

H0 = L⊕ γL.
It follows that (H0, ω) is a Hermitian symplectic vector space and that
L is a Lagrangian subspace of (H0, ω).

Since B̄ = γB⊥ and E = F ⊕ γBL, we have orthogonal sums

B̄ = γE ⊕ {v + γb∗v : v ∈ V } =: γF ⊕ BL ⊕ BV .

Let W := V ⊕ L. Then H decomposes orthogonally as

H = F ⊕W ⊕ γF ⊕ γW.
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For a subspace K ⊂ H , let QK be the orthogonal projection in H onto
K. Then QW = QV +QL.

Let x ∈ BL ⊕BV and write x = u+ γbu + v + γb∗v with u ∈ L and
v ∈ V . Since QF (b∗v) = QF (γb∗v) = 0, we have

γQW b
∗v = γQF⊕W b

∗v = (I −QF⊕W )γb∗v = (I −QW )γb∗v.

Therefore

x = u+ γbu + v + γb∗v

= u+QWγb
∗v + v + γbu+ (I −QW )γb∗v

= u+QWγb
∗v + v + γ(bu+QW b

∗v).

Since γb∗v ∈ H≥, we have QWγb
∗v = QLγb

∗v. Hence

x = (u+QLγb
∗v) + v + γ

(
b(u+QLγb

∗v) + (QW b
∗ − bQLγb

∗)v
)

= (QL +QV )x+ γg(QWx) = QWx+ γg(QWx),

where g : W → W is the 1/2-smooth linear map given by

gw = bQLw + (QW b
∗ − bQLγb

∗)QVw.

We conclude that

B̄ = γF ⊕ {w + γgw : w ∈W}.
Now

γB̄ = B⊥ = F ⊕ {γw − g∗w : w ∈W},
hence g = g∗. �

1.85. Example. Let β : H → H be 1/2-smooth with

β∗ = β−1 = β,(1)

γβ + βγ = 0,(2)

Aβ + βA = 0.(3)

Then B = {x ∈ H1/2 : βx = x} is a regular self-adjoint boundary
condition.

For example, given a Dirac system d = (H,A, γ), consider the Dirac
system

d̃ = (H ⊕H, (A,−A), (γ,−γ)).
Then β : H ⊕ H → H ⊕ H , β(x, y) = (y, x), satisfies (1)–(3). The
corresponding boundary condition B = {(x, x) : x ∈ H1/2} is regular
and self-adjoint. It arises as the transmission boundary condition when
cutting a manifold along a hypersurface.
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1.6. Regular pairs of projections. Let P and Q be 1/2-smooth
projections in H . We say that the ordered pair (P,Q) is regular if

(1.86) x ∈ H−1/2, P̃ x = 0, Q̃x ∈ H1/2 =⇒ x ∈ H1/2.

Roughly speaking, this means that Q is close to I−P ; compare Propo-
sition 1.93 below.

1.87. Lemma. Let (P,Q) be a pair of 1/2-smooth projections in H.
Then (P,Q) is regular if and only if

x ∈ H−1/2, P̃ x ∈ H1/2, Q̃x ∈ H1/2 =⇒ x ∈ H1/2.

Proof. Assume that (P,Q) is regular. Consider x ∈ H−1/2 with P̃ x
and Q̃x in H1/2. Set y := (I − P̃ )x ∈ H−1/2. Then P̃ y = 0 and

Q̃y = Q̃x− Q̃P̃x = Q̃x− Q̂P̃ x ∈ H1/2.

By regularity, y ∈ H1/2 and hence x = P̃ x+ y ∈ H1/2. �

1.88. Corollary (Symmetry and Stability).

(1) The regularity relation on pairs of 1/2-smooth projections is
symmetric.

(2) The regularity relation is stable under smoothing perturbations,
i.e. if P1, P2, Q1, Q2 are 1/2-smooth projections in H with P1−
P2 and Q1 −Q2 smoothing, then (P1, Q1) is regular if and only
if (P2, Q2) is regular. �

We need stronger regularity conditions: The pair (P,Q) is called
strongly regular if both (P,Q) and (I − P, I −Q) are regular.

1.89. Theorem. Let P and Q be 1/2-smooth projections in H. Then
the following conditions are equivalent.

(1) The pair (P,Q) is strongly regular.
(2) The operator

T = T (P,Q) := P −Q = P (I −Q)− (I − P )Q

satisfies half of the condition 1.26.1, i.e.,

x ∈ H−1/2, T̃ x ∈ H1/2 =⇒ x ∈ H1/2.

Proof. Assume that the pair (P,Q) is strongly regular. Let x ∈ H−1/2

with T̃ x ∈ H1/2. Then (I−P̃ )P̃ x = 0 and (I−Q̃)P̃ x = (I−Q̂)T̃ x is in

H1/2. Hence P̃ x ∈ H1/2, by the regularity of (I − P, I −Q). A similar
argument shows that Q̃x ∈ H1/2, Hence x ∈ H1/2, by the regularity of
(P,Q). The other direction is obvious. �
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In order to link strong regularity to Fredholm properties of suitable
operators, as in [BL2], we have to require regularity of the adjoint
projections, too.

1.90. Theorem. Let P and Q be 1/2-smooth projections in H. Then
the following conditions are equivalent:

(1) The pairs (P,Q) and (P ∗, Q∗) are strongly regular.

(2) With T = T (P,Q) = P − Q as before, the operators T̂ and T̂ ∗

are Fredholm in H1/2 with ind T̂ + ind T̂ ∗ = 0.

If any of these conditions holds then both T̃ and T̃ ∗ restrict to Fredholm
operators in each Hs, |s| ≤ 1/2, with kernels independent of s.

Proof. From Theorem 1.89 we know that the strong regularity of the
pairs (P,Q) and (P ∗, Q∗) is equivalent to the condition 1.26.1 for T and
T ∗. By Lemma 1.26, this condition is equivalent to Condition (2) of the
theorem. The Fredholm property of the restrictions and the constancy
of their kernels follows from Corollary 1.27. �

1.91. Remarks. 2) (I −P ∗, I −Q∗) is (strongly) regular if and only if
(Pγ, Qγ) is (strongly) regular.
1) If P and Q are orthogonal, that is, P = P ∗ and Q = Q∗, then (P,Q)
is strongly regular if and only if (P,Q) and (Pγ, Qγ) are regular.

1.92. Corollary. For any pair P,Q of orthogonal 1/2-smooth projec-
tions in H, the following conditions are equivalent.

(1) The pairs (P,Q) and (Pγ , Qγ) are regular.

(2) T̂ is a Fredholm operator, necessarily of index 0, in H1/2. �

With any projection Q in H , we associate the involution J(Q) :=
I − 2Q.

1.93. Proposition. If there is a representation P = I −Q+R1 +R2

in L(H1/2), where R2 and R∗
2 are compact in H1/2 and

‖J(Q)R1‖H1/2, ‖R∗
1J(Q∗)‖H1/2 < 1,

then (P,Q) and (P ∗, Q∗) are strongly regular.

Proof. We show that Condition 2 of Theorem 1.90 holds. We have

T = J(Q) +R1 +R2 = J(Q)(I + J(Q)R1) +R2

and, similarly,
T ∗ = (I +R∗

1J(Q∗))J(Q∗) +R∗
2.

The bound on the norms now implies that both T̂ and T̂ ∗ are Fredholm
operators in H1/2 of index 0, hence the assertion. �
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In [BL2, Theorem 1.3] a criterion for regularity is given which uses
only properties of P and Q in H , without referring to other Sobolev
spaces, at the expense of introducing more conditions on P and Q.
This result is a special case of our analysis as we will show now.

1.94. Lemma. Let S be a 1/2-smooth Fredholm operator in H and de-
note by Kr(l) the orthogonal projections onto ker S and ker S∗, respec-
tively. Then the following conditions are equivalent:

(1) S admits a 1/2-smooth parametrix U ∈ L(H) such that

US = I −Kr and SU = I −Kl.

(2) S and S∗ restrict respectively extend to Fredholm operators in
each Hs, |s| ≤ 1/2, with index independent of s.

Proof. (1) ⇒ (2). If U restricts to H1/2 then Kr = I − US and Kl =
I −SU as well. Since both projections have finite rank and since H1/2

is dense in H , it follows that both projections are actually smoothing.
Now (2) follows from Lemma 1.26 and Corollary 1.27.
(2) ⇒ (1). This follows from the explicit construction of Kr(l) in the
proof of Lemma 1.26.4. �

This lemma gives a useful criterion for linking the regularity of a
1/2-smooth projection P to Fredholm properties of T = P −Q> in H ,
provided that we can control the mapping properties of parametrices.
To construct a parametrix U satisfying Condition (1) of Lemma 1.94,
we start with the polar decomposition T = V |T | of T , where

|T | = (T ∗T )1/2, V ∗V = I −Kr, V V ∗ = I −Kl.

Now 0 is an isolated point in spec(T ∗T ) if T is a Fredholm operator,
hence {Re z > 0} ∩ spec(T ∗T ) is a compact subset of (0,∞). The
function f = f(z) = 1/

√
z is holomorphic in {Re z > 0}. Thus we can

define the operator |T |−1 := f(T ∗T ) by the Dunford-Taylor integral of
f along a simple closed curve in {Re z > 0} surrounding spec T ∗T \{0}
(cf. [Yo, p.225]). Then we have |T ||T |−1 = I −Kr, which implies that

U := |T |−1V ∗

satisfies UT = I − Kr and TU = I − Kl. Now it is apparent that
this parametrix construction leads to a 1/2-smooth parametrix for all
Fredholm operators inside an operator algebra, A ⊂ L(H), if A has
the following properties:

(1) A is a *-algebra with identity,
(2) A admits holomorphic functional calculus, i.e., is closed under

forming Dunford-Taylor integrals,
(3) A is contained in the space of 1/2-smooth operators.
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We combine these facts in the following result which generalizes The-
orem 1.3 in [BL2].

1.95. Theorem. Let P and Q be 1/2-smooth projections in H and
assume that P and Q are contained in some operator algebra A ⊂ L(H)
which satisfies the above properties. Then the following conditions are
equivalent:

(1) The pairs (P,Q) and (P ∗, Q∗) are strongly regular.
(2) The operator T := P −Q is Fredholm in H.

The conditions imposed on the algebra A are not unnatural; e.g.,
they are satisfied for the algebra of pseudodifferential operators of order
zero on a compact manifold.

We now come back to Dirac systems and study the more traditional
boundary conditions defined by projections in H . Let P be a 1/2-
smooth projection in H . Then P induces a continuous projection in Ȟ
iff Q≤P̃Q> is smoothing. In any case,

(1.96) BP := ker P̃ ∩ Ȟ
is a closed subspace of Ȟ , that is, a boundary condition in the sense
of Definition 1.51. Furthermore, ker P̂ is a closed subspace of Ĥ. In
their work, Atiyah, Patodi, and Singer consider the boundary condition
given by PAPS := Q>, see (2.3) in [APS].

1.97. Remark. Let P be a 1/2-smooth projection in H that induces a
continuous projection P̌ in Ȟ. Since H1/2 is dense in Ȟ and P̌ (H1/2) ⊂
H1/2, BP ∩ H1/2 is dense in BP = ker P̌ . Hence BP is equal to the
closure of BP ∩H1/2 in Ȟ.

Suppose there is an x ∈ im P̌ \ H1/2 and set B = ker P̌ ⊕ Rx, a
closed subspace of Ȟ. If z = y+αx ∈ B is in H1/2, then also Pz = αx,
hence α = 0. It follows that H1/2 is not dense in B. By what we just
said, B is a boundary condition that is not realizable as the boundary
condition BR of a 1/2-smooth projection R that induces a continuous
projection in Ȟ.

The Dirac operators and domains corresponding to the boundary
condition BP posed by a 1/2-smooth projection P in H will be denoted
as above, except that we substitute the subscript P for BP .

1.98. Definition. We say that a projection P : H → H is regular if it
is 1/2-smooth and BP is a regular boundary condition.

1.99. Proposition. For a 1/2-smooth projection P in H, the following
are equivalent:
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(1) P is regular.

