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Abstract

This paper is concerned with the study of quadratic hedging of contingent claims with

basis risk. We extend existing results by allowing for the correlation between the hedging

instrument and the underlying of the contingent claim to be random itself. We assume that

the correlation process ρ evolves according to a stochastic differential equation with values

between the boundaries -1 and 1. We keep the correlation dynamics general and derive an

integrability condition on the correlation process that allows to describe and compute the

quadratic hedge by means of a simple hedging formula that can be directly implemented.

Furthermore we show that the conditions on ρ are fulfilled by a large class of dynamics. The

theory is exemplified by various, explicitly given correlation dynamics.

Introduction

If a hedging instrument is not perfectly correlated with the risk to be hedged, then a non-

hedgeable risk, called basis risk, remains. A prominent example for financial derivatives that

entail basis risk are basket options. As an example think of options on stock market indices

like the Dow Jones or the DAX. In practice such options may be hedged by trading futures or

forwards written on the index. A futures on a stock index is usually highly correlated with the

index itself. Figure 1 shows the daily Dax values between April and December 2008, and the

daily EUREX average prices of the Dax Futures with maturity December 2008.

There are many papers dealing with optimal hedging with basis risk, see f.ex. [3] and [8] and

the references therein. In the literature two different optimality criteria for the hedge have been

applied so far. First, a utility based approach that aims at maximising the exponential utility of

the terminal wealth minus the hedging costs (see f.ex. [1], [7], [3]). Second, a quadratic approach

that aims at minimising the quadratic hedging error. In all the hedging literature concerned,

the correlation between the tradable and non-tradable assets is supposed to be constant. There
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Figure 1: Daily average Dax values (continuous line) be-

tween April and December 2008 and daily EUREX aver-

age prices of the Dax Futures (dashed line) issued in April

2008 and with maturity December 2008.
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Figure 2: Correlation between the logreturns of the Dax

and Dax Futures of Figure 1.

is empirical evidence, however, that often the correlation is random itself and fluctuates over

time. Figure 2 shows the correlation between the Dax and EUREX Dax Futures.

In this paper we extend results on quadratic hedging with basis risk by allowing for the

correlation to be random. As usual, we assume that the price of the tradable asset and the

value of the non-tradable index evolve according to geometric Brownian motions. However,

we will assume that the correlation between the driving Brownian motions is not constant,

but a random process with values between −1 and 1. More precisely, we will assume that the

correlation process is the solution of a stochastic differential equation (SDE). This will guarantee

that the correlation process possesses the Markovian property.

We consider European options on the non-tradable index and derive the asset hedging strat-

egy that locally minimizes the quadratic hedging error, the so-called locally risk minimizing

strategy (see Section 1 for an introduction into local risk minimization). Essentially, the optimal

hedge can be described by the following factors: the asset hedge ratio, defined as

ρt
index vola

asset vola
,

where ρt is the correlation process, the correlation hedge ratio, defined as

γ
correlation vola

asset vola
,

where γ is the correlation between the asset and ρt. The derivative with respect to the asset

(resp. the correlation) of the expected value of the option under the so-called minimal equivalent

local martingale measure will be called asset delta (resp. correlation delta). We will show that

the optimal hedge is the asset hedge ratio multiplied with the asset delta plus the correlation

hedge ratio multiplied with the correlation delta, i.e.

opt. hedge = asset hedge ratio × asset delta + correlation hedge ratio × correlation delta.
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In general, by assuming a stochastic correlation, there is no closed formula for the asset delta,

but it is straightforward to show that it has a representation in terms of a simple expectation.

The main effort, however, lies in showing that the correlation delta can be expressed as a simple

expectation as-well. Under a natural integrability condition on the correlation process, we show

that one may differentiate under the expectation, and hence obtains the desired representation.

With this at hand, one may compute the hedging strategy by simple Monte-Carlo simulations.

It will be the topic of future research to compare the performance of the hedging formula

derived with naive hedging strategies assuming constant correlation. For models with constant

correlation, in [8] the performance of quadratic hedging has been compared with exponential

utility based hedging as described in [11].

We want to point out to two papers that allow for stochastic correlation in pricing contin-

gent claims: Van Emmrich [17] prices quanto options by assuming that the exchange rate is

stochastically correlated with the underlying, and Frei & Schweizer [6] deal with exponential

utility indifference valuation of contingents claims based on risk sources that are stochastically

correlated with assets traded on financial markets.

The paper is organised as follows. In Section 1 we give a short introdution into local risk

minimization. Section 2 introduces our model and gives an overview on the main results we

obtained. The details we use to derive our hedge formula are provided in Section 3. We continue

in Section 4 by analyzing the boundary behaviour and integrability properties of correlation

processes. We conclude with Section 5 by giving some explicit examples of correlation processes

for which our main results hold.

1 A brief review of local risk minimization

In this section we give a short introduction into the theory of local risk minimization in a

quadratic sense. The material presented is a streamlined version of [16].

We start with a filtered probability space (Ω,F ,P), where T > 0 is a finite time horizon

and the filtration (Ft)0≤t≤T satisfies the usual conditions, i.e. (Ft)0≤t≤T is right continuous and

completed by the P-null sets. We consider a financial market with one risky asset S and one

non-risky asset, say a money market account with dynamics B. We suppose that the discounted

asset price X = S/B is an R-valued continuous semimartingale, and we assume that X satisfies

the so-called structure condition (SC). This means that X is a special semimartingale with

canonical decomposition

X = X0 +M +A = X0 +M +

∫

λd〈M〉,

whereM is a locally square integrable martingale with M0 = 0, and λ is an R-valued, predictable

process such that the mean-variance tradeoff process K =
∫ ·
0 λdA =

∫ ·
0 λ

2d〈M〉 satisfies KT <

∞, P a.s. It is well known that (SC) is related to an absence-of-arbitrage condition; see [16] for

a reference.
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Definition 1.1. ([16], Definition 1.1)

The space ΘS consists of all R-valued predictable processes ξ such that the stochastic integral

process
∫

ξdX is well-defined and

E

[

∫ T

0
ξ2sd〈M〉s +

(

∫ T

0
|ξsdAs|

)2]

<∞.

