Humboldt-Universität zu Berlin Institut für Mathematik Prof. Dr. Jochen Brüning

INTRODUCTION TO SPECTRAL THEORY OF DIFFERENTIAL OPERATORS, SS 2011

EXERCISES 4, week of May 9, 2011

In what follows H denotes a Hilbert space.

1 Let $A \in \mathcal{L}(E)$, E a Banach space, $A' \in \mathcal{L}$ is called a *generalised inverse* of A if

$$AA'A = A.$$

Show that $\operatorname{im} A$ and $\operatorname{im} A'$ are closed. Is a generalised inverse unique?

- 2 Show that in a Hilbert space every bounded normal operator has empty residual spectrum.
- **3** Let $A \in \mathcal{F}(H)$ be normal. Show that there is $\epsilon > 0$ such that $B_{\epsilon}^{\mathbb{C}}(0) \setminus \{0\} \subset \operatorname{res} A$.
- 4 Let $C = C^* \in \mathcal{L}(H)$ such that $\langle Cx, x \rangle = 0 \ \forall x \in H$. Show that C = 0.
- 5 Show that the following conditions for $P, Q \in \mathcal{P}(H)$ are equivalent.
 - a) $P(H) \subset Q(H)$,
 - b) $P \leq Q$,
 - c) PQ = QP = P.
- 6 Uniqueness of the square root Let $A \ge 0$, $B \ge 0$ satisfy $A^2 = B^2$. Show that then A = B.