(2) BP = ker P̂ .
(3) For some or, equivalently, any Λ ∈ R, we have

x ∈ H−1/2, P̃ x = 0, Q≤Λx ∈ H1/2 =⇒ x ∈ H1/2.

Proof. The condition in (2) expresses that BP ⊂ H1/2, hence that BP is
a regular boundary condition, by Proposition 1.61.3. Since Ȟ is equal

to the direct sum H
1/2
≤Λ ⊕ H

−1/2
>Λ , the condition in (3) is just another

way of saying that BP ⊂ H1/2. �

Part 3 of the preceding result is the regularity criterion introduced
in condition (4.6c) of [BL2].

We note that for a regular projection P in H with corresponding
boundary condition BP = ker P̂ , the adjoint boundary condition is
given by

(1.100) (BP )a = ker P̃γ ∩ Ȟ with Pγ := γ∗(I − P ∗)γ.

We say that P is elliptic if P and Pγ are regular. Then

(1.101) (BP )a = ker P̂γ = γ im P̂ ∗.

1.102. Corollary. If P is an elliptic orthogonal projection in H, then
DP,ext is a Fredholm operator with extended index

indDP,ext = dim(kerP ∩H≥)− dim(imP ∩H<). �
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2. Dirac-Schrödinger systems

2.1. Dirac systems with Lipschitz coefficients. In this section,
we construct and describe a model for the geometric operators we are
interested in; this model will be introduced axiomatically.

Let H be a separable complex Hilbert space. For t ∈ R+, let 〈·, ·〉t
be a family of scalar products with norm || · ||t compatible with the
Hilbert space structure of H .

I. Axiom. For all T ∈ R+, there is a constant CT such that

|〈u, v〉r − 〈u, v〉s| ≤ CT ||u||t||v||t|r − s|
for all u, v ∈ H and r, s, t ∈ [0, T ].

It would be equivalent to require the estimate for t = 0 only instead
of requiring it for arbitrary t ∈ [0, T ].

In the following we will write 〈σ, τ〉 for the function t 7→ 〈σ(t), τ(t)〉t,
and similarly for related expressions.

Our data define a Lipschitz Hilbert bundle H over R+ with fibers
Ht = (H, 〈·, ·〉t), t ∈ R+. Any bundle H = (Ht)t∈R+

of Hilbert spaces
which is (locally) Lipschitz over R+ is isometric to such a model bundle.

For t ∈ R+, define a positive definite operator Gt ∈ L(H) by

(2.1) 〈Gtu, v〉0 = 〈u, v〉t, u, v ∈ H.
The operators Gt and G−1

t are locally Lipschitz functions of t in L(H).
An easy application of Lemma 1.3 gives the following result.

2.2. Lemma. The operator function G is weakly differentiable almost
everywhere in R+ with symmetric derivative G′

t ∈ L∞
loc(R+,L(H)).

More generally, if H1 and H2 are separable Hilbert spaces, then any
function in Liploc(R+,L(H1, H2)) is weakly differentiable almost every-
where, and the norm of the derivative is locally uniformly bounded.

Now we set

(2.3) Γ :=
1

2
G−1
t G′

t ∈ L∞
loc(R+,L(H)).

If ∂t denotes the derivative with respect to t, ∂tσ = σ′, then

(2.4) ∂ :=
(
∂t + Γ

)
: Liploc(R+, H)→ L∞

loc(R+, H)

is a continuous metric connection, where metric means that

(2.5) 〈σ1, σ2〉′ = 〈∂σ1, σ2〉+ 〈σ1, ∂σ2〉,
for all σ1, σ2 ∈ Liploc(R+, H).
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2.6. Remark. Any other continuous metric connection

∂̃ : Liploc(R+, H)→ L∞
loc(R+, H)

is of the form ∂̃ = ∂+ Γ̃, where Γ̃ ∈ L∞
loc(R+,L(H)) takes values in the

space of skew-Hermitian operators.

II. Axiom. There is a family A of self-adjoint operators At on Ht,
t ∈ R+, with common domain HA and graph norm || · ||At such that

(1) with respect to the graph norm || · ||A0
on HA,

the embedding HA → H is compact;
(2) for all T ∈ R+, there is a constant CT such that

|〈Aru, v〉r − 〈Asu, v〉s| ≤ CT ||u||At||v||t|r − s|
for all u ∈ HA, v ∈ H , and r, s, t ∈ [0, T ].

As above in Axiom I, it would be equivalent to require the estimate
for t = 0 only instead of requiring it for arbitrary t ∈ [0, T ].

2.7. Remark. It would be tempting to use the metric connection ∂ to
identify H with R+×H0. But this parallel transport may not preserve
HA if Γ does not, and this happens indeed in important examples.

A pair e := (H,A) satisfying Axioms I and II will be called an
evolution system. To any evolution system e we can naturally associate
a family of constant coefficient system et, t ∈ R+, defined by

(2.8) et := (Ht, At).

For any evolution system e, we introduce the Hilbert space L2(H) as
completion of the space Lc(e0) under the norm

(2.9) ||σ||2L2(H) :=

∫ ∞

0

||σ||2tdt.

Then we can form the linear operator

(2.10) L := ∂ + A : Lc(e0)→ L2(H),

which we call the evolution operator associated to e. Note that the
domain of L only depends on the constant coefficient system e0.

The evolution operator L introduced above is not symmetric on the
dense subspace L0,c(e

0) of L2(H). A modification as in the case of
constant coefficients leads to a symmetric operator.

III. Axiom. There is a section

γ ∈ Liploc

(
R+,L(H)

)
∩ L∞

loc

(
R+,L(HA)

)
,
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such that the following relations hold:

−γt = γ∗t = γ−1
t on Ht,(1)

Atγt + γtAt = 0 on HA,(2)

[∂, γ] = 0 on Liploc(R+, H).(3)

Note that γLc(e0) ⊂ Lc(e0), by assumption.
A triple d := (H,A, γ) as above satisfying Axioms I–III, is called a

Dirac system. Now we are ready to introduce our first model operator,
the Dirac operator

(2.11) D := γ(∂ + A) : Lloc(e
0)→ L∞

loc(R+, H),

associated to the Dirac system (H,A, γ).
For later purposes it is important to note that, pointwise,

(2.12) ||Dσ|| = ||Lσ||
for all σ ∈ Lloc(e

0), so that estimates for the usual norms of Lσ also
hold for Dσ.

The restriction D0,c ofD to the domain D0,c := L0,c(e
0) is symmetric;

we denote by Dmin, with domain Dmin, the closure of D0,c in L2(H), and
by Dmax, with domain Dmax, the adjoint operator. In order to define
self-adjoint extensions of Dmin, we will introduce boundary conditions
as in Chapter 1. Again, this approach is based on integration by parts
and the boundary form ω: (1.10) and (1.11) translate literally in view
of the following computation, valid for all σ1, σ2 ∈ Lc(e0),
(2.13) 〈γσ1, σ2〉′ = 〈γ∂σ1, σ2〉+ 〈γσ1, ∂σ2〉 = 〈Dσ1, σ2〉 − 〈σ1, Dσ2〉,
which is an easy consequence of our axioms; therefore, we also get

(2.14) (Dσ1, σ2)− (σ1, Dσ2) = ω(σ1(0), σ2(0)).

In particular, we have Lc(e0) ⊂ Dmax.

2.2. Comparison with constant coefficients. Let d be a Dirac sys-
tem with Lipschitz coefficients. Our strategy in dealing with d aims at
some kind of comparison with constant Dirac systems, where we have
substantial control over the solution theory. Any such attempt meets
with two difficulties, firstly that we lack any a priori control on the
domain of the maximal operator Dmax = (D0,c)

∗ and secondly, that the
domain of the adjoint operator to At in H0 varies with t.

For any t ≥ 0, we introduce the Dirac system

(2.15) dt = (Ht, At, γt)
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with constant coefficients and the Dirac system dct with coefficients

Hct
s = (H, 〈., .〉s), Acts = As, γcts = γs for s ≤ t,

Hct
s = (H, 〈., .〉t), Acts = At, γcts = γt for s ≥ t.

(2.16)

Objects associated to dt and dct will be decorated with a superscript t
and ct, respectively. We think of dct as a kind of interpolation between
d0 = dc0 and d.

2.17. Theorem. The Dirac systems dct compare with d0 as follows:

(1) For all t ≥ 0, we have Dctmin = D0
min and Dctmax = D0

max.
(2) For all T ≥ 0, there is a constant CT such that

C−1
T || · ||D0

max
≤ || · ||Dct

max
≤ CT || · ||D0

max

for all t ∈ [0, T ].

The proof of Theorem 2.17 will be given below. In preparation, we
will study the operators GctDct, which are symmetric in L2(H0) with
domain Lc(e0).

We start with some estimates. Axioms I and III imply that, for any
t ≥ 0, there is a constant CT such that, for all r, s ∈ [0, T ],

||Gsγsγ
−1
r −Gr||0 ≤ CT |r − s|,(2.18)

||GrγrΓr||0 ≤ CT ,(2.19)

||Grγr||0 ≤ CT .(2.20)

We will also need estimates on the operators At. From Axiom II we
get, for 0 ≤ s, t ≤ T and x ∈ HA,

||Asx||2s ≤ CT ||x||At||Asx||t + 〈Atx,Asx〉t
≤ CT ||x||At||Asx||t + ||Atx||t||Asx||t
≤ CT ||x||At||Asx||s,

where the constant CT may change from line to line. Therefore

(2.21) || · ||As ≤ CT || · ||At
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for all s, t ∈ [0, T ]. In other words, the graph norms || · ||At are locally
uniformly equivalent. For all r, s, t ∈ [0, T ] and x ∈ HA, we also have

||Arx− Asx||2t ≤ CT ||Arx− Asx||2r
= CT · 〈Arx−Asx,Arx− Asx〉r

+ CT · 〈Asx− Asx,Arx−Asx〉s
≤ CT |r − s|||x||At||Arx−Asx||t

+ CT
∣∣〈Asx,Arx− Asx〉r − 〈Asx,Arx−Asx〉s

∣∣
≤ CT |r − s|(||x||At + ||Asx||t)||Arx− Asx||t
≤ CT |r − s| · ||x||At||Arx−Asx||t,

where we use Axiom I and (2.21) in the last two inequalities. Therefore

(2.22) ||Arx−Asx||t ≤ CT |r − s| · ||x||At

for all 0 ≤ r, s, t ≤ T and x ∈ HA.
The main estimate we need is of Kato-Rellich type:

2.23. Lemma. Given T ≥ 0, there is a constant CT such that, for all
r ≤ s in [0, T ] and σ ∈ Lc(e0),
||GcrDcrσ −GcsDcsσ||L2(H0)

≤ CT ||σ||L2(H0) + CT |r − s| · ||GcrDcrσ||L2(H0).

Proof. We start by comparing the coefficients of the two operators
GcrDcr and GcsDcs. On [0, r], they coincide. At t ∈ (r, s], we have

(GcsDcs)|t = Gtγt(∂t + Γt + At)

= Gtγtγ
−1
r Dcr +GtγtΓt +Gtγt(At − Ar).

At t ∈ [s,∞), we have

(GcsDcs)|t = Gsγs(∂t + As) = Gsγsγ
−1
r Dcr +Gsγs(As − Ar).

Let σ ∈ Lc(e0). Then GcrDcrσ and GcsDcsσ coincide on [0, r]. Using
(2.18), (2.19), and (2.20), we get

||GcrDcrσ −GcsDcsσ||L2(H0) ≤ CT |r − s| · ||Dcrσ||L2(H0)

+ CT ||σ||L2(H0) + CT ||(Acr −Acs)σ||L2(H0).
(2.24)

By Axiom I,

||Dcrσ||L2(H0) ≤ CT ||GcrDcrσ||L2(H0),

hence the first two terms on the right in (2.24) are under control as
desired. It remains to get a good upper bound for ||(Acr−Acs)σ||L2(H0).
By (2.21) and (2.22),

||(Acr −Acs)σ||L2(H0) ≤ CT |r − s| · ||σ||L2(H0) + CT ||ϕArσ||L2(R+,Hr),
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where ϕ(t) = inf(t − r, s − r) for t ≥ r and ϕ(t) = 0 for t ≤ r. It
remains to estimate the second term on the right of this inequality. We
compute

||(ϕσ)′ + ϕArσ||2r = ||(ϕσ)′||2r + ||ϕArσ||2r + 〈ϕArσ, ϕσ〉′r.
Now ϕσ ∈ Lc(e0) vanishes at 0, hence

||Dr(ϕσ)||2L2(R+,Hr) = ||(ϕσ)′||2L2(R+,Hr) + ||ϕArσ||2L2(R+,Hr).

