

EXERCISES 1, week of April 25, 2011

1 Finite dimensional spaces

Let dim $E < \infty$ and denote by E^{\star} the dual space.

- a) Show that any two norms on E are equivalent.
- b) Show that any finite dimensional subspace of a *B*-space is closed.
- c) Show that any finite dimensional subspace E_1 of a *B*-space *E* admits a complement E_2 , i.e. a closed subspace of *E* such that

$$E_1 \cap E_2 = 0, \quad E_1 \oplus E_2 = E.$$

d) Show that any closed subspace E_1 of a *B*-space *E* with finite codimension,

$$\dim E/E_1 < \infty,$$

admits a complement E_2 .

2 Let M be an open subset of \mathbb{R}^m with compact closure and let $k \in C(\overline{M} \times \overline{M})$. Show that the map

$$L^{2}(M) \ni f \mapsto Kf \in L^{2}(M),$$
$$Kf(X) := \int_{M} k(x, y)f(y)dy$$

defines a compact operator. Can this statement be extended to $k \in L^{\infty}(M \times M)$?

- **3** Let *E* be a Banach space. Show that $\mathcal{K}(E)$ is a twosided \star ideal.
- 4 Show that a projection P in a Banach space E is in $\mathcal{K}(E)$ iff dim $P(E) < \infty$.