An L2-strategy is a pair ϕ = (ξ, η), where ξ ∈ ΘS and η is a real-valued adapted process such

that the value process V (ϕ) = ξX + η is right-continuous and square-integrable. ϕ is called

0-achieving if VT (ϕ) = 0, P-a.s.

As usual, a strategy ϕ = (ξ, η) describes the investment decisions of an agent trading in the

financial market. An investor following the strategy ϕ holds ξt shares of the discounted asset

X at time t, and keeps ηt units in a money market account. In this section we use the money

market account as numeraire so that we need not to bother about the interest rate.

We next consider a payment stream H = (Ht)0≤t≤T kept fixed throughout this introduction.

Mathematically, H is right-continuous, adapted, real-valued and square-integrable; the interpre-

tation is that Ht ∈ L2(P) represents the total payments on [0, t] arising due to some financial

contract. A European contingent claim with maturity T would have Ht = 0 for all t < T and

just an FT -measurable payoff HT ∈ L2(P) due at time T ; in general, the process H involves

both cash inflows and outlays, and can but need not be of finite variation.

Definition 1.2. ([16], Definition 1.2)

Fix a payment stream H. The (cumulative) cost process of an L2-strategy ϕ = (ξ, η) is

CH
t (ϕ) = Ht + Vt(ϕ) −

∫ t

0
ξsdXs, 0 ≤ t ≤ T. (1)

ϕ is called self-financing (for H) if CH
t (ϕ) is constant, and mean-self-financing if CH

t (ϕ) is a

martingale (which is then square-integrable). Under the assumption that X fulfills the structure

condition (SC) and that the mean-variance tradeoff process K is continuous we say that an L2-

strategy ϕ is locally risk minimizing if ϕ is 0-achieving and mean-self-financing, and the cost

process CH(ϕ) is strongly orthogonal to M , i.e. 〈M,CH(ϕ)〉t = 0, for all t ∈ [0, T ].

Thus, Ct(ϕ) comprises the hedger’s accumulated costs during [0, t] including the payments

Ht, and Vt(ϕ) should therefore be interpreted as the value of the portfolio ϕt = (ξt, ηt) held

at time t after the payments Ht. In particular, VT (ϕ) is the value of the portfolio ϕT upon

settlement of all liabilities, and a natural condition is then to restrict to 0-achieving strategies

as defined in Definition 1.1.

Remark 1.3. ([16], Remark 1.3)

Observe that if ϕt = (ξt, ηt) is a 0-achieving and mean-self-financing L2-strategy for H, then ϕ

is uniquely determined from ξ (and of course H).

4



It is well known that the locally risk-minimizing strategy can be obtained via the so-called

Föllmer-Schweizer decomposition (FS) of the final payment HT . That is the decomposition of

HT into

HT = H
(0)
T +

∫ T

0
ξHT
s dXs + LHT

T , P − a.s, (2)

where H
(0)
T ∈ L2(P) is F0-measurable, ξHT is in ΘS, and the process LHT is a (right-continuous)

square-integrable martingale strongly orthogonal to M and satisfying LHT

0 = 0. Notice that such

a decomposition can be shown to be unique. Once we have (2), the desired strategy ϕ = (ξ, η)

is then given by

ξ = ξHT , η = V HT − (ξHT )X, (3)

with

V HT

t = H
(0)
T +

∫ t

0
ξHT
s dXs + LHT

t −Ht, 0 ≤ t ≤ T. (4)

(see Proposition 5.2 of [16]). Furthermore, the associated cost process is given by

CH
t (ϕ) = H

(0)
T + LHT

t , 0 ≤ t ≤ T. (5)

2 The model and the main results

LetW = (W 1,W 2,W 3) be a three-dimensional Brownian motion on a probability space (Ω,F , P ).

Consider two processes with dynamics

dSt = St(µXdt + σXdW
1
t )

dUt = Ut(µIdt + σI(ρtdW
1
t +

√

1 − ρ2
t dW

2
t )),

where W 1 and W 2 are independent Brownian motions. To simplify the presentation we will

assume throughout that all coefficients are constant, more precisley µX , µI ∈ R and σX , σI ∈
R \ {0}.

We assume that S is the price process of a tradable asset, and U the value process of a

non-tradable index. The correlation ρ is assumed to follow

dρt = a(ρt)dt + g(ρt)dŴt, t ≥ 0, (6)

where Ŵ is given by Ŵ = γW 1
u + δW 2

u +
√

1 − γ2 − δ2W 3
u , with W 3 being a Brownian motion

independent of W 1 and W 2, and γ and δ real numbers such that δ2 + γ2 ≤ 1. For the moment,

we assume that the coefficients of the correlation dynamics, a and g, belong to C1(−1, 1), and

that there exists a unique solution ρ of (6) with values in [−1, 1].

Throughout we suppose that the interest r > 0 is constant, and let Bt = ert. The discounted

processes S and U will be denoted by

Xt = e−rtSt, It = e−rtUt.
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Notice that

dXt = Xt((µX − r)dt + σXdW
1
t )

dIt = It((µI − r)dt+ σI(ρtdW
1
t +

√

1 − ρ2
t dW

2
t )).

(7)

Consider a derivative d(UT ) depending on the non-tradable index. Let h(x) = e−rTd(erTx).

Then d(UT ) = erTh(IT ). Our goal is to analyse how to hedge the liability h(IT ) by trading the

asset X.

Since the market is incomplete we need to choose a criteria according to which strategies are

chosen and the prices of contingent claims are computed. We will use the framework of local

risk minimization of Section 1.

Our first main result is an explicit hedge formula, which can be easily implemented, for

example by simple Monte Carlo simulation. We will state it right away in Theorem 2.1, after a

brief collection of some notations and assumptions.

We will need the conditional versions of the processes I and ρ, which are given by

It,y,v
s = y +

∫ s

t
It,y,v
u ((µI − r)du+ σI(ρ

t,v
u dW 1

u +

√

1 − (ρt,v
u )2dW 2

u ))

ρt,v
s = v +

∫ s

t
a(ρt,v

u )du+

∫ s

t
g(ρt,v

u )dŴu,

(8)

for t ∈ [0, T ), (y, v) ∈ R × (−1, 1).