Since Dr(ϕσ) = ϕ′γrσ + ϕDrσ, we conclude

||ϕArσ||L2(R+,Hr) ≤ CT · ||σ||L2(H0) + ||Dr(ϕσ)||L2(R+,Hr)

≤ CT · ||σ||L2(H0) + |s− r|||Dcrσ||L2(R+,Hr)

≤ CT · ||σ||L2(H0) + CT |s− r| · ||GcrDcrσ||L2(H0). �

Proof of Theorem 2.17. We note first that the Hilbert spaces L2(Hct)
and L2(H0) coincide as vector spaces of (equivalence classes of) maps.
The operators Dct and GctDct have the same minimal and maximal
domains. Hence we may as well consider the family of operators GctDct

on L2(H0). We introduce operators

(2.25) St =

(
0 GctDct

GctDct
0,c 0

)
and T t =

(
0 GctDct

max

GctDct
min 0

)

in L2(H0) ⊕ L2(H0) with domain L0,c(e
0) ⊕ Lc(e0) and Dctmin ⊕ Dctmax,

respectively. We note that St is symmetric and that T t is self-adjoint
with St ⊂ T t.

Fix T ≥ 0 and assume that, for some r ∈ [0, T ], the closure of Sr is
equal to T r with domain D0

min⊕D0
max. By the results of the first section,

this holds for r = 0. By the Kato-Rellich Theorem, see Theorem V.4.4
in [Ka] and Lemma 2.23, we get that the closure of Ss is self-adjoint
with domain D0

min ⊕ D0
max for all s ≥ r in [0, T ] with (s − r)C < 1/2,

where C = CT is the constant from Lemma 2.23. Since Ss ⊂ T s and
T s is self-adjoint, we conclude that the closure of Ss is equal to T s for
all such s. By the connectedness of [0, T ], we get that the closure of Sr

is equal to T r with domain D0
min ⊕D0

max for all r ∈ [0, T ]. This proves
the first assertion.

As for the proof of the second assertion, we note that Lemma 2.23
implies that Dcr

max and Dcs
max have equivalent graph norms on their com-

mon domain D0
max as soon as |r−s|C < 1. Again by the connectedness

of [0, T ], the graph norm of Dct
max is equivalent to the one of D0

max.
Hence there is a constant as claimed. �

For applications it is useful to pass to a somewhat more general class
of systems and operators.
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2.26. Definition. A Dirac-Schrödinger system is a pair (d, V ) con-
sisting of a Dirac system d with Lipschitz coefficients and a potential
V ∈ L∞

loc(L(H)) with V = V ∗. The associated Dirac-Schrödinger op-
erator is given by

D := Dd + V : Lloc(e
0)→ L∞

loc(H),

where Dd denotes the Dirac operator of d.

2.27. Remark. It is not really necessary to assume that the potential
is Hermitian, V = V ∗. However, assuming V = V ∗ keeps the notation
a bit simpler. For most purposes, passing to the Dirac-Schrödinger
system with operator

(
0 Dd + V ∗

Dd + V 0

)

reduces the general case to the case where V is Hermitian.

In what follows, D is the Dirac-Schrödinger operator associated to a
Dirac-Schrödinger system (d, V ). From (2.14) we get

(2.28) (Dσ1, σ2)− (σ1, Dσ2) = ω(σ1(0), σ2(0)),

where σ1, σ2 ∈ Lc(e0). Therefore the restrictionD0,c ofD to the domain
D0,c is symmetric. We denote by Dmin, with domain Dmin, the closure
ofD0,c in L2(H) and by Dmax := (D0,c)

∗, with domain Dmax, the adjoint
operator of D0,c in L2(H).

We let D0 be the Dirac operator associated to the constant coefficient
Dirac system d0 and D0

max be its domain. The following result is crucial.

2.29. Theorem. If σ ∈ L2(H) has compact support, then σ ∈ Dmax if
and only if σ ∈ D0

max.

Proof. Suppose that σ ∈ L2(H) has compact support in [0, R]. Since
V ∈ L∞

loc(L(H)), V is uniformly bounded on [0, R], and hence we may
assume that V = 0. Choose T > R. For any t ∈ (R, T ), the coefficients
of D and Dct coincide on [0, R] ⊂ [0, t], compare (2.16). Hence σ ∈
Dmax if and only if σ ∈ Dctmax, and from Theorem 2.17, Dctmax = D0

max.
�

2.30. Proposition (Regularity). The maximal domain Dmax satisfies:

(1) Lc(e0) is dense in Dmax.
(2) σ ∈ Dmax is in H1

loc(e
0) if and only if σ(0) ∈ H1/2.

(3) Dmax ⊂ C(R+, Ȟ) ∩ C((0,∞), H1/2).
(4) The restriction map on Lc(e0) extends to a continuous

surjective map R : Dmax → Ȟ and Dmin = R−1(0).
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(5) For σ1, σ2 ∈ Dmax, we have

(Dmaxσ1, σ2)L2(H) − (σ1, Dmaxσ2)L2(H) = ω
(
σ1(0), σ2(0)

)
.

Proof. The first assertion follows from Lemma 1.42.1 and Theorem 2.29.
As for the proof of the second and third assertion, multiply σ ∈ Dmax

by a Lipschitz cutoff function χ which is equal to 1 on some interval
[0, R] and equal to 0 after 2R. Then χσ is in D0

max, by Theorem 2.29,
and χσ has the asserted regularity properties, by Lemma 1.42. By The-
orem 2.29, multiplication by χ defines a continuous operator from Dmax

to D0
max, hence the fourth assertion is immediate from Proposition 1.41.

By (1) it is enough to check the last assertion for σ1, σ2 ∈ Lc(e0). This
case was already observed in (2.28). �

2.3. Boundary conditions and Fredholm properties. We now
turn to the description of closed extensions of D, following closely the
outline given in Section 1.4; most proofs carry over easily via the link
given by Theorem 2.29. In what follows, we fix a Dirac-Schrödinger
system (d, V ) and define the Sobolev spaces Hs and Ȟ with respect to
A0 as in Section 1.2.

As before, a boundary condition is a closed linear subspace B ⊂ Ȟ.
Associated to a boundary condition B, we consider extensions of D0,c

as in Section 1.4:

LB,c := {σ ∈ Lc(e0) : σ(0) ∈ B},(2.31)

DB,c := D|LB,c;
DB := {σ ∈ Dmax ∩H1

loc(e
0) : σ(0) ∈ B},(2.32)

DB := Dmax|DB;

DB,max := {σ ∈ Dmax : σ(0) ∈ B},(2.33)

DB,max := Dmax|DB,max.

As before, since the restriction map R : Dmax → Ȟ is continuous and
B is closed in Ȟ, DB,max is a closed operator. Moreover, any closed
extension of D0,c with domain contained in Dmax is of this form.

2.34. Remark. The same formulas for the adjoint operators and the
closures as in (1.53)–(1.58) continue to hold and for the same reasons.
We do not repeat them here.

As before, we say that a boundary condition B ⊂ Ȟ is regular if
DB,max = DB. It is immediate from Proposition 2.30.2. that

(1) in the case of constant coefficients with potential V = 0, the
present definition coincides with the one in Section 1.4;
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(2) a boundary condition B is regular relative to (d, V ) if and only
if it is regular relative to d0.

As in Section 1.4, we say that a boundary condition B is elliptic if B
and Ba are regular.

In the case of constant coefficients with potential V = 0, DB is not a
Fredholm operator whenever kerA0 6= 0, even if B is elliptic. However,
we may look for an analogue of the space W which worked so nicely in
the constant coefficient case. From the continuity of R, established in
Theorem 2.30.4 we get that there is a constant C such that

(2.35) ||σ||2W := ||σ(0)||2Ȟ + ||Dmaxσ||2L2(H) ≤ C||σ||2Dmax
.

for all σ ∈ Dmax. The converse of (2.35) is not available in general, as
we know, but a localized version may hold. This requires the inequality
(1.72) which we now introduce as an additional axiom.

IV. Axiom. For each T > 0 there is a constant CT such that

||σ||L2([0,T ],H) ≤ CT ||σ||W for all σ ∈ Lc(e0).

Following G. Carron (cf. the introduction to [Ca2]) we will call a
Dirac-Schrödinger system (d, V ) satisfying Axiom IV non-parabolic (at
infinity). We say that a Dirac-Schrödinger system (d, V ) is of Fredholm
type, if there is a constant C such that

(2.36) ||σ||L2(H) ≤ C||σ||W for all σ ∈ Lc(e0).

If (d, V ) is non-parabolic, then (d, V ) is of Fredholm type if and only
if, for some ψ ∈ Lipc(R+) which is equal to 1 near t = 0,

(2.37) ||(1− ψ)σ||L2(H) ≤ Cψ||σ||W for all σ ∈ Lc(e0).

In the geometric setting considered by Carron, it is enough to work with
smooth sections supported near infinity, hence the space Ȟ does not
enter his discussion. However, the two formulations of non-parabolicity
here and there are equivalent in the following sense.

2.38. Lemma. The inequality of Axiom IV holds for all σ ∈ Lc(e0) if it
holds for all σ ∈ L0,c(e

0).

Proof. Choose ψ ∈ Lipc(R+) with ψ(0) = 1. Let D0 be the Dirac
operator and E0 be the extension operator for d0, see (1.36). Let σ ∈
Lc(e0) and set

σ0 := ψE0σ(0) and σ1 := σ − σ0.
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Since σ(0) ∈ HA, we have σ0 ∈ Lc(e0); hence σ1 ∈ L0,c(e
0). Now we

can estimate, using the assumption, Lemma 1.37, and Theorem 2.29,

||σ||L2([0,T ],H) ≤ ||σ1||L2([0,T ],H) + ||σ0||L2([0,T ],H)

≤ CT,ψ(||Dmaxσ1||L2(H) + ||σ(0)||−1/2)

≤ CT,ψ(||Dmaxσ||L2(H) + ||DmaxψE0σ(0)||L2(H) + ||σ(0)||−1/2)

≤ CT,ψ(||Dmaxσ||L2(H) + ||D0
maxψE0σ(0)||L2(H) + ||σ(0)||−1/2)

= CT,ψ(||Dmaxσ||L2(H)

+ ||(A0 − |A0| −Q0)ψE0σ(0)||L2(H) + ||σ(0)||−1/2)

≤ CT,ψ(||Dmaxσ||L2(H) + ||σ(0)||Ȟ),

where we allow the constant CT,ψ to change from line to line. �

As a first implication of non-parabolicity we note that the seminorm
|| · ||W , as defined in (2.35), is actually a norm on Dmax. Thus we
can introduce again the space W as the completion of Dmax under this
norm. Since Lc(e0) is dense in Dmax with respect to the graph norm of
Dmax, Lc(e0) is dense in W with respect to the W -norm.

2.39. Lemma. If (d, V ) is a non-parabolic Dirac-Schrödinger system,
then we have:

(1) The restriction map R and Dmax extend to continuous maps
Rext and Dext on W , respectively; Rext induces an isometry
from kerDext into Ȟ.

(2) If ψ ∈ Lipc(R+) and σ ∈ W , then ψσ ∈ Dmax ⊂ W . Moreover,
there is a constant Cψ such that

||ψσ||Dmax
≤ Cψ||σ||W .

In particular, W can be viewed as a space of locally integrable
functions and W ∩ L2(H) = Dmax.

(3) W = Dmax if and only if (d, V ) is a Dirac-Schrödinger system
of Fredholm type; that is, there is a constant C such that

||σ||L2(H) ≤ C||σ||W for all σ ∈ Lc(e0).

Proof. (1) and (3) are immediate from the definition of W . As for (2),
we note that, by non-parabolicity, there is a constant Cψ such that

||ψσ||Dmax
≤ Cψ||σ||W

for all σ ∈ Lc(e0), hence for all σ ∈W by the density of Lc(e0).
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Let σ ∈ W ∩ L2(H) and τ ∈ Lc(e0). Choose ψ ∈ Lipc(R+) with
ψτ = τ . Then, by the first part of (2) and the choice of ψ,

(Dextσ, τ)L2(H) = (Dext(ψσ), τ)L2(H) = (Dmax(ψσ), τ)L2(H)

= (ψσ,Dτ)L2(H) = (σ,Dτ)L2(H),
(2.40)

and hence σ ∈ Dmax. The converse inclusion is clear. �

2.41. Lemma. Let U be a bounded subset of W . Then U is precompact
if and only if Dext(U) ⊂ L2(H) and Q≥R(U) ⊂ Ȟ are both precompact.

Proof. If U is precompact, then also its image under the continuous
maps Dext and Q≥R.

Vice versa, assume that Dext(U) ⊂ L2(H) and Q≥R(U) ⊂ Ȟ are
both precompact. By the definition of W , it suffices to show that
R(U) is precompact in Ȟ.

Let D0 be the Dirac operator associated to d0. Let ϕ, ψ ∈ Lipc(R+)
such that ϕψ = ψ. The operator SD0ϕ is the norm limit of the Hilbert-
Schmidt operators SD0ϕQ[−n,n] on L2(R+, H0), hence SD0ϕ is a compact
operator. On the other hand, ψU ⊂ D0

max and D0(ψU) is bounded
in L2(R+, H0), see Theorem 2.29 and Lemma 2.39.2. It follows that
SD0ϕ(D0(ψU)) is precompact in L2(R+, H0). By Corollary 1.40,

ψU ⊂ ψ(0)E0Q>R(U) + SD0ϕ(D0(ψU)) +Q0(ψU),

hence ψU is precompact in L2(R+, H0).
Now choose ϕ, ψ as above with ψ smooth and equal to 1 in a neigh-

borhood of 0. We have

Dext(ψU) ⊂ γψ′U + ψDext(U).

Since ψ′ is in Lipc(R+) with ϕψ′ = ψ′, ψ′U is precompact in L2(R+, H0),
by the first part of the proof. By assumption, ψDext(U) is precompact
in L2(R+, H0). Hence ψU andDext(ψU) are precompact in L2(R+, H0),
hence ψU is precompact in Dmax. We conclude that R(U) = R(ψU) is
precompact in Ȟ , and hence that U is precompact in W . �

For a boundary condition B ⊂ Ȟ , set

(2.42) WB := {σ ∈W : σ(0) ∈ B} and DB,ext := Dext|WB.

2.43. Theorem and Definition. Assume that (d, V ) is non-parabolic
and that B is regular. Then DB,ext : WB → L2(H) is a left-Fredholm
operator with (imDB,ext)

⊥ = kerDBa,max and index

indDB,ext = dim kerDB,ext − dim kerDBa,max,

called the extended index of DB, also denoted indextDB.
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Proof. Let (σn) be a bounded sequence in WB such that the sequence
(Dextσn) converges in L2(H). By the continuity of R, the sequence
(Rσn(0)) is bounded in B ⊂ Ȟ . By the regularity of B, the sequence
(Q≥Rσn(0)) has a convergent subsequence in H−1/2 and hence in B.
Therefore, (σn) has a convergent subsequence in W , by Lemma 2.41.
Finally, since DB,max is dense in WB and (DB,max)

∗ = DBa,max, we also
have (imDB,ext)

⊥ = kerDBa,max. �

We note some important consequences of Theorem 2.43.

2.44. Corollary and Definition. If (d, V ) is non-parabolic and B
is elliptic, then the kernels of DB and DBa have finite dimension, and
we can define the L2-index of DB to be the number

L2- indDB := dim kerDB − dim kerDBa . �

Suppose that (d, V ) is non-parabolic. For Λ ∈ R, let D<Λ,max :=

DB,max and D<Λ,ext := DB,ext, where B = Ȟ<Λ = H
1/2
<Λ , and similarly

with ≤ substituted for <. The boundary conditions B = Ȟ<Λ and B =

Ȟ≤Λ are elliptic with Ba = H
1/2
≤−Λ and Ba = H

1/2
<−Λ, respectively. Hence

D<Λ = D<Λ,max and, furthermore, D<Λ,ext and D≤Λ,ext are Fredholm
operators with

(2.45) (imD≤Λ,ext)
⊥ = kerD<−Λ ⊂ kerD<−Λ,ext,

see Theorem 2.43.

2.46. Proposition. If (d, V ) is non-parabolic, then there is Λ0 ≥ 0
such that D<−Λ,ext is injective and D≤Λ,ext is surjective for all Λ ≥ Λ0.

Proof. For any Λ ∈ R, D<Λ,ext is a Fredholm operator. In particular,

E := Rext(kerD<0,ext) ⊂ H1/2

has finite dimension, and hence all Hs-norms are equivalent on E for
|s| ≤ 1/2. Let Λ ≥ 0, σ ∈ kerD<−Λ,ext ⊂ kerD<0,ext, and suppose that
σ(0) 6= 0. Since σ(0) ∈ E ∩ Ȟ<−Λ, we can estimate

0 6= ||σ(0)||21/2 ≤ C2
E||σ(0)||2−1/2

= C2
E〈(I + A2

0)
−1/2σ(0), σ(0)〉 < C2

E(1 + Λ2)−1||σ(0)||21/2,
a contradiction if

Λ ≥ Λ0 := (C2
E − 1)1/2.

Therefore σ(0) = 0 if Λ ≥ Λ0, and then σ = 0, by the non-parabolicity
of (d, V ). Hence D<−Λ,ext is injective for Λ ≥ Λ0. �
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Next we would like to write the index formula in Theorem 2.43 in a
way analogous to Corollary 1.82. For this, we need the Calderón spaces

(2.47) Čmax := R(kerDmax) and Čext := R(kerDext).

Since R : kerDext → Ȟ is isometric, Čext is a closed subspace of Ȟ. For
|s| ≤ 1/2, we let

(2.48) Csmax := Čmax ∩Hs and Csext := Čext ∩Hs.

If B is a regular boundary condition, then R induces isomorphisms

kerDB,max
∼= B ∩ Čmax = B ∩ C1/2

max,

kerDB,ext
∼= B ∩ Čext = B ∩ C1/2

ext .
(2.49)

We will write Cmax and Cext instead of C0
max and C0

ext, respectively.

2.50. Corollary. If (d, V ) is non-parabolic and B is elliptic, then
DB,ext is a Fredholm operator with (imDB,ext)

⊥ = kerDBa and index

indDB,ext = dimB ∩ C1/2
ext − dimB⊥ ∩ γC1/2

max.

= dimB ∩ Cext − dimB⊥ ∩ γCmax.

Proof. The assertions follow easily from Theorem 2.43 and Lemma 1.46,
except for the last identity. Since B is elliptic, we have B ⊂ H1/2 and

Ba = (γB⊥) ∩ Ȟ ⊂ H1/2 ⊂ H.

Therefore

Ba ∩ C1/2
max = Ba ∩ Čmax = (γB⊥) ∩ Čmax = (γB⊥) ∩ Cmax. �

2.51. Corollary. Assume that (d, V ) is non-parabolic and that P is
an orthogonal elliptic projection in H. Then DP,ext is a Fredholm op-
erator with (imDP,ext)

⊥ = kerDPγ and index

indDP,ext = dim kerP ∩ C1/2
ext − dim imP ∩ γC1/2

max

= dim kerP ∩ Cext − dim imP ∩ γCmax.

Proof. The boundary condition associated to P is BP = ker P̃ ∩ Ȟ , see
(1.96). Since BP is regular, BP = kerP ∩ Ȟ = ker P̂ and therefore

BP ∩ Čext = kerP ∩ Čext = kerP ∩ Cext = kerP ∩ C1/2
ext .

The remaining identities follow from Corollary 2.50 since imP is the
orthogonal complement of ker P̂ in H . �
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2.4. Some examples. The first two examples are Dirac systems on
R+ which are not non-parabolic. In the first example, kerDPAPS ,max is
infinite-dimensional so that DPAPS ,ext cannot be a Fredholm operator.
In the second example, the assumption of non-parabolicity would lead
to the contradiction that kerDPAPS ,ext has infinite dimension. These
examples are modelled on the Gauss-Bonnet operators of real hyper-
bolic spaces of even and odd dimension.

2.52. Example. For t ∈ R+ and k ∈ Z, let

Bt(k) =

(
1 ike−t

−ike−t 1

)
,

and consider the evolution equation

σ′ +Bt(k)σ = 0.

Solutions σ of this equation satisfy (||σ||2)′ ≤ −2(1−|k|e−t)||σ||2, hence
belong to L2(R+,C

2). Eigenvalues and eigenvectors of B0(k) are given
by

B0(k)

(
1
i

)
= (1− k)

(
1
i

)
and B0(k)

(
1
−i

)
= (1 + k)

(
1
−i

)
.

On L2(R+,C
2 ⊕ C2), consider the Dirac system

Dkσ =

(
−σ′

2 +Bt(k)σ2

σ′
1 +Bt(k)σ1

)

=

(
0 −I
I 0

) (
∂t +

(
Bt(k) 0

0 −Bt(k)

))(
σ1

σ2

)

=: γ(∂t + At(k))σ

For any k ∈ Z, let

σk :=

(
τk
0

)
with τ ′k +Bt(k)τk = 0 and τk(0) =

(
1
i

)
.

Then σk ∈ L2(R+,C
2 ⊕ C2), Dkσk = 0, and A0(k)σk(0) = (1 − k)σk.

Hence σk belongs to the negative eigenspace of A0(k) for k ≥ 2.
We can now sum these Dirac systems to obtain a Dirac system

d = (H, ∂t, At = ⊕At(k), γ) on H = R+ × l2(Z,C2 ⊕ C
2)

with associated Dirac operator D = ⊕Dk. For this Dirac system, there
is a family (σk) of orthogonal non-zero L2-sections of H with Dσk = 0
and A0σk = (1 − k)σk. Hence, with Q≥Λ the corresponding spectral
projection of A0, the L2-kernel of DQ≥Λ

has infinite dimension, for any
Λ ∈ R. In particular, d is not non-parabolic.
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2.53. Example. For k ∈ Z, consider the Dirac system on R+×C2 with
Dirac operator

Dkσ =

(
0 −1
1 0

) (
∂t +

(
ke−t 0

0 −ke−t
)) (

σ1

σ2

)

=: γ(∂t + At(k))σ.

Solutions of the equation Dkσ = 0 are obviously uniformly bounded
and, therefore, admit an upper bound

∫ T

0

||σ(t)||2dt ≤ CkT ||σ(0)||2.

Moreover, for k ≥ 1,

σk(t) =

(
0

e−ke
−t

)

satisfies Dkσk = 0 and A0(k)σk(0) = −kσk(0). Again, we sum all these
Dirac systems to get a Dirac system on L2(R+, l

2(Z,C2)) given by ∂t,
At = ⊕At(k) and ⊕γ.

Let Q≥0 be the spectral projection of A0 onto the non-negative
eigenspaces of A0. We obtain that the space of σ ∈ L2(R+, l

2(Z,C2))
with

Dσ = 0, Q≥0σ(0) = 0 and

∫ T

0

||σ(t)||2dt = O(T )

has infinite dimension. The following lemma implies that this Dirac
system is not non-parabolic.

2.54. Lemma. Let d be a non-parabolic Dirac system. If σ ∈ H1
loc(e)

satisfies Dσ = 0 and

lim
T→∞

∫ T

0
||σ(t)||2dt
T 2

= 0,

then σ ∈W .

