INTRODUCTION TO THE SPECTRAL THEORY OF DIFFERENTIAL OPERATORS EXERCISES 1, WEEK FROM APRIL 11

JOCHEN BRÜNING

We use the notation introduced in the Lecture. E is a complex vector space of finite dimension, $A \in \mathcal{L}(E)$ is a linear endomorphism. We define

$$
\begin{aligned}
\operatorname{spec} A & :=\chi_{A}^{-1}(0)=\left(\lambda_{j}\right)_{1}^{k(A)}, \lambda_{j} \in \mathbb{C}, k(A) \leq \operatorname{dim} E, \\
P_{j} & :=-(2 \pi i)^{-1} \int_{\partial B_{\varepsilon}(0)} R_{A}(z) d z, \\
D_{j} & :=-(2 \pi i)^{-1} \int_{\partial B_{\varepsilon}(0)} z R_{A}(z) d z .
\end{aligned}
$$

P_{j} and D_{j} are called the projection and the nilpotent part of A at λ_{j}, respectively. We also write

$$
R_{A, j}(z)=\sum_{i \in \mathbb{Z}}\left(z-\lambda_{j}\right)^{i} A_{j, i}=: R_{A, j}(z)^{\mathrm{prin}}+\sum_{i \in \mathbb{Z}_{+}}\left(z-\lambda_{j}\right)^{i} A_{j, i},
$$

and we call $R_{A, j}(z)^{\text {prin }}$ the principal part of A at λ_{j}.

1. Show that

$$
r_{\mathrm{spec}}\left(R_{A, j}^{\mathrm{prin}}(z)=\left|z-\lambda_{j}\right|, z \neq \lambda_{j} .\right.
$$

2. Show the following relations:

$$
\begin{aligned}
P_{j} P_{k} & =P_{k} P_{j}=\delta_{j k} P_{k}, \\
\sum_{j=1}^{k(A)} P_{j} & =I_{E} \\
P_{j} A & =A P_{j} .
\end{aligned}
$$

3. Show that for any simply closed and positively oriented rectifiable curve c in \mathbb{C} enclosing the domain Intc and not intersecting $\operatorname{spec} A$ we have

$$
-(2 \pi i)^{-1} \int_{c} R_{A}(z) d z=\sum_{\lambda_{j} \in \operatorname{Intc}} P_{j} .
$$

Date: April 15, 2011.
4. Show that

$$
A=\sum_{j} \lambda_{j} P_{j}+\sum_{j} D_{j}=: S+D
$$

where S is semisimple and D is nilpotent, and

$$
[S, D]=0
$$

Show in addition that this decomposition is unique.
Institut für Mathematik, Humboldt-Universität, Rudower Chaussee
5, 12489 Berlin, Germany,
E-mail address: bruening@mathematik.hu-berlin.de