In order to find a nice representation of the quadratic hedge, we also need the dynamics of the

derivatives of It,y,v and ρt,v with respect to the initial values y and v. Note that the derivative

with respect to y of It,y,v is given by ∂
∂y I

t,y,v = It,y,v

y = It,1,v, and obviously ∂
∂yρ

t,v = 0. If the

correlation process neither attains −1 nor 1 up to time T , then the derivatives of It,y,v and ρt,v

with respect to v are defined. Moreover, the processes ∂
∂v I

t,y,v and ∂
∂vρ

t,v, denoted by Īt,y,v and

ρ̄t,v respectively, solve the SDE

Īt,y,v
s =

∫ s

t
Īt,y,v
u ((µI − r)du+ σI(ρ

t,v
u dW 1

u +

√

1 − (ρt,v
u )2dW 2

u ))

+

∫ s

t
It,y,v
u σI(ρ̄

t,v
u dW 1

u − ρt,v
u

√

1 − (ρt,v
u )2

ρ̄t,v
u dW 2

u )

ρ̄t,v
s = 1 +

∫ s

t
a′(ρt,v

u )ρ̄t,v
u du+

∫ s

t
g′(ρt,v

u )ρ̄t,v
u dŴu,

(9)

for s ∈ [t, T ] (see Theorem 38 of Chapter V, 7 in [13]). Notice that the correlation boundaries −1

and 1 are not attained if and only if the stopping times τv = τ t,v = inf{s ≥ t : ρt,v
s ∈ {−1, 1}}

satisfy τ t,v > T , P-a.s. We formulate this as Condition

(H1) τ t,v > T, P − a.s., for any v ∈ (−1, 1).

Notice that (H1) guarantees that
∫ T
t (g′(ρt,v

u ))2du <∞, P-a.s. and

∫ T

t

(ρ̄t,v
s )2

1 − (ρt,v
s )2

du <∞, P − a.s. (10)
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and hence the stochastic integrals appearing in (9) are defined. Finally, for our aim of deriving

an explicit representation of the quadratic hedge, we need to impose a stronger integrability

condition on ρ and ρ̄ than (10). More precisely, we will assume that the following condition is

satisfied

(H2) There exists a p > 1 such that for every t ∈ [0, T ] and v0 ∈ (−1, 1) there exists an

open neighbourhood U ⊂ (−1, 1) of v0 such that

sup
v∈U

E

∫ T

t

∣

∣

∣

∣

∣

(ρ̄t,v
s )2

1 − (ρt,v
s )2

∣

∣

∣

∣

∣

p

ds <∞. (11)

We are now ready to state our first main result which gives an explicit expression for the

locally risk minimizing strategy in terms of expectations with respect to the measure P̃ with

density dP̃/dP = E(−
∫ .
0

µX−r
σX

dW 1)T , where E(·) denotes the Doléans-Dade exponential. Note

that P̃ corresponds to the so-called minimal martingale measure, see [16].

Theorem 2.1. Suppose that the coefficients a and g in the dynamics of ρ are continuously

differentiable on (−1, 1). Assume furthermore that both Conditions (H1) and (H2) are satisfied.

Let h be Lipschitz such that the weak derivative h′ is Lebesgue-almost everywhere continuous.

Then, there exists a locally risk minimizing strategy ϕ = (ξ, η) for the derivative h(IT ). ξ is

given by ξt = ξ(t, It,Xt, ρt), where

ξ(t, y, x, v) =
y

x

[

v
σI

σX
Ẽ[h′(It,y,v

T )It,1,v
T ] +

g(v)γ

σX
Ẽ[h′(It,y,v

T )Īt,1,v
T ]

]

. (12)

The proof of this Theorem is postponed to Section 3.

Remark 2.2. In terms of the original processes S and U the hedge would be given by ξt =

ξ̂(t, Ut, St, ρt) where

ξ̂(t, y, x, v) =
y

x

[

v
σI

σX
Ẽ[d′(U t,y,v

T )U t,1,v
T ] +

g(v)γ

σX
Ẽ[d′(U t,y,v

T )Ū t,1,v
T ]

]

e−r(T−t), (13)

with Ū obtained in the same way as Ī.

Before we state our second main contribution, let us apply the previous result to derive the

locally risk minimizing strategy for a European Call option.

Corollary 2.3. Suppose that correlation is a deterministic function of time. For strike K > 0,

let d(x) = max{(x−K), 0}. Then, there exists a locally risk minimizing strategy ϕ = (ξ, η) for

the derivative d(UT ). ξ is given by

ξt = ρt
UtσI

StσX
∆BS(t, Ut, κt, σI), (14)

where κt = −(µI − r)(T − t) + σI(
µX−r

σX
)
∫ T
t ρsds and, with Φ the standard normal cumulative

distribution function,

∆BS(t, y, q, σ) = exp(−q)Φ(
ln(y/K) + (r + σ2

I/2)(T − t) − q

σI

√
T − t

)

7



is the Black-Scholes delta for options on stocks with continuous dividend yield q.

The content of the preceeding Corollary is only a slight extension of a result already men-

tioned in [8] for the case of constant correlation. The proof is a simple straightforward calcula-

tion.

Remark 2.4. From the local risk minimizing strategy we can easily deduce the so-called mean-

variance optimal hedging strategy of the payoff h(IT ). The mean variance hedge is defined to

be the self-financing strategy minimzing the variance of the global hedging error, and usually

differs from the local risk minimizing strategy (see [15] for an introduction into mean-variance

hedging). In the model considered here, the mean variance trade-off process is deterministic,

and hence, by an appeal to Theorems 4.6 and 4.7 of Schweizer [15], the mean variance hedge

has a representation allowing to derive it numerically by a simply recursion. Namely, letting

w = Ẽ(h(IT )), the mean-variance optimal strategy (ξ̃, η̃) for h(IT ) satisfies, with ξ̃ = ξ(w),

ξ
(w)
t = ξt +

µX − r

σ2
XXt

[

Ẽ(h(IT )|Ft) − w −
∫ t

0
ξ(w)
s dXs

]

,

for all t ∈ [0, T ] and

η̃t = w +

∫ t

0
ξ(w)
s dXs − ξ

(w)
t Xt,

for all t ∈ [0, T ].