Proof. It suffices to find a sequence (σn) in H1
c (e

0) such that

lim
n→∞

||D(σ − σn)||L2(H) + ||σ(0)− σn(0)||Ȟ = 0.

Let ψ be a Lipschitz function on R+ with compact support such that
ψ = 1 in a neighborhood of 0, and set ψn(t) := ψ(t/n) and σn := ψnσ.
Since σ(0) = σn(0) and

D(σ − σn)(t) = −1

n
γψ′(t/n)σ,

we obtain that ‖D(σ − σn)‖2L2(H) = o(1) as n tends to infinity. �
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2.55. Example. For µ ∈ R, let dµ be the Dirac system on L2([1,∞),C2)
with Dirac operator

D(σ+, σ−) := (−σ′
− +

µ

t
σ−, σ

′
+ +

µ

t
σ+).

Clearly, dµ is not of Fredholm type. On the other hand, since the
equation Dσ = τ corresponds to a linear ODE in the finite dimensional
space H = C2, dµ is non-parabolic. We have

| − σ′
− +

µ

t
σ−|2 = |σ′

−|2 +
µ(µ− 1)

t2
|σ−|2 − (

µ

t
|σ−|2)′,

and similarly for σ+, where all the minus signs turn into plus signs.
Now W is the closure of the space of Lipschitz sections with compact
support with respect to the W -norm. Hence, if µ > 1 and σ = (σ+, σ−)
is in W , then |σ/t|2 is integrable with integral uniformly bounded by
the W -norm of σ. (This also shows non-parabolicity in the case µ > 1.)

The space of solutions of the equation Dσ = 0 is given by the space
of sections (at−µ, btµ) with a, b ∈ C. For µ > 1 and b 6= 0, (at−µ, btµ)
does not belong to W since (at−µ, btµ)/t is not square integrable. It
follows that, for µ > 1, W -solutions of the equation Dσ = 0 are square
integrable, hence that Cmax = Cext, although dµ is not of Fredholm type.

The above analysis can be refined. By (5.3) in [Ca2] and by what is
said in the two lines above it,∫ ∞

1

(
|τ ′|2 − 1

4t2
|τ |2

)
≥

∫ ∞

1

1

4t2(ln t)2
|τ |2,

for all τ ∈ Lipc([1,∞)) with τ(1) = 0. Since

|τ ′ − µ

t
τ |2 = |τ ′|2 − 1

4t2
|τ |2 +

(µ− 1/2)2

t2
|τ |2 − (

µ

t
|τ |2)′,

we get the following inequality
∫ ∞

1

|τ ′ − µ

t
τ |2 ≥

∫ ∞

1

(µ− 1/2)2

t2
|τ |2 +

∫ ∞

1

1

4t2(ln t)2
|τ |2,

for all τ ∈ Lipc([1,∞)) with τ(1) = 0. It follows that Cmax = Cext if
|µ| > 1/2 (and, again, that dµ is non-parabolic for all µ ∈ R).
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3. Calderón projections and index formulas

3.1. The Calderón projections. Recall the definition of the Calderón
spaces in (2.47) and (2.48).

3.1. Theorem. Let (d, V ) be non-parabolic. If Λ0 ≥ 0 is the constant
from Proposition 2.46 and Λ ≥ Λ0, then we have a direct sum decom-
position

Čext = KΛ ⊕ ǦΛ,

where KΛ = {x ∈ Čext : Q>Λx = 0} ⊂ H1/2 is of finite dimension and
ǦΛ is the graph of a continuous linear map

TΛ : H
−1/2
>Λ → H

1/2
≤Λ ,

where TΛ = TΛ0
|H−1/2

>Λ . The finite rank and remainder parts Q[−Λ,Λ]TΛ

and Q<−ΛTΛ, respectively, satisfy

||Q[−Λ,Λ]TΛ||s ≤ CΛ−1/2−s and ||Q<−ΛTΛ||s ≤ CΛ−1,

where C is a constant independent of Λ ≥ Λ0 and s ∈ [−1/2, 1/2]. In
particular,

Csext = KΛ ⊕Gs
Λ,

where Gs
Λ = ǦΛ∩Hs is the graph of TΛ|Hs

>Λ, and hence Csext is a closed
subspace of Hs, for all Λ ≥ Λ0 and s ∈ [−1/2, 1/2].

Proof. Throughout the proof, we assume Λ ≥ Λ0, where Λ0 is the
constant from Proposition 2.46.

Let x ∈ Ȟ>Λ = H
−1/2
>Λ . Choose a function ψ ∈ Lipc(R+) which is

equal to 1 in a neighborhood of 0 and set σ := ψE0x. Then σ ∈ Dmax ⊂
W , by Theorem 2.29. Since D≤Λ,ext is surjective, there is τ ∈ D≤Λ,ext

with Dextτ = Dextσ. Hence σ − τ ∈ kerDext and

x = Q>Λ((σ − τ)(0)) ∈ Q>Λ(Čext).

Therefore Q>Λ : Čext → H
−1/2
>Λ is surjective. We have

KΛ = Rext(kerDext) ∩H1/2
≤Λ = Rext(kerD≤Λ,ext),

hence KΛ is of finite dimension, by Theorem 2.43. Let ǦΛ0
be a com-

plement of KΛ0
in Čext. Then Q>Λ0

: ǦΛ0
→ H

−1/2
>Λ0

is an isomorphism,

hence ǦΛ0
is the graph of a continuous linear map

TΛ0
: H

−1/2
>Λ0

→ Ȟ≤Λ0
= H

1/2
≤Λ0

.

This is the place where we gain regularity: By the very structure of Ȟ,
TΛ0

extends naturally to a smoothing operator.
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Let |s| ≤ 1/2. Since the image of TΛ0
is contained in H1/2, x =

y + TΛ0
y ∈ ǦΛ0

is in Hs if and only if y = Q>Λ0
x is in Hs, i.e.,

Gs
Λ0

= ǦΛ0
∩Hs = {y + TΛ0

y : y ∈ Hs
>Λ0
}.

For Λ ≥ Λ0, we define

ǦΛ : = {x ∈ ǦΛ0
: Q(Λ0,Λ]x = 0}

= {y + TΛ0
y : y ∈ H−1/2

>Λ }.
Let |s| ≤ 1/2. Then Gs

Λ = ǦΛ ∩ Hs is the graph of TΛ := TΛ0
|Hs

>Λ.
Hence Gs

Λ is a closed subspace of Hs.
We show next that Gs

Λ is a complement of KΛ in Csext = Čext ∩ Hs.
Since KΛ0

⊂ KΛ and, clearly, KΛ ∩ Gs
Λ = 0, it is enough to show that

Gs
Λ0
⊂ KΛ + Gs

Λ. Now for y ∈ Gs
Λ0

there is z ∈ ǦΛ0
with Q>Λ0

z =

Q(Λ0,Λ]y, by the surjectivity of Q>Λ0
|ǦΛ0

. It follows that z ∈ KΛ and
y − z ∈ Gs

Λ.

For x ∈ H−1/2
>Λ ,

||Q[−Λ,Λ]TΛx||1/2 ≤ ||TΛx||1/2 ≤ C||x||−1/2,

where C = ||TΛ0
||Ȟ , and similarly for Q<−ΛTΛx. For r < t and y ∈ H t

with Q(−Λ,Λ)y = 0, we have

(3.2) ||y||r ≤ Λr−t||y||t.
Hence

||Q[−Λ,Λ]TΛx||s ≤ ||Q[−Λ,Λ]TΛx||1/2
≤ C||x||−1/2 ≤ CΛ−1/2−s||x||s,(3.3)

||Q<−ΛTΛx||s ≤ Λs−1/2||Q<−ΛTΛx||1/2
≤ CΛs−1/2||x||−1/2 ≤ CΛ−1||x||s,(3.4)

for all |s| ≤ 1/2 and x ∈ Hs
>Λ. �

3.5. Definition. The orthogonal projections in H onto (the closure
of) Cmax = C0

max and onto Cext = C0
ext will be called the Calderón pro-

jection and the extended Calderón projection associated to the Dirac-
Schrödinger system (d, V ) and will be denoted by Cmax and Cext, re-
spectively.

3.6. Theorem. Let (d, V ) be non-parabolic. Then there are constants
Λ0, C ≥ 0 such that, for Λ ≥ Λ0,

Cext = Q> +RΛ + SΛ,

where RΛ and SΛ are smoothing, RΛ has finite rank, and

||SΛ||s + ||S∗
Λ||s ≤ CΛ−1
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for all |s| ≤ 1/2. In particular, Cext is 1/2-smooth, Cext−Q> is compact
in Hs for all |s| ≤ 1/2, and Cext is elliptic. Furthermore, DCext,ext :
WCext

→ L2(H) is an isomorphism.

Proof. We use notation and results from Theorem 3.1. Since TΛ maps

H
−1/2
>Λ to H

1/2
≤Λ , the dual operator of TΛ maps H

−1/2
≤Λ to H

1/2
>Λ . We

recall that the dual operator of TΛ is the extension of the adjoint T ∗
Λ

of TΛ|H>Λ. In particular, T ∗
Λ is smoothing as well and, considered as a

linear map from H
−1/2
≤Λ to H

1/2
>Λ , it satisfies

||T ∗
Λ|| = ||TΛ|| ≤ ||TΛ0

|| = C.

Arguing as in (3.4), we obtain that T ∗
ΛTΛ : H

−1/2
>Λ → H

1/2
>Λ satisfies

||T ∗
ΛTΛx||s ≤ Λs−1/2||T ∗

ΛTΛx||1/2
≤ CΛs−1/2||x||−1/2 ≤ CΛ−1||x||s,

for all |s| ≤ 1/2 and x ∈ Hs
>Λ. Hence ||T ∗

ΛTΛ||s ≤ CΛ−1 for all |s| ≤ 1/2.
In particular, if I denotes the identity ofH>Λ, then I+T ∗

ΛTΛ is invertible
with 1/2-smooth inverse as soon as Λ > C, and for Λ ≥ 2C we find

||(I + T ∗
ΛTΛ)−1||s ≤ 2.

Clearly,

(I + T ∗
ΛTΛ)−1 = I − T ∗

ΛTΛ(I + T ∗
ΛTΛ)−1 =: I + T xΛ,

where T xΛ is smoothing with ||T xΛ||s ≤ 2CΛ−1 and the superscript x
means that this object will not survive the end of the proof.

In accordance with with our convention H = H0, we let GΛ = G0
Λ.

Then GΛ is the graph of the restriction of TΛ to H>Λ, for short also
denoted by TΛ. We recall that

G⊥
Λ = {(−T ∗

Λy, y) : y ∈ H≤Λ}.

Hence the orthogonal projection PΛ onto GΛ in H is given by

PΛ =

(
(I + T ∗

ΛTΛ)−1 (I + T ∗
ΛTΛ)−1T ∗

Λ

TΛ(I + T ∗
ΛTΛ)−1 TΛ(I + T ∗

ΛTΛ)−1T ∗
Λ

)
,

where the operator matrix arises from the decomposition H>Λ ⊕ H≤Λ

of H and I denotes the identity of H>Λ as above. We now get a
representation

PΛ = Q>Λ +Rx
Λ + SΛ
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analogous to the asserted representation for Cext, where

Rx
Λ =

(
0 (I + T xΛ)(Q[−Λ,Λ]TΛ)∗

Q[−Λ,Λ]TΛ(I + T ∗
ΛTΛ)−1 Q[−Λ,Λ]TΛ(I + T ∗

ΛTΛ)−1T ∗
Λ

)
,

SΛ =

(
T xΛ (I + T xΛ)(Q<−ΛTΛ)∗

Q<−ΛTΛ(I + T ∗
ΛTΛ)−1 Q<−ΛTΛ(I + T ∗

ΛTΛ)−1T ∗
Λ

)
.

Obviously, Rx
Λ and SΛ are smoothing, Rx

Λ has finite rank, and the
operator norms of SΛ satisfy the desired inequalities.

The orthogonal complement of GΛ in Cext is (I −PΛ)(KΛ) ⊂ H1/2 so
that Cext − PΛ is smoothing of finite rank. This implies the asserted
formula for Cext with RΛ = Rx

Λ + Cext − PΛ −Q(0,Λ].
By Proposition 2.46, Dext : W → L2(H) is surjective. By definition,

the kernel of DCext,ext is trivial. The theorem follows. �

3.7. Theorem. Assume that (d, V ) is non-parabolic. Then

Cmax = Cext,γ = γ∗(I − Cext)γ.

In particular, Cmax is elliptic, Cmax − Q> is compact in Hs for all
|s| ≤ 1/2, and indDCmax,ext = rk(Cext − Cmax).

Proof. Let x ∈ Čmax and y ∈ Čext. Choose σ ∈ kerDmax with σ(0) = x
and τ ∈ kerDext with τ(0) = y. Let (τn) be a sequence in Lc(e0)
which converges to τ in W . Then Dτn → 0 = Dextτ in L2(H) and
τn(0)→ τ(0) in Ȟ . By Theorem 2.30.5,

ω(x, y)← ω(σ(0), τn(0)) = (Dmaxσ, τn)L2(H) − (σ,Dτn)L2(H) → 0.

We conclude that Čext ⊂ (Čmax)
a and hence that Cext ⊂ γ(Cmax)

⊥.
Suppose now that Cext is not equal to γ(Cmax)

⊥. Then there is a
vector z of norm 1 in γ(Cmax)

⊥ which is perpendicular to Cext. Choose
y ∈ H1/2 with ||y − z||H ≤ 1/2 and set x := (I − Cext)y. Then x

is non-zero, x /∈ γC1/2
max, and is perpendicular to Cext. Furthermore,

x ∈ H1/2 since Cext is 1/2-smooth. Let P := Cext + R, where R is the
orthogonal projection onto Cx in H . Then P is an elliptic orthogonal
projection, by Lemma 1.88, since Cext is elliptic and x is in H1/2. By
Corollary 2.50,

indDP,ext = dim(kerP ∩ C1/2
ext )− dim(imP ∩ γC1/2

max)

= − dim(imP ∩ γC1/2
max).

Let y ∈ Cext and α ∈ C, and suppose that y + αx ∈ γC1/2
max. Since

Cext is perpendicular to γC1/2
max and x, we get y = 0. This implies

that αx ∈ γC1/2
max and hence that α = 0, by the choice of x. Hence

imP ∩ γC1/2
max = 0 and, therefore, indDP,ext = 0.
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On the other hand, the inclusion iP : DP,ext → DCext,ext is a Fredholm
operator of index -1. Since DP,ext = DCext,ext ◦ iP and DCext,ext is an
isomorphism, we get indDP,ext = −1, a contradiction. We conclude
that Cext = γ(Cmax)

⊥ and hence that Cmax = Cext,γ.
Since Cext is elliptic Cmax = Cext,γ is elliptic as well. Moreover,

Cmax −Q> = γ∗(I − Cext −Q<)γ = γ∗(Q≥ − Cext)γ,

hence Cmax −Q> is compact, by Theorem 3.6.
Finally, since Cmax is elliptic, DCmax,ext is a Fredholm operator. Now

imCmax ⊂ Cext, hence

indDCmax,ext = dim(kerCmax ∩ Cext)− dim(imCmax ∩ γC1/2
max)

= dim(kerCmax ∩ Cext) = rk(Cext − Cmax). �

3.8. Corollary. If (d, V ) is of Fredholm type, then Cext = Cext,γ, that

is, ker Ĉext is an elliptic self-adjoint boundary condition.

Proof. Since (d, V ) is of Fredholm type, we have W = Dmax and hence
Cext = Cmax. �

3.9. Theorem. Assume that (d, V ) is non-parabolic. Then

(1) C1/2
max = im Ĉmax = imCmax ∩H1/2.

If B is an elliptic boundary condition and B(s) denotes the closure of
B in Hs, where |s| ≤ 1/2, then (B(s), Csext) is a Fredholm pair in Hs

with nullity and deficiency independent of s. More precisely, we have

null(B(s), Csext) = dim(B ∩ C1/2
ext ),(2)

def(B(s), Csext) = dim(Ba ∩ C1/2
max).(3)

Proof. Clearly, C1/2
max ⊂ im Ĉmax ∩ H1/2. If they are not equal, there

is a vector y ∈ im Ĉmax \ C1/2
max, and then x = γy ∈ H1/2 is non-zero,

x /∈ γC1/2
max, and is perpendicular to Cext. Arguing as in the proof of

Theorem 3.7, we arrive at a contradiction.
Let B be an elliptic boundary condition and |s| ≤ 1/2. Choose Λ0

according to Theorem 3.1 and let Λ ≥ Λ0. Write

B = {x+ y + by : x ∈ F, y ∈ U ∩H1/2}

as in Proposition 1.65, where F ⊂ H
1/2
>Λ is of finite dimension, U ⊂

H≤Λ is the orthogonal complement of a subspace E ⊂ H
1/2
≤Λ of finite

dimension, and b : U → V = F⊥ ∩H>Λ is 1/2-smooth. In particular,

B(s) = {x+ y + by : x ∈ F, y ∈ U (s)},
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where U (s) is the closure of U ∩ H1/2 in Hs and, simultaneously, the
annihilator of E in Hs

≤Λ. By Theorem 3.1 we have, on the other hand,

Čext = {u+ v + Tv : u ∈ KΛ, v ∈ H−1/2
>Λ },

where KΛ ⊂ H
1/2
≤Λ and T : H

−1/2
>Λ → H

1/2
≤Λ . In particular, Q≤Λz ∈ H1/2

for any z ∈ Čext. We conclude that B(s) ∩Csext is contained in H1/2 and
hence that

(3.10) B(s) ∩ Csext = B ∩ C1/2
ext .

By the above characterization of B(s), (B(s), Hs
>Λ) is a Fredholm pair.

Now I − Cext − Q≤Λ is compact, by Theorem 3.6, hence (B(s), Csext) is
a left-Fredholm pair, by Proposition A.13. By Theorem 3.7, we have

(Csext)
pol = γ imC−s

max,

where the superscript ‘pol’ indicates the annihilator of a subset of Hs

in H−s. Using (A.6), we obtain

(B(s) + Csext)
pol = (B(s))pol ∩ (Csext)

pol

= (B(s))pol ∩ γ imC−s
max

= γ
(
γ(B(s))pol ∩ imC−s

max

)
,

We also have

imC−s
max ⊂ imC−s

ext = C−sext ⊂ Čext ⊂ Ȟ.

By the ellipticity of B,

γ(B(s))pol ∩ Ȟ ⊂ γB0 ∩ Ȟ = Ba ⊂ H1/2,

where B0 denotes the annihilator of B in H−1/2. In conclusion,

�(3.11) (B(s) + Csext)
pol = γ(Ba ∩ imC−s

max) = γ(Ba ∩ C1/2
max).

3.2. Some index formulas. Theorem 3.9 and Corollary 2.50 have the
following consequence:

3.12. Theorem. If (d, V ) is non-parabolic and B is elliptic, then

indextDB = indDB,ext = ind(B̄, Cext),

where B̄ denotes the closure of B in H. �

3.13. Theorem. If (d, V ) is non-parabolic and B is elliptic, then

indDB,ext + indDBa,ext = dim(Cext/ imCmax),

where imCmax is the closure of Cmax in H.
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Proof. Since Cext − Cmax is compact in H and Cext = imCext, we have

ind(B̄, Cext) = ind(B̄, imCmax) + ind(kerCmax, Cext),

by Proposition A.13. Since Cext = γ(imCmax)
⊥, we have, by Theorem

IV.4.8 in [Ka],

ind(B̄, imCmax) = − ind(B⊥, (imCmax)
⊥)

= − ind(γB⊥, imCext) = − indDBa,ext.

Furthermore, imCmax = C̄max ⊂ Cext, hence

ind(kerCmax, Cext) = dim(Cext/ imCmax). �

Theorem 3.12 implies the following index formula of Agranovič-Dynin
type, which corresponds to Theorem 23.1 in [BW].

3.14. Theorem. If (d, V ) is non-parabolic, B is elliptic, and Λ ∈ R,
then

indDB,ext = indD≤Λ,ext + ind(B̄,H>Λ).

Proof. Since Cext − Q>Λ is compact, we can apply Theorem 3.12 and
Proposition A.13 and get

indDB,ext = ind(B̄, imCext) = ind(B̄,H>Λ) + ind(H≤Λ, imCext) �

Note that in the notation of Proposition 1.65,

(3.15) ind(B̄,H>Λ) = dimF − dimE.

In the corresponding form, the index formula in Theorem 3.14 was also
observed in [BäB] (in the case of Dirac operators on smooth manifolds).

3.16. Corollary (Discontinuity formula). If (d, V ) is non-parabolic
and Λ ∈ R, then

indD≤Λ,ext = indD<Λ,ext + dimHΛ. �

In one of its versions, the Cobordism Theorem for Dirac operators
states that the index of the Dirac operatorD+ of a closed spin manifold
M of even dimension vanishes if M bounds a compact spin manifold.
As an application of our results, we derive a general form of this. Let
(d, V ) be a Dirac-Schrödinger system. Set

(3.17) H± := {x ∈ H : iγx = ±x}.
Since γ and A anti-commute,

(3.18) B± := H± ∩ Ȟ = H± ∩H1/2.

Since H+ is the orthogonal complement of H− in H , we conclude that
B+ and B− are mutually adjoint elliptic boundary conditions.
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3.19. Cobordism Theorem. If the system (d, V ) is of Fredholm type,
then the restriction A+ : H+

A → H− of A = A0 satisfies indA+ = 0.

Proof. Since (d, V ) is of Fredholm type, kerCext is an elliptic self-
adjoint boundary condition, by Corollary 3.8. Now Theorem 1.83 im-
plies indA+ = 0 (compare also Corollary 1.84). �

We now consider Dirac-Schrödinger systems together with a bound-
ary value problem which models the decomposition of a manifold M
into two pieces M1 and M2 along a closed hypersurface N = M1 ∩M2.
This requires the transmission boundary condition for sections of bun-
dles over M and Dirac-Schrödinger operators acting on them; compare
Example 1.85.

Let (d1, V1) and (d2, V2) be Dirac-Schrödinger systems with the same
initial Hilbert space H at t = 0 (after some appropriate identification).
Suppose that, at t = 0,

(3.20) A1,0 = −A2,0 =: A and γ1,0 = −γ2,0 =: γ.

We consider the Dirac-Schrödinger system (d, V ) = (d1, V1) ⊕ (d2, V2)
with the boundary condition

(3.21) B = {(x, x) : x ∈ H1/2},
where we use A to define H1/2. We already observed in Example 1.85
that B is elliptic and self-adjoint. The Calderón space of d is the direct
sum of the Calderón spaces of d1 and d2,

(3.22) Čext = Č1,ext ⊕ Č2,ext and Cext = C1,ext ⊕ C2,ext.

We then arrive at the following index formula of Bojarski type.

3.23. Theorem. If (d1, V1) and (d2, V2) are non-parabolic, then (d, V )
is non-parabolic, (C1,ext, C2,ext) is a Fredholm pair in H, and

indDB,ext = ind(C1,ext, C2,ext).

Proof. The first assertion is clear. By Theorem 3.9, (C1,ext, H≤) is a
Fredholm pair, where we use spectral projections and spaces associated
to A. By Theorem 3.6, C2,ext − Q≤ is a compact operator. Hence
(C1,ext, C2,ext) is a Fredholm pair, by Proposition A.13. As for the index
formula, we note that

B̄ ∩ Cext = {(x, x) ∈ H ⊕H : x ∈ C1,ext and x ∈ C2,ext}
∼= C1,ext ∩ C2,ext

B⊥ ∩ C⊥ext = {(x,−x) ∈ H ⊕H : x ⊥ C1,ext and x ⊥ C2,ext}
∼= (C1,ext + C2,ext)

⊥.
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Therefore

indDB,ext = ind(B̄, Cext) = ind(C1,ext, C2,ext). �

Using Theorem 3.14 and Corollary 3.16, we get a splitting formula for
the index, which generalizes Theorems 23.3 of [BW] and 4.3 of [BL1].

