Humboldt-Universität zu Berlin Institut für Mathematik

Prof. Dr. Jochen Brüning Vorlesung Analysis IIIa, WS 2008/09

ÜBUNGSBLATT 6

Abgabe am 03.12.2008 vor der Vorlesung (bis 13.10 Uhr)

Aufgabe 1. Sei $f \in \widetilde{L^1}(X,\mu)$. Zeigen Sie die folgenden Aussagen:

- a) Für alle $\epsilon > 0$ gibt es ein $\delta > 0$, so dass $|\int_A f \ d\mu| < \epsilon$ für alle messbaren Mengen $A \subset X$ mit $\mu(A) < \delta$.
- b) Für alle $\epsilon > 0$ gibt es eine messbare Menge A mit endlichem Maß, so dass $|\int_X f \ d\mu \int_A f \ d\mu| < \epsilon$.
- c) Wenn $(f_n)_{n\in\mathbb{N}}$ approximierende Folge von f ist, dann ist $(f_n^{\pm})_{n\in\mathbb{N}}$ approximierende Folge von f^{\pm} .

(je 2 Punkte)

Aufgabe 2. Sei $(f_n)_{n\in\mathbb{N}}$ eine L^1 -Cauchyfolge mit konvergenten Teilfolgen $(f_{n_l})_{l\in\mathbb{N}}$ und $(f_{m_l})_{l\in\mathbb{N}}$. Zeigen Sie, dass $\lim_{l\to\infty} f_{n_l}$ und $\lim_{l\to\infty} f_{m_l}$ μ -fast überall übereinstimmen.

(2 Punkte)

Aufgabe 3. Seien (X, \mathcal{A}, μ) ein Maßraum und (Y, \mathcal{B}) messbar. Für eine $(\mathcal{A}, \mathcal{B})$ messbare Abbildung $f: X \to Y$ ist $f_*\mu := \mu \circ f^{-1} : \mathcal{B} \to [0, \infty]$ ein Maß. Zeigen
Sie: Für $g \in \widetilde{L}^1(Y, f_*\mu)$ ist $g \circ f \in \widetilde{L}^1(X, \mu)$ und $\int_Y g \ d(f_*\mu) = \int_X g \circ f \ d\mu$.

(4 Punkte)

Aufgabe 4. Sei (X, \mathcal{A}, μ) ein Maßraum. Für $f: X \to [0, \infty]$ mit $f \in \widetilde{L}^1(X, \mu)$ definieren wir $\nu(A) := \int_A f \ d\mu$. Zeigen Sie:

- a) ν ist ein Maß auf \mathcal{A} .
- b) Für $g \in \widetilde{L^1}(\nu)$ gilt: $\int_X g \ d\nu = \int_X g f \ d\mu$.

(1+3 Punkte)

Bitte wenden \rightarrow

Aufgabe 5. Betrachten Sie eine unendliche Matrix $(a_{n,i})_{n,i\in\mathbb{N}}$ nichtnegativer reeller Zahlen, bei der für jedes $i\in\mathbb{N}$ die Folge $(a_{n,i})_{n\in\mathbb{N}}$ monoton wachsend und konvergent ist. Zeigen Sie

$$\lim_{n \to \infty} \sum_{i=1}^{n} a_{n,i} = \sum_{i=1}^{\infty} \lim_{n \to \infty} a_{n,i},$$

indem Sie die Summen als Integrale bezüglich des Zählmaßes auf $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ auffassen.

(4 Punkte)

Für weitere Hinweise zur Bearbeitung der Übungsblätter siehe http://www.math.hu-berlin.de/~geomanal/analysis3.html