Our second main result concerns conditions on the coefficients a and g of ρ such that Con-

ditions (H1) and (H2) are fulfilled.

Theorem 2.5. Let a and g be continuously differentiable with bounded derivatives. We assume

that g(−1) = g(1) = 0, and that g does not have any roots in (−1, 1). If

lim sup
x↑1

2a(x)(1 − x)

g2(x)
< 0 and lim inf

x↓−1

2a(x)(1 + x)

g2(x)
> 0, (15)

then both Conditions (H1) and (H2) are satisfied, and hence, the delta hedge is given as in

Theorem 2.1.

The preceeding theorem can be generalized, which will enable us to give an example in

Section 5 where the derivative of g is unbounded. This, however, requires a little more notation,

which for ease of exposition is avoided here. See Section 4 for a proof of Theorem 2.5 and the

more general Proposition 4.3.

3 Derivation of the hedge formula

In this section we will derive and prove the hedge formula stated in Theorem 2.1. In Subsection

3.1 we use BSDEs to derive the Föllmer-Schweizer decomposition, which is the key to obtain the
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formula (12). In 3.2 and 3.3 we elaborate on details which we need along the way. It is in those

details that we need Conditions (H1) and (H2). Let us first recall the definition of a BSDE.

As in Section 2, let W = (W 1,W 2,W 3) be a three-dimensional Brownian motion. The

filtration generated by W and completed by the P -null sets will be denoted by (Ft). Let T > 0

and ξ be an FT -measurable random variable, and let f : Ω× [0, T ]×R×R
3 → R be a measurable

function such that for all (y, z) ∈ R×R
3 the mapping f(·, ·, y, z) is predictable. A solution of the

BSDE with terminal condition ξ and generator f is defined to be a pair of predictable processes

(Y,Z) such that almost surely we have
∫ T
0 |Zs|2ds < ∞,

∫ T
0 |f(s, Ys, Zs)|ds < ∞, and for all

t ∈ [0, T ]

Yt = ξ −
∫ T

t
ZsdWs +

∫ T

t
f(s, Ys, Zs)ds.

The solution processes (Y,Z) are often shown to satisfy some integrability properties. To this

end one usually verifies whether they belong to the following function spaces. Let p ≥ 1. We

denote by H
p(R3) the set of all R

3-valued predictable processes ζ such that E
∫ T
0 |ζt|pdt < ∞,

and by S
p(R) the set of all R-valued predictable processes δ satisfying E

(

sups∈[0,T ] |δs|p
)

<∞.

3.1 Deriving the FS decomposition with BSDEs

As stated in Section 2 we use the framework of local risk minimization. Accordingly, note first

that X satisfies the structure condition (SC), i.e. X is a special semimartingale with canonical

decomposition given by Mt =
∫ t
0 σXXsdWs, λt = µX−r

σ2

X
Xt

and hence Kt =
(

µX−r
σX

)2
t. In order to

find the FS decomposition we consider a BSDE with terminal condition h(IT ), and driver f to

be specified later,

Yt = h(IT ) −
∫ T

t
ZsdWs +

∫ T

t
f(s, Ys, Zs)ds. (16)

Assume that f can be chosen such that
∫ t

0
ξdXs =

∫ t

0
Z1

sdW
1
s −

∫ t

0
f(s, Ys, Zs)ds, (17)

for all t ∈ [0, T ]. Also, by using (7), we have
∫ t

0
ξdXs =

∫ t

0
ξσXXsdW

1
s +

∫ t

0
ξXs(µX − r)ds. (18)

Uniqueness of semimartingale decompositions yields that the martingale parts of (17) and (18)

coincide, and therefore it must hold ξt =
Z1

t

σXXt
, P ⊗ λ-a.s. Moreover, the driver f has to satisfy

f(s, y, z) = −z1µX − r

σX
. (19)

Indeed, one can show that the solution of the BSDE with generator (19) provides the FS de-

composition. We summarize this in the next result, which is in fact a special case of Proposition

1.1 in [5].
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Lemma 3.1. The FS decomposition of h(IT ) is given by

h(IT ) = Y0 +

∫ T

0

Z1
s

σXXs
dXs +

∫ T

0
Z2

sdW
2
s +

∫ T

0
Z3

sdW
3
s , (20)

where (Ys, Zs)0≤s≤T is the solution of the BSDE (16) with generator f defined as in (19).

In order to obtain a characterization of the solution of

Yt = h(IT ) −
∫ T

t
ZsdWs −

∫ T

t
Z1

s

µX − r

σX
ds,

we consider the conditional forward SDE given by (8) and the associated conditional BSDE

Y t,y,v
s = h(It,y,v

T ) −
∫ T

s
Zt,y,v

u dWu −
∫ T

s
Z1,t,y,v

u

µX − r

σX
du, (21)

for s ∈ [t, T ]. Since the BSDE (21) is linear we know by standard results, see for example [5],

that

Y t,y,v
s = E[h(It,y,v

T )Γs
T |Fs] = E[h(It,y,v

T )
Γ0

T

Γ0
s

|Fs],

where Γt
s = exp

(

−µX−r
σX

(W 1
s −W 1

t ) − (µX−r)2

2σ2

X

(s− t)
)

is the solution of

dΓt
s = Γt

s[−
µX − r

σX
dW 1

s ], Γt
t = 1. (22)

Let P̃ be the probability measure with density dP̃

dP
= Γ0

T , and denote with ψ the function defined

by

ψ(t, y, v) = Ẽ[h(It,y,v
T )]. (23)

That the function ψ is well defined and that is has first derivatives with respect to y and v

follows from Sections 3.2 and 3.3. The value process of the solution of the BSDE (21) satisfies

Y t,y,v
s = ψ(s, It,y,v

s , ρt,v
s ). Our main goal is to derive the explicit hedge formula (12). With the

help of Lemma 3.9 we get the following representation for Zt,y,v
s .