3.24. Theorem (Splitting formula). If (d1, V1) and (d2, V2) are non-
parabolic, B1 is an elliptic boundary condition with respect to A, and
B2 is an elliptic boundary condition with respect to −A, then

indDB,ext = indD1,B1,ext + indD2,B2,ext

− ind(H>, B̄1)− ind(H≤, B̄2).

In particular, if B1 is any elliptic boundary condition with respect to A
and B2 = B⊥

1 ∩H1/2, then

indDB,ext = indD1,B1,ext + indD2,B2,ext.

Proof. By Theorem 3.14 and Corollary 3.16,

indDB,ext = indD1,≤,ext + indD2,≥,ext + ind(B̄,H> ⊕H<)

= indD1,≤,ext + indD2,>,ext

= indD1,B1,ext − ind(H>, B̄1) + indD2,B2,ext − ind(H≤, B̄2).

If B2 = B⊥
1 ∩ H1/2, then the second and last term on the right hand

side cancel each other. �

Besides modeling the case mentioned in the beginning of this section,
the above results also apply to a Dirac-Schrödinger system d defined
over the whole real line, decomposed into pieces d1 := d|R+ and d2 :=
d|R−, where we need to turn the latter into a Dirac-Schrödinger system
over R+ in the appropriate and obvious way.
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4. Supersymmetric systems

Our treatment so far does not allow to treat the usual index theorems
since D0,c is symmetric. To adjust this we formulate a further axiom,
introducing a supersymmetry, i.e. an involution which anticommutes
with Dmax.

V. Axiom. There is a section

α ∈ Liploc(R+,L(H)) ∩ L∞
loc(R+,L(HA)),

such that the following relations hold:

αt = α∗
t = α−1

t on Ht,(1)

αtγt + γtαt = 0 on HA,(2)

[∂, α] = 0 on Liploc(H),(3)

[At, αt] = 0 on HA,(4)

αtVt + Vtαt = 0 on Ht.(5)

A supersymmetric Dirac-Schrödinger system is a Dirac-Schrödinger
system (d, V ) together with a supersymmetry α as in Axiom V.

Let (d, V, α) be a supersymmetric Dirac-Schrödinger system. Then
we have, for each t ≥ 0, an orthogonal decomposition

(4.1) Ht = H+
t ⊕H−

t , H±
t := {x ∈ H : αtx = ±x}.

Since At commutes with αt, we get an associated decomposition

(4.2) HA = H+
A,t ⊕H−

A,t, H±
A,t := HA ∩H±

t ,

which is orthogonal with respect to the graph norm of At and such
that At maps H±

A,t to H±
t . There are analogous decompositions of the

associated Sobolev and function spaces. We also have

(4.3) αD +Dα = 0

on Lloc(e
0). It follows that D is an odd operator, that is, maps locally

Lipschitz sections of H± to locally essentially bounded measurable sec-
tions of H∓. We let D± be the corresponding parts of D so that D is
represented by the matrix

(4.4)

(
0 D−

D+ 0

)

with respect to the above decomposition of Lloc(e
0). We obtain orthog-

onal decompositions

(4.5) Dmax = D+
max ⊕D−

max and W = W+ ⊕W−,
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and Dmax and Dext are odd operators with respect to these with corre-
sponding partsD±

max andD±
ext, respectively. Since kerDmax and kerDext

are α-invariant, we have

kerDmax = kerD+
max ⊕ kerD−

max,

kerDext = kerD+
ext ⊕ kerD−

ext,
(4.6)

respectively. SinceR commutes with α0, Čmax and Čext are α0-invariant
and hence decompose accordingly,

(4.7) Čmax = Č+
max ⊕ Č−max and Čext = Č+

ext ⊕ Č−ext.

We are interested in boundary value problems that are compatible with
the supersymmetry. That is, we require that boundary conditions B
are α0-invariant, and then we have a decomposition B = B+ ⊕ B− as
above. In other words, we pose the boundary conditions separately for
the + and − parts of the elements in the corresponding domains and
get corresponding domains and operators

(4.8) D±
B±,ext : W±

B± → L2(H∓),

and similarly for D and Dmax.

4.9. Proposition. Let (d, V ) be a non-parabolic supersymmetric Dirac-
Schrödinger system with supersymmetry α and B be an α0-invariant
elliptic boundary condition. Then

indDB,ext = indD+
B+,ext + indD−

B−,ext. �

If C is an α0-invariant subspace of H , then C⊥ and γC are invariant
under α0 as well and we have

(4.10) (γC⊥)± = γ(C⊥,∓) = γ((C∓)⊥ ∩H∓).

In particular, from Theorem 3.7,

(4.11) (imCmax)
∓ = (γC⊥ext)

∓ = γ(C⊥,±ext ).

If P is a projection in H , then kerP and imP are invariant under α0

if and only if [P, α0] = 0, and then P decomposes as

(4.12) P =
1

2
(α+ I)P +

1

2
(α− I)P =: P+ + P−.

Clearly [Pγ , α0] = 0 if [P, α0] = 0, and then

(4.13) P±
γ = γ∗(I∓ − P ∗,∓)γ.

The following index formulas are immediate from Theorems 3.12, 3.13,
and 3.14.



60 WERNER BALLMANN, JOCHEN BRÜNING, AND GILLES CARRON

4.14. Theorem. Let (d, V ) be a non-parabolic supersymmetric Dirac-
Schrödinger system with supersymmetry α and B be an α0-invariant
elliptic boundary condition. Then

indD+
B+,ext = ind(B̄+, C+

ext)

= indD+

H+

≤
,ext

+ ind(B̄+, H+
>),

indD+
B+,ext + indD−

Ba,−,ext = dim(C+
ext/ imC+

max)

= dim(C−ext/ imC−
max). �

Recall the setup in Theorems 3.23 and 3.24. Let α1 and α2 be super-
symmetries of the Dirac-Schrödinger systems (d1, V1) and (d2, V2), re-
spectively, that agree at t = 0. Consider the Dirac-Schrödinger system
(d, V ) = (d1, V1) ⊕ (d2, V2) with the induced supersymmetry (α1, α2).
The boundary condition B from (3.21) is (α1, α2)-invariant with

(4.15) B± = {(x, x) : x ∈ H±} ∩H1/2.

We also have

(4.16) Č±ext = Č±1,ext ⊕ Č±2,ext.

Arguing as in the proofs of Theorems 3.23 and 3.24 we get the following
index formulas.

4.17. Theorem. Assume that (d1, V1) and (d2, V2) are non-parabolic.
Then

indD+
B+,ext = ind(C+

1,ext, C+
2,ext).

If B1 is any α1-invariant elliptic boundary condition for d1 and B2 any
α2-invariant elliptic boundary condition for d2, then

indD+
B+,ext = indD+

1,B+
1 ,ext

+ indD+

2,B+
2 ,ext

− ind(H+
> , B̄

+
1 )− ind(H+

≤ , B̄
+
2 ).

In particular, if B1 is any α1-invariant elliptic boundary condition for
d1 and B2 = B⊥

1 ∩H1/2, then

indD+
B+,ext = indD+

1,B+
1 ,ext

+ indD+

2,B+
2 ,ext

. �
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5. Manifolds with boundary

In this last chapter, we explain how our results can be applied to
obtain formulas for the index of Dirac type operators on manifolds
with boundary. Such formulas are well known in the case of compact
manifolds with smooth boundary and Dirac operators with smooth co-
efficients, see for instance [BW]. However, in applications one often
faces the problem that the boundary of the manifold is not smooth or
that the coefficients of the operator are not smooth. We will encounter
such a situation in a forthcoming article on L2-index formulas on man-
ifolds with finite volume and pinched negative curvature in which we
extend the results of [BB2]. Here we concentrate on a rather general
case which sets the stage for the applications we have in mind, but
should also be useful in other situations.

5.1. The geometric setup. Let M be a C1,1 manifold with com-
pact boundary N = ∂M and with a Lipschitz continuous Riemannian
metric. Let E → M be a C0,1 Hermitian vector bundle and D be a
differential operator on E of order one with L∞

loc coefficients. Then we
obtain a linear operator

(5.1) D : Liploc(M,E)→ L∞
loc(M,E).

Let Lip0,c(M,E) be the space of Lipschitz sections of E with compact
support in M , which vanish along the boundary N , and set D0,c :=
D|Lip0,c(M,E), considered as an unbounded operator on L2(M,E).
We assume that D0,c is symmetric, that is,

(5.2) (Dσ1, σ2)L2(M,E) = (σ1, Dσ2)L2(M,E)

for all σ1, σ2 ∈ Lip0,c(M,E). We let Dmin be the closure of D0,c and
Dmax be the adjoint of D0,c in L2(M,E). We denote by Dmin and Dmax

the domains of Dmin and Dmax, respectively.

VI. Axiom. There is a Lipschitz function ρ : M → R+ and a con-
stant r > 0 such that N = ρ−1(0) and O := ρ−1([0, r)) is rela-
tively compact in M . Moreover, there is a Dirac-Schrödinger system
(d, V ) = (H, ∂, A, γ, V ) with Lipschitz coefficients, and a unitary iso-
morphism U : L2(O,E)→ L2(H|[0, r)) such that

(1) U((ϕ ◦ ρ)σ) = ϕUσ for all σ ∈ L2(O,E) and ϕ ∈ L∞
loc(R+).

(2) (1 − ϕ ◦ ρ)σ ∈ Dmin for all σ ∈ Dmax and ϕ ∈ Lip(R+) with
compact support in [0, r) and equal to one close to zero.

(3) U(Lipc(O,E)) is contained and dense in Lc(H|[0, r)) with re-
spect to the graph norm of Dd.
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(4) U(Lip0,c(O,E)) is contained and dense in L0,c(H|[0, r)) with

respect to the graph norm of Dd.
(5) Dd(Uσ) = U(Dσ) for all σ ∈ Lipc(O,E).

Here Lc(H|[0, r)) denotes the space of sections in Lc(H) with com-
pact support in [0, r). We also use a superscript d to distinguish quan-
tities belonging to (d, V ) if necessary.

5.3. Remark. Axiom VI is tailored to fit the geometric examples which
we will discuss in our next article, notably the case of Dirac-Schrödinger
operators over the ends of complete Riemannian manifolds with finite
volume and pinched negative sectional curvature, see [BB2].

For σ ∈ Liploc(M,E), let Rσ := Rd(U((ϕ ◦ ρ)σ)), where Rd denotes
the restriction map of d and ϕ ∈ Lip(R+) has compact support in [0, r)
and is equal to one close to zero. By Axiom VI.1 above, Rσ does not
depend on the choice of ϕ. As before, we also write σ(0) = Rσ. Using
(2.14), (5.2), and Axiom VI.5 we get

(5.4) (Dσ1, σ2)− (σ1, Dσ2) = ωd(σ1(0), σ2(0)) =: ω(σ1(0), σ2(0)),

for all σ1, σ2 ∈ Lip(M,E) with compact support.

5.5. Lemma. Suppose σ ∈ L2(M,E) has compact support in O. Then
σ ∈ Dmax if and only if Uσ ∈ Ddmax, and then Dd

max(Uσ) = UDmaxσ.

Proof. We need only to test against Lipschitz sections of E with com-
pact support in O and vanishing alongN respectively Lipschitz sections
of H with compact support in [0, r) and vanishing at 0. To these, (4)
and (5) of Axiom VI apply, and the lemma follows. �

Using Axiom VI and Lemma 5.5, we get the following characteriza-
tion of the maximal domain Dmax.

5.6. Corollary. For any ϕ ∈ Lip(R+) with compact support in [0, r)
and equal to one close to zero and any σ ∈ L2(M,E),

σ ∈ Dmax ⇐⇒ ϕUσ ∈ Ddmax and (1− (ϕ ◦ ρ))σ ∈ Dmin. �

5.7. Proposition (Regularity). The maximal domain Dmax satisfies:

(1) Lipc(M,E) is dense in Dmax.
(2) The restriction map on Lipc(M,E) extends to

a continuous surjective map R : Dmax → Ȟ.
(3) For σ1, σ2 ∈ Dmax we have

(Dmaxσ1, σ2)− (σ1, Dmaxσ2) = ω(σ1(0), σ2(0)).

Proof. Apply Proposition 2.30, Corollary 5.6, and Axiom VI. �
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For a boundary condition B ⊂ Ȟ , we set

DB,max : = {σ ∈ Dmax : Rσ ∈ B},(5.8)

DB,max : = Dmax|DB,max.

Then DB,max is closed with adjoint DBa,max, see Section 1.4.

5.2. Fredholm properties. We now discuss Fredholm properties of
and index formulas for the operators DB. As in the case of Dirac-
Schrödinger systems, we need the non-parabolicity condition of the
third named author:

VII. Axiom. We say that D is non-parabolic if for any compact subset
K ⊂ M there is a positive constant CK such that any σ ∈ Dmax satisfies

‖σ‖L2(K) ≤ CK
(
‖Rσ‖Ȟ + ‖Dmaxσ‖L2(M,E)

)
.

Assume from now on that D is non-parabolic. Let W be the com-
pletion of Dmax with respect to the norm appearing on the right hand
side of the equation in Axiom VII. There is the following analogue of
Lemma 2.39.

5.9. Lemma. If D is non-parabolic, then we have:

(1) The restriction map R and Dmax extend to continuous maps

Rext : W → Ȟ and Dext : W → L2(M,E),

respectively; Rext induces an isometry from kerDext into Ȟ.
(2) If ψ ∈ Lipc(M) and σ ∈ W , then ψσ ∈ Dmax ⊂ W . Moreover,

there is a constant Cψ such that

||ψσ||Dmax
≤ Cψ||σ||W .

In particular, W can be viewed as a space of locally integrable
functions and W ∩ L2(M,E) = Dmax.

(3) W = Dmax if and only if there is a constant C such that

||σ||L2(H) ≤ C||σ||W for all σ ∈ Lipc(M,E).

Proof. (1) and (3) are clear. As for (2), use Lemma 5.5 and argue as
in the proof of (2) of Lemma 2.39. �

Similarly, there is an analogue of Lemma 2.41:

5.10. Lemma. Let V be a bounded subset of W . Then V is precom-
pact if and only if Dext(V ) ⊂ L2(M,E) and Q≥Rext(V ) ⊂ Ȟ are both
precompact.

Proof. It is easy to adapt the arguments in the proof of Lemma 2.41
to the present situation. �
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For a boundary condition B ⊂ Ȟ , set

(5.11) WB := {σ ∈W : σ(0) ∈ B} and DB,ext := Dext|WB.

We arrive at the following generalization of Theorem 2.43, Corollary 2.44,
and Proposition 2.46

5.12. Theorem. Assume that D is non-parabolic and that B is reg-
ular. Then DB,ext : WB → L2(H) is a left-Fredholm operator with
(imDB,ext)

⊥ = kerDBa,max and extended index

indextDB := indDB,ext = dim kerDB,ext − dim kerDBa,max.

If B is elliptic, then the kernels of DB and DBa have finite dimension
and the L2-index of DB is well defined,

L2- indDB := dim kerDB − dim kerDBa .

Moreover, there is Λ0 ≥ 0 such that D<−Λ,ext is injective and D≤Λ,ext

is surjective for all Λ ≥ Λ0. �

We define Calderón spaces and projections as in the case of Dirac-
Schrödinger systems, see (2.47), (2.48), and Definition 3.5. If B is a
regular boundary condition, then R induces isomorphisms

kerDB,max
∼= B ∩ Čmax = B ∩ C1/2

max,

kerDB,ext
∼= B ∩ Čext = B ∩ C1/2

ext .
(5.13)

As before, we write Cmax and Cext instead of C0
max and C0

ext, respectively.
We have the following analogue of Corollary 2.50:

5.14. Corollary. Assume that D is non-parabolic and that B is ellip-
tic. Then DB,ext is a Fredholm operator with (imDB,ext)

⊥ = kerDBa,max

and index

indDB,ext = dimB ∩ C1/2
ext − dimB⊥ ∩ γC1/2

max.

= dimB ∩ Cext − dimB⊥ ∩ γCmax. �

It is a routine matter to check that the arguments developed in
Chapter 3 also work under Axioms VI and VII imposed here; hence all
the results obtained there have their analogues here. We arrive at the
following version of Theorems 3.6, 3.7, and 3.9.

5.15. Theorem. Assume that D is non-parabolic. Then:

(1) The Calderón projections Cext and Cmax are elliptic with Cmax =
Cext,γ.

(2) Cmax −Q> and Cext −Q> are compact in Hs for all |s| ≤ 1/2.
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(3) If B is an elliptic boundary condition, then (B̄, Cext) is a Fred-
holm pair in H and

B̄ ∩ Čext = B ∩ C1/2
ext and (B̄ + Cext)

⊥ = B⊥ ∩ γC1/2
max. �

With the same arguments as in Chapter 3, we get the analogues of
the index formulas in Theorems 3.12, 3.13, and 3.14:

5.16. Theorem. Assume that D is non-parabolic and that B is an
elliptic boundary condition. Then

indDB,ext = ind(B̄, Cext)

= indDH≤,ext + ind(H>, B̄),

indDB,ext + indDBa,ext = dim(Cext/ imCmax). �

5.17. Remark. The further results from Chapter 3 and Chapter 4 are
consequences of the results on the Calderón projections and the index
formulas from Theorems 3.12, 3.13, and 3.14. Therefore they have their
exact analogs here, and we refrain from repeating the corresponding
statements.
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Appendix A. Fredholm pairs

T. Kato has developed the notion of Fredholm pairs of closed sub-
spaces, cf. [Ka, Ch.IV, Section 4]. Consider a Banach space E and a
pair of closed subspaces F and G. Introduce nullity and deficiency of
the pair (F,G),

null(F,G) : = dim(F ∩G),(A.1)

def(F,G) : = codim(F +G),(A.2)

and recall that def (F,G) < ∞ implies that F + G is closed. We say
that the pair (F,G) is a left- or right-Fredholm pair, respectively, if

(A.3) F +G is closed

and

(A.4) null (F,G) <∞ or def (F,G) <∞,
respectively. We say that (F,G) is a semi-Fredholm pair if it is a left-
or right-Fredholm pair, and that it is a Fredholm pair if it is a left- and
right-Fredholm pair. For any semi-Fredholm pair (F,G), its index,

(A.5) ind(F,G) := null (F,G)− def (F,G),

is well defined as an extended real number. The index of (F,G) is a
rough measure of the non-complementarity of F and G in E.

Let E ′ be the dual space of E and F 0, G0 ⊂ E ′ be the annihilators
(or polar sets) of F and G, respectively. By [Ka, Theorem IV.4.8],
F 0 +G0 is closed if and only if F +G is closed,

(F ∩G)0 = F 0 +G0, (F +G)0 = F 0 ∩G0,(A.6)

null (F 0, G0) = def (F,G), def (F 0, G0) = null (F,G).(A.7)

For Banach spaces E1, E2 and an operator T ∈ L(E1, E2), we recover
the Fredholm properties of T by considering

(A.8) E = E1 × E2, F = E1 × {0}, G = graphT.

To that end we note that F + G is closed in E if and only if imT is
closed in E2 and that the canonical inclusions E1 → E and E2 → E
induce isomorphisms

(A.9) kerT ∼= F ∩G and coker T ∼= E/(F +G).

In particular, if T is semi-Fredholm, then the index of T is

(A.10) ind T = dim kerT − dim coker T = ind(F,G),

where F and G are as above. Next we quote a criterion for left-
Fredholmness of T which is used several times in this work; for a proof,
see for example [Hö, Proposition 19.1.3].
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A.11. Lemma. The following conditions are equivalent:

(1) T ∈ L(E1, E2) is a left-Fredholm operator.
(2) If (xn) is a bounded sequence in E1 with (Txn) convergent in

E2, then (xn) possesses a convergent subsequence. �

Traditionally, the results on Fredholm pairs we have mentioned are
applied to subspaces with topological complements, i,e. to pairs of
spaces of the form F = imP , G = imQ, where P,Q are projections
(continuous idempotents) in E. We need the more general case of a
pair formed by a closed subspace and the image of a projection.

A.12. Proposition. Let B be a closed subspace and P be a projection
in E. Then

(I − P )(B) = kerP ∩ (B + imP ),

and (I − P )(B) is closed in E if and only if B + imP is closed in E.
Furthermore, the codimension of (I − P )(B) in kerP is equal to the
codimension of B+ imP in E. In particular, (I −P ) : B → kerP is a
left-Fredholm operator if and only if (B, imP ) is a left-Fredholm pair,
and then

ind((I − P ) : B → kerP ) = ind(B, imP ).

Proof. Let x ∈ kerP and suppose that x = y + Pz for some y ∈ B.
Then x = (I−P )x = (I−P )y ∈ (I−P )(B). Conversely, if x = (I−P )y
for some y ∈ B, then x = y − Py ∈ B + imP . This shows the first
assertion.

If B+imP is closed in E, then also (I−P )(B) = kerP ∩(B+imP ).
Vice versa, suppose that (I − P )(B) is closed and let (xn = yn + zn)
be a sequence in B + imP converging to x ∈ E. Then

(I − P )yn = (I − P )xn → (I − P )x,

hence there is a y ∈ B with (I−P )y = (I−P )x, by assumption. Hence

x = (I − P )y + Px = y + P (x− y) ∈ B + imP.

It follows that (I − P )(B) is closed if and only if B + imP is closed.
The natural linear map kerP → E/(B + imP ) is surjective with

kernel kerP ∩ (B + imP ) = (I − P )(B). Hence the codimension of
(I−P )(B) in kerP is equal to the codimension of B+imP in E. The
remaining assertions follow. �

A.13. Proposition (Stability). Let P,Q be projections in E such that
P −Q is compact. Then (imP, kerQ) is a Fredholm pair.

If B is a closed subspace of E, then (B, imP ) is a left-Fredholm pair
if and only if (B, imQ) is a left-Fredholm pair, and then

ind(B, imP ) = ind(B, imQ) + ind(kerQ, imP ).
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Proof. It is immediate from Lemma A.11 that (I − P ) : kerQ→ E is
a left-Fredholm operator. Applying Proposition A.12 to B = kerQ we
get that imP + kerQ is closed in E. The annihilator of imP + kerQ
in the dual space E ′ is kerP ′ ∩ imQ′. Now P ′ − Q′ is compact, hence
kerP ′ ∩ imQ′ is of finite dimension. It follows that (kerQ, imP ) is a
Fredholm pair. We also have

(I − P )(I −Q) = (I − P )− (I − P )Q = (I − P ) + C,

where C = (P −Q)Q is compact. Now Proposition A.12 applies. �

Appendix B. An inequality

In the proof of Lemma 1.28, we need a special case of the Sobolev
inequality, cf. Theorem 3.9 in [Ag]. For the sake of completeness, we
give a very simple proof here.

Let σ be a complex valued Lipschitz function on some interval I ⊂ R.
Then

(B.1) (|σ|2)′ = 2 Re(σ′σ̄).

Hence, if I = [s,∞) and σ has compact support, then

(B.2) a|σ(s)|2 ≤ ||σ′||2L2([s,∞)) + a2||σ||2L2([s,∞)),

for any constant a > 0. A corresponding estimate holds for bounded
intervals: Let s < t and σ be a complex valued Lipschitz function on
[s, t]. Then, for any constant a > 0,

(B.3) a|σ(s)− σ(t)|2 ≤ 2||σ′||2L2([s,t]) + 2a2||σ||2L2([s,t]).

Proof of (B.3). By shifting [s, t] if necessary we can assume s = −t.
Since even functions are perpendicular to odd functions in H1([−t, t]),
we can assume that σ is odd. Then the left hand side of the inequality
is equal to 4a|σ(t)|2. Using (B.1) and σ(0) = 0, we derive the asserted
estimate. �
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