Humboldt-Universität zu Berlin Institut für Mathematik Prof. Dr. Jochen Brüning

INTRODUCTION TO SPECTRAL THEORY OF DIFFERENTIAL OPERA-TORS, SS 2011

EXERCISES 10, week of June 27, 2011

1 Let $D \in \text{Diff}_k(M, E_1, E_2)$. Show that

$$\hat{D}(\xi) \in \mathcal{L}(E_{1,p}, E_{2,p}), \ p \in M, \ \xi \in T_p^{\star}M,$$

defined by

$$\hat{D}(\xi)[e] := i^k D\left(\frac{\phi^k}{k!}s\right)(p)$$

is well defined if $e \in E_p$, $\xi \in T_p^{\star}M$, $s \in C_c^{\infty}(M.E)$ with s(p) = e, $\phi \in C_c^{\infty}(M)$ with $\phi(p) = 0$, $d\phi(p) = \xi$.

- 2 Show that for $D_i \in \text{Diff}_{k_i}(M, E_i, E_{i+1}), i = 1, 2$, one has $\hat{D}_2(\xi) \circ \hat{D}_1(\xi) = \widehat{D_2 \circ D_1}(\xi).$
- **3** Assume that M is Riemannian and oriented, and that $E_i \to M$ is smooth with hermitian metric h^{E_i} , i = 1, 2, and consider $D \in \text{Diff}_k(E_1, E_2)$. Define for $s_j \in C_c^{\infty}(M, E_i)$, i, j = 1, 2,

$$(s_1, s_2)_{L^2(E_i)} := \int_M \langle s_1, s_2 \rangle_{h^{E_i}}(p) \operatorname{vol}_{\mathcal{M}}(p);$$

Show that there is $D^{\dagger} \in \text{Diff}_k(E_2, E_1)$ such that for $s_j \in C_c^{\infty}(M, E_j)$

$$(Ds_1, s_2)_{L^2(E_2)} = (s_1, D^{\dagger}s_2)_{L^2(E_1)}.$$

Prove that

$$\widehat{D^{\dagger}}(\xi) = \widehat{D}(\xi)^{\star}.$$

4 Let M be an orientable Riemannian manifold. For $X \in \tau^1(M)$, define the divergence by

$$\operatorname{div} X := \sum_{i=1}^{m} \langle \nabla_{e_i}^k X e_i, \rangle_{TM},$$

where (e_i) is any local orthonormal frame for TM. Show that for any $X \in \tau^1(M), f \in C^{\infty}(M)$

- a) div $X \operatorname{vol}_{M} = \mathcal{L}_{X}(\operatorname{vol}_{M}), \ \mathcal{L}$ the Lie derivative;
- b) $\operatorname{div}(fX) = Xf + f \operatorname{div} X;$
- c) $X^{\dagger} = -Xx \operatorname{div} X$, if X is considered as a first order differential operator on $C^{\infty}(M)$;
- d) $(\nabla_X^E)^{\dagger} = -\nabla_X^E \operatorname{div} X$ for any smooth hermitian bundle $E \to M$ and any metric connection ∇^E .