Zt,y,v
s = σ(It,y,v

s , ρt,v
s )∗

(

∂yψ(s, It,y,v
s , ρt,v

s )

∂vψ(s, It,y,v
s , ρt,v

s )

)

,

where the volatility matrix σ(y, v) is given by

σ(y, v) =

(

yσIv yσI

√
1 − v2 0

g(v)γ g(v)δ g(v)
√

1 − γ2 − δ2

)

, y ∈ R, v ∈ (−1, 1).

Hence we have

Z1,t,y,v
s = It,y,v

s σIρ
t,v
s ∂yψ(s, It,y,v

s , ρt,v
s ) + g(ρt,v

s )γ∂vψ(s, It,y,v
s , ρt,v

s ), (24)

10



i.e. the hedge formula is given by

ξ(t, y, x, v) =
yσIv∂yψ(s, y, v) + g(v)γ∂vψ(s, y, v)

σXx
. (25)

Thus by plugging in the explicit representations of ∂yψ(s, y, v) and ∂vψ(s, y, v), given in Section

3.3, we obtain (12), i.e. we have proven Theorem 2.1.

Remark 3.2. Note, that the approach we take by characterizing the Föllmer-Schweizer decom-

position via the solution of a linear BSDE is the same as in Example 1.3 in [5]. In our model,

however, the inverse of the volatility matrix of the asset processes X and I is unbounded and

hence does not fall within the specifications of Hypothesis 1.1 in [5]. Moreover, the coefficients

of the volatility matrix of the forward processes I and ρ associated with the BSDE do not satisfy

the prerequisites of Proposition 5.9 in [5], i.e. we do not have uniformly bounded derivatives.

In order to recover our hedge formula in spite of these extensions we apply the results of our

Sections 3.2 to 4.

3.2 Differentiability with respect to the initial conditions

In this section we want to make some remarks on the system of SDEs, given by (8) and (9),

concerning existence, uniqueness, continuity and differentiablity with respect to the initial values

y and v. We also observe the following.

Lemma 3.3. Suppose that (H1) holds. Then the SDE for Īt,y,v in (9) has a unique solution

which is given by

Īt,y,v
s = yE(Gt,v)s

∫ s

t
E(Gt,v)−1

u dHt,1,v
u , (26)

where

Ht,y,v
s =

∫ s

t
It,y,v
u σI(ρ̄

t,v
u dW 1

u − ρt,v
u

√

1 − (ρt,v
u )2

ρ̄t,v
u dW 2

u )

and

Gt,v
s =

∫ s

t
(µI − r)du+

∫ s

t
σI(ρ

t,v
u dW 1

u +

√

1 − (ρt,v
u )2dW 2

u ).

Proof. Due to the Assumption (H1) we can define the semimartingales (Ht,y,v
s )t≤s≤T and

(Gt,v
s )t≤s≤T as above. By looking at the dynamics (9) we see immediately that Īt,y,v

s is the

solution of the linear stochastic equation

Īt,y,v
s = Ht,y,v

s +

∫ s

t
Īt,y,v
u dGt,v

u . (27)

The solution of (27) is given by

Īt,y,v
s = E(Gt,v)s(H

t,y,v
t +

∫ s

t
E(Gt,v)−1

u (dHt,y,v
u − d

〈

Ht,y,v, Gt,v
〉

u
)), (28)

11



(see f. ex. Chapter IX in [14]). Notice that

d
〈

Ht,y,v, Gt,v
〉

u
= It,y,v

u σ2
I ρ̄

t,v
u ρt,v

u du− It,y,v
u σ2

I

√

1 − (ρt,v
u )2

ρt,v
u

√

1 − (ρt,v
u )2

ρ̄t,v
u du

= 0.

(29)

Since Ht,y,v
t = 0 and Ht,y,v = yHt,1,v we obtain (26). �

Remark 3.4. The process It,y,v is given by

It,y,v
s = y exp[

∫ s

t
σI

(

ρt,v
u dW 1

u +

√

1 − (ρt,v
u )2dW 2

u

)

+

∫ s

t
(−1

2
σ2

I + µI − r)du].

Moreover suppose that
∫ s
t g

′(ρt,v
u )dŴu is well defined, then the second SDE in (9) has a unique

solution ρ̄t,v given by

ρ̄t,v
s = E(

∫ s

t
g′(ρt,v

u )dŴu +

∫ s

t
a′(ρt,v

u )du).

Before we end this section we want to give an auxiliary result which will be used in the

sequel.

Lemma 3.5. Consider two predictable processes cv and dv, depending on a parameter v ∈
(−1, 1). Suppose that there exists a continuous function D : (−1, 1) → R+ such that cv + |dv| ≤
D(v) for all v ∈ (−1, 1). Then the process

bt,vs = E(

∫ s

t
dv

udŴu +

∫ s

t
cvudu),

is defined, and for all p ≥ 1 and v0 ∈ (−1, 1) there exists an open neighbourhood U ⊂ (−1, 1) of

v0, such that

sup
v∈U

E( sup
t≤u≤T

|bt,vu |p) <∞.

Proof. Let p ≥ 1. The Burkholder-Davis-Gundy Inequality implies that for a constant Cp,

depending only on p, we have,

E( sup
t≤u≤T

|bt,vu |p) ≤ ep(T−t)D(v)
E( sup

t≤u≤T
|E(

∫ u

t
dv

wdŴw)|p|)

≤ Cpe
p(T−t)D(v)

E(|
∫ T

t
|(dv

u)2E(

∫ u

t
dv

wdŴw)|2du|p/2)

≤ Cpe
p(T−t)D(v)Dp(v)E

(

∣

∣

∣

∣

∫ T

t
|E(

∫ u

t
dv

wdŴw)|2du
∣

∣

∣

∣

p/2
)

.

In the rest of the proof we have to distinguish between p ≥ 2 and p ∈ [1, 2). We first consider

p ≥ 2. By Jensen’s inequality and Fubini’s theorem we get

E

(

∣

∣

∣

∣

∫ T

t
|E(

∫ u

t
dv

wdŴw)|2du
∣

∣

∣

∣

p/2
)

≤ E(

∫ T

t
|E(

∫ u

t
dv

wdŴw)|pdu) =

∫ T

t
E(|E(

∫ u

t
dv

wdŴw)|p)du

(30)
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Notice that |E(
∫ u
t d

v
wdŴw)|p = exp(

∫ u
t pd

v
wdŴw +

∫ u
t p

2(dv
w)2dw−

∫ u
t p

2(dv
w)2dw− p

2

∫ u
t (dv

w)2dw),

and thus Hölder’s Inequality implies that the left hand side of Inequality (30) can be further

estimated against

E

(

∣

∣

∣

∣

∫ T

t
|E(

∫ u

t
dv

wdŴw)|2du
∣

∣

∣

∣

p/2
)

≤
∫ T

t
[E(exp(

∫ u

t
2pdv

wdŴw − 1

2

∫ u

t
4p2(dv

w)2dw))]1/2

× [E(exp(

∫ u

t
2p2(dv

w)2dw − p

∫ u

t
(dv

w)2dw))]1/2du

≤
∫ T

t
ep

2(T−t)D(v)[E(E(

∫ u

t
2pdv

wdŴw))]1/2du

= (T − t)ep
2(T−t)D(v),

which yields

E( sup
t≤u≤T

|bt,vu |p) ≤ CpD
p(v)(T − t)e(p+p2)(T−t)D(v),

from where we deduce the result for p ≥ 2. For 1 ≤ p < 2 we use Jensen’s inequality to obtain

E( sup
t≤u≤T

|bt,vu |p) ≤ CE(|
∫ T

t
|E(

∫ u

t
dt,v

w dŴw)|2du|)p/2,

and continue with the same arguments as for p > 2. Hence the result. �

Remark 3.6. Since It,y,v is lognormally distributed, independent of v, we have

sup
v∈(−1,1)

E(|It,y,v
s |p) <∞,

for all p ≥ 1. Let K be a compact subset of (−1, 1) and suppose supv∈K g′(ρt,v
s ) is bounded and

supv∈K a′(ρt,v
s ) is bounded above, uniformly for all t ≤ s ≤ T . Then we have supv∈K E(

∫ T
t |ρ̄t,v

s |pds) <
∞, for all p ≥ 1, by Lemma 3.5.

3.3 Differentiability of ψ

In order to derive the hedge formula (25) we need to ensure that ψ defined in (23) is continuously

differentiable with respect to v and y. We only consider the differentiablity in v, since for y it

is comparatively simpler. Since we want to use uniform integrability this is where Conditions

(H1) and (H2) come into play.

Lemma 3.7. Suppose Conditions (H1) and (H2) hold. Then for all v0 ∈ (−1, 1) there exists an

open neighbourhood U ⊂ (−1, 1) such that

sup
v∈U

E(|Īt,y,v
T |p′) < C, (31)
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for all p′ ∈ [1, p), with p of Assumption (H2). Moreover C is a constant that depends only on p

from Condition (H2), the model parameters and U .

Proof. Let p′ ≥ 1 such that p > p′ with p of Assumption (H2). Let Gt,v and Ht,y,v be defined

as in Lemma 3.3. Notice that Gt,v is lognormally distributed. Since the distribution does not

depend on the correlation, there exists a constant C ∈ R+ such that we have E(|E(Gt,v)|2p′) ≤ C

for all v ∈ (−1, 1). The Cauchy-Schwarz Inequality, the Burkholder-Davis-Gundy Inequality

and Jensen’s inequality imply

E(|Īt,y,v
T |p′) = E(|E(Gt,v)T

∫ T

t
E(Gt,v)−1

u dHt,y,v
u |p′)

≤
√
C(E( sup

t≤s≤T
|
∫ s

t
E(Gt,v)−1

u dHt,y,v
u |2p′))1/2

≤
√
CCp′(E(|

∫ T

t
E(Gt,v)−2

u (It,y,v
u )2σ2

I [
(ρ̄t,v

u )2

1 − (ρt,v
u )2

]du|p′))1/2

≤
√
CCp′(E(|

∫ T

t
E(Gt,v)−2p′

u (It,y,v
u )2p′σ2p′

I [
(ρ̄t,v

u )2

1 − (ρt,v
u )2

]p
′

du|))1/2.

Now choose p̂ > 1, such that p̂p′ < p. An application of the Hölder Inequality yields, with

q̂ = p̂
p̂−1 ,

(E(|Īt,y,v
T |p′))2 ≤ CC2

p′(E(|
∫ T

t
E(Gt,v)−2p′q̂

u (It,y,v
u )2p′q̂du|))1/q̂ × (E(|

∫ T

t

(ρ̄t,v
u )2

1 − (ρt,v
u )2

]p
′p̂du|))1/p̂.

For any U ⊂ (−1, 1) the supremum supv∈U E(|
∫ T
t E(Gt,v)−2p′ q̂

u (It,y,v
u )2p′q̂du|) is finite due to the

lognormal distribution of It,y,v and the normal distribution of Gt,v, the distributions of which

do not depend on the correlation process ρ. Therefore, with U from Assumption (H2), we get

supv∈U E(|Īt,y,v
T |p′) < C. �

The following lemma states conditions under which ψ is differentiable with respect to v.

Lemma 3.8. Let h be Lipschitz such that the weak derivative h′ is Lebesgue-almost everywhere

continuous. Under the Conditions (H1) and (H2) ψ(t, y, v) is continuously differentiable with

respect to v and the partial derivative ∂vψ(t, y, v) is given by

∂vψ(t, y, v) = Ẽ[h′(It,y,v
T )Īt,y,v

T ].

Proof. Let v0 be an element of (−1, 1), and p > 1 as in Condition (H2). According to Lemma

3.7 we can choose a real δ > 0 with (v0 − δ, v0 + δ) ⊂ (−1, 1) such that for all p′ ∈ [1, p) we have

supv∈(v0−δ,v0+δ) E(|Īt,y,v
T |p′) <∞. For all v ∈ (v0 − δ, v0 + δ) we will show

1. ψ(t, y, v) is well defined,

2. h(It,y,v
T ) is absolutely continuous in v,

14



3. Ẽ[h′(It,y,v
T )Īt,y,v

T ] is continuous at v = v0, and

4. Ẽ[
∫ δ
−δ |h′(I

t,y,v0+u
T )Īt,y,v0+u

T |du] <∞.

By standard arguments these four statements imply the result (see f. ex. [4]).

The properties of h imply that there exists a constant C ∈ R+ such that |h(x)| ≤ C(1+ |x|),
and hence with Remark 3.6 we have, with q = p

p−1 ,

Ẽ[|h(It,y,v
T )|] ≤ E(|Γ0

T |q)1/q
E(|h(It,y,v

T )|p)1/p

≤ E(|Γ0
T |q)1/q 2C(1 + E|It,y,v

T |p)1/p

<∞,

and therefore ψ is well defined.

Since h is Lipschitz, it is absolutely continuous. Besides, It,y,v
T is differentiable and continuous

in v (see Section 2), and consequently, the composition h(It,y,v
T ) is absolute continuous in v .

With the Hölder inequality we have, for p′ ∈ [1, p) and p̂ > 1 such that p > p′p̂ > 1,

Ẽ[|h′(It,y,v
T )Īt,y,v

T |p′ ] ≤ C(E[|Īt,y,v
T |p′p̂])1/p̂

Thus, by Lemma 3.7 we get

sup
v∈(v0−δ,v0+δ)

Ẽ[|h′(It,y,v
T )Īt,y,v

T |p′ ] ≤ C <∞.

Hence the family of random variables (h′(It,y,v
T )Īt,y,v

T )v∈(v0−δ,v0+δ) is uniformly integrable with

respect to P̃. Now let (vn)n∈N be any sequence in (v0−δ, v0+δ) with limit v0. Then by continuity

of h′(It,y,v
T )Īt,y,v

T and the properties of uniform integrability we get

lim
n→∞

|Ẽ[h′(It,y,vn

T )Īt,y,vn

T ] − Ẽ[h′(It,y,v0

T )Īt,y,v0

T ]| ≤ lim
n→∞

Ẽ[|h′(It,y,vn

T )Īt,y,vn

T − h′(It,y,v0

T )Īt,y,v0

T |] = 0,

i.e. the continuity of Ẽ[h′(It,y,v
T )Īt,y,v

T ] at v = v0. We use boundedness of h′ and Fubini’s Theorem

to get

Ẽ[

∫ δ

−δ
|h′(It,y,v0+u

T )Īt,y,v0+u
T |du] ≤ C

∫ δ

−δ
E|Īt,y,v0+u

T |du

≤ C sup
v∈(v0−δ,v0+δ)

E|Īt,y,v
T |,

which is finite by Lemma 3.7. Since we verified 1.− 4. the proof of Lemma 3.8 is complete. �

3.4 The hedge as variational derivative

The control process Zt,y,v of the linear BSDE (21) has a representation in terms of the gradient

of ψ and the matrix-valued function defined by

σ(y, v) =

(

yσIv yσI

√
1 − v2 0

g(v)γ g(v)δ g(v)
√

1 − γ2 − δ2

)

, y ∈ R, v ∈ (−1, 1). (32)
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Lemma 3.9. Assume that (H1) and (H2) hold, that a and g are continuously differentiable and

let h be Lipschitz such that the weak derivative h′ is Lebesgue-almost everywhere continuous.

Then

Zt,y,v
s = σ(It,y,v

s , ρt,v
s )∗

(

∂yψ(s, It,y,v
s , ρt,v

s )

∂vψ(s, It,y,v
s , ρt,v

s )

)

(33)

Proof. By Lemma 3.8, ψ(s, y, v) is continuously differentiable in y and v. As is shown in the

fundamental Theorem 5.2 in [9], considering also Remark 5.3.i of [9], this is sufficient for the

relationship (33) to hold. �

Note that in [9] Imkeller, Rı̈¿1
2veillac, Richter establish relations as in (33) by using only

elementary methods. However, up to now the standard method of deriving these relationships

was to interpret Zt,y,v as the Malliavin derivative, or more precisely the Malliavin trace, of Y t,y,v.

Compared to the approach given in [9] this has the disadvantage that additional regularity

assumptions which originate in the usage of the Malliavin calculus are needed. Nevertheless we

want to outline how Malliavin calculus can be used to derive (33), thus giving a proof of (33) in

this paper (though not in full generality). Since this approach entails variational derivatives of

the forward processes I and ρ (see Equation (35)) we need the additional assumption that the

coefficients a and g of the dynamics of ρ have bounded derivatives.

Malliavin based proof of Lemma 3.9 under the additional assumptions that a and g have

bounded derivatives: Let In
t be the solution of the SDE

dIn
t = In

t (µI − r)dt+ σII
n
t

(

(1 − 1

n
)ρtdW

1
t +

√

1 − (1 − 1

n
)2ρ2dW 2

t

)

.

It is straigtforward to show that In
T converges to IT in L2. By taking a subsequence, we may

assume that In
T converges to IT almost surely.

Next we approximate the payoff function h by a sequence of everywhere differentiable and

globally Lipschitz continuous functions. More precisely, let ϕ(x) = 1√
2π
e−

x2

2 the density of

a standard normal distibution and let ϕn(x) = nϕ(nx) for all n ≥ 1. We define hn as the

convolution with ϕ, i.e. hn = h∗ϕn. Observe that hn is Lipschitz continuous with respect to the

same Lipschitz constant as h. Note that Lipschitz continuity of h implies uniform convergence

of hn to h, hence hn(In
T ) converges a.s. to h(IT ). Moreover, hn is differentiable.

As before, we denote by In,t,y,v
s the process In

s conditioned on In
t = y and ρt = v. We further

define ψn(t, y, v) = Ẽ[hn(In,t,y,v
T )] for all n ≥ 1, where Ẽ denotes the expectation with respect to

the measure P̃ defined in Section 2. Note that by the same methods as in Section 3.3 it can be

shown that the ψn are differentiable; indeed, due to the factor (1− 1
n) the integrability condition

(31) is trivial. Moreover, its derivatives are bounded, i.e. the ψn are Lipschitz continuous.

We proceed by showing that ψn converges pointwise to ψ. Indeed, with L ∈ R+ being the
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Lipschitz constant of h, we have

lim
n

|ψn(t, y, v) − ψ(t, y, v)| ≤ lim
n

√

Ẽ|hn(In,t,y,v
T ) − h(It,y,v

T )|2

≤ lim
n

√

4
(

Ẽ|hn(In,t,y,v
T ) − h(In,t,y,v

T )|2 + Ẽ|h(In,t,y,v
T ) − h(It,y,v

T )|2
)

≤ lim
n

√

4
(

‖hn − h‖∞ + L2Ẽ|In
T − IT |2

)

= 0.

Let (Y n,t,y,v, Zn,t,y,v) be the solution of the BSDE

Y n,t,y,v
s = hn(In,t,y,v

T ) −
∫ T

s
Zn,t,y,v

u dWu −
∫ T

s
Zn,1,t,y,v

u

µX − r

σX
du, (34)

for s ∈ [t, T ]. Since hn(In,t,y,v
T ) converges to h(It,y,v

T ) in L2(P), standard a priori estimates for

Lipschitz BSDEs, or simply the Ito isometry under the measure P̃, imply that (Y n, Zn) converges

to (Y,Z) in S(R) ⊗ H
2
T (R3).

Notice that, due to the Markov property, we have Y n,t,y,v
s = Ẽ[hn(In,t,y,v

T )|Fs] = ψn(s, In,t,y,v
s , ρt,v

s ).

Since the approximations ψn are Lipschitz continuous, we may apply the chain rule, which yields

DuY
n,t,y,v
s = ∂yψ

n(s, In,t,y,v
s , ρt,v

s )DuI
n,t,y,v
s + ∂vψ

n(s, In,t,y,v
s , ρt,v

s )Duρ
t,v
s , u ∈ [t, T ], (35)

where Du denotes the Malliavin derivative of Y n,t,y,v, In,t,y,v and ρt,v respectively. DuI
n,t,y,v and

Duρ
t,v are solutions of linear SDEs (see Theorem 2.2.1 in [12]). In particular this guarantees

right continuity of DuY
n,t,y,v
s in s.

By the Clark-Ocone formula, the process Zn,t,y,v is the predictable projection of hn(In,t,y,v
T )

under the measure P̃ . More precisely, for all s ∈ [t, T ], we have Y n,t,y,v
s =

∫ s
t Ẽ[DuY

n,t,y,v
s |Fu]dW̃u,

where W̃t = (W 1
t + µX−r

σX
t,W 2

t ,W
3
t ) and Ẽ[·|Fu] stands for the predictable projection operator

with respect to P̃. Due to the right continuity of DuY
n,t,y,v
s in s, we may interchange the

Malliavin and the predictable projection operator, which yields

Zn,t,y,v
u = Ẽ[DuY

n,t,y,v
s |Fu] = lim

s↓u
DuY

n,t,y,v
s = σn(u, In,t,y,v

u , ρt,v
u )∗

(

∂yψ
n(u, In,t,y,v

u , ρt,v
u )

∂vψ
n(u, In,t,y,v

u , ρt,v
u )

)

,

(36)

where

σn(y, v) =

(

yσI(1 − 1
n)v yσI

√

1 − (1 − 1
n)2v2 0

g(v)γ g(v)δ g(v)
√

1 − γ2 − δ2

)

.

We next show that the partial derivatives ∂yψ
n and ∂vψ

n converge pointwise to ∂yψ and

∂vψ, respectively. To this end denote again the derivatives of In,t,y,v
t with respect to v by Īn,t,y,v

t .

Lemma 3.7 yields that supn E|Īn
T |p <∞, which further implies that the sequence |Īn

T | is uniformly

integrable. Moreover,

|∂vψ
n − ∂vψ| (37)

≤ Ẽ|(hn)′(In,t,y,v
T )Īn,t,y,v

T − h′(It,y,v
T )Īt,y,v

T |
≤ Ẽ|(hn)′(In,t,y,v

T )||Īn,t,y,v
T − Īt,y,v

T | + Ẽ|Īt,y,v
T ||(hn)′(In,t,y,v

T ) − h′(It,y,v
T )|. (38)
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We show separately that both summands of (38) converge to 0 as n→ ∞. Since the approximat-

ing functions hn have one common Lipschitz constant L ∈ R+, the derivatives satisfy |(hn)′| ≤ L

for all n ≥ 1. Consequently, limn Ẽ|(hn)′(In,t,y,v
T )||Īn,t,y,v

T −Īt,y,v
T | ≤ L limn Ẽ|Īn,t,y,v

T −Īt,y,v
T |. Next,

let τk = T ∧ inf{t ≥ 0 : |ρt| = (1 − 1
k )} for all k ≥ 1. Then the stopped processes Īn

t∧τk
converge

to Īt∧τk
in L2 as n → ∞ (see f.ex. Sec. 4, Ch.V, [13]). Therefore, by dominated convergence,

for every k ≥ 1 we have

lim
n

Ẽ|Īn,t,y,v
T − Īt,y,v

T | ≤ lim
n

(Ẽ|1{τk<T}(Ī
n,t,y,v
T − Īt,y,v

T )| + Ẽ|1{τk≥T}(Ī
n,t,y,v
T − Īt,y,v

T )|)

≤ Ẽ(1{τk<T}(|Īn,t,y,v
T | + Ẽ|Īt,y,v

T |)).

Recall that Īn
t is uniformly integrable, and that limk P̃ (τk = T ) = 1; hence by letting k → ∞

we get that limn Ẽ|Īn,t,y,v
T − Īt,y,v

T | = 0, and hence the first summand in (38) converges to 0.

In order to show that the second summand in (38) vanishes, we first show that, for xn → x,

(hn)′(xn) → h′(x). If x is a point of continuity of h′, then we have the following estimate

|(hn)′(xn) − h′(x)| = |
∫

ϕn(xn − y)h′(y)dy − h′(x)|

= |
∫

ϕn(xn − x+ x− y)h′(y)dy − h′(x)|

= |
∫

ϕn(x− z)h′(z + xn − x)dz − h′(x)| (z := y − xn + x)

≤ |
∫

ϕn(x− z)h′(z)dz − h′(x)| + |
∫

ϕn(x− z)[h′(z + xn − x) − h′(z)]dz|.

Applying the transformation y := n(x− z) in each term on the right hand side of the inequality,

together with dominated convergence and the continuity of h′