Humboldt-Universität zu Berlin Institut für Mathematik

Prof. Dr. Jochen Brüning Vorlesung Analysis IIIa, WS 2008/09

ÜBUNGSBLATT 2

Abgabe am 05.11.2008 vor der Vorlesung (bis 13.10 Uhr)

Aufgabe 1. Sei X eine Menge, sei $\mathcal{R} \subset \mathcal{P}(X)$ ein Ring, und sei μ ein Inhalt auf \mathcal{R} . Zeigen Sie:

- a) Durch $A \sim B :\Leftrightarrow \mu(A\Delta B) = 0$, $A, B \in \mathcal{R}$ wird eine Äquivalenzrelation auf \mathcal{R} definiert.
- b) Die Äquivalenzklasse $\mathcal N$ der leeren Menge enthält genau die μ -Nullmengen in $\mathcal R.$
- c) Für alle $A, B \in \mathcal{R}$ mit $A \sim B$ gilt $\mu(A) = \mu(B) = \mu(A \cup B) = \mu(A \cap B)$.
- d) Sei μ zusätzlich endlich und sei $\delta : \mathcal{R} \times \mathcal{R} \to \mathbb{R}$ gegeben durch $\delta(A, B) := \mu(A\Delta B)$. Zeigen Sie, dass δ eine Halbmetrik auf \mathcal{R} ist, d.h. $\delta(A, A) = 0$ für alle $A \in \mathcal{R}$, δ ist symmetrisch, und δ erfüllt die Dreiecksungleichung. Zeigen Sie ferner, dass $|\mu(A) \mu(B)| \leq \delta(A, B)$.

(8 Punkte)

Aufgabe 2. Sei X eine nichtleere Menge.

- a) Sei $\mu: \mathcal{P}(X) \to \{0,1\} \subset \mathbb{R}$ ein Inhalt mit $\mu(X) = 1$. Sei $\mathcal{U} := \{A \subset X \mid \mu(A) = 1\}$. Zeigen Sie:
 - (i) $\emptyset \notin \mathcal{U}$
 - (ii) $A \in \mathcal{U}, A \subset B \subset X \Rightarrow B \in \mathcal{U}$
 - (iii) $A, B \in \mathcal{U} \Rightarrow A \cap B \in \mathcal{U}$
 - (iv) $A \subset X \Rightarrow A \in \mathcal{U} \lor (X \setminus A) \in \mathcal{U}$

Eine Menge, die diese vier Eigenschaften erfüllt, heißt Ultrafilter auf X und sollte Ihnen aus der Vorlesung Analysis 2^* (Beweis des Satzes von Tychonow) bekannt sein.

b) Sei \mathcal{U} ein Ultrafilter auf X und sei $\mu: \mathcal{P}(X) \to \mathbb{R}$ gegeben durch

$$\mu(A) := \begin{cases} 1 & A \in \mathcal{U}, \\ 0 & X \setminus A \in \mathcal{U}. \end{cases}$$

- (i) Zeigen Sie, dass μ ein Inhalt ist.
- (ii) Zeigen Sie, dass μ genau dann ein Maß ist, wenn für jede Folge $(A_n)_{n\in\mathbb{N}}$ von Mengen aus \mathcal{U} gilt:

$$\bigcap_{n=1}^{\infty} A_n \neq \emptyset.$$

(8 Punkte)

Aufgabe 3. Zeigen Sie, dass jeder auf einem Halbring \mathcal{H} definierte Inhalt μ eine eindeutige Fortsetzung ν auf den von \mathcal{H} erzeugten Ring \mathcal{R} besitzt, und dass diese Fortsetzung gegeben ist durch:

$$\mathcal{R} \ni A = \bigcup_{k=1}^{n} A_k \text{ wobei } A_k \in \mathcal{H} \quad \Rightarrow \quad \nu(A) := \sum_{k=1}^{n} \mu(A_k).$$

(4 Punkte)

Für weitere Hinweise zur Bearbeitung der Übungsblätter siehe http://www.math.hu-berlin.de/~geomanal/analysis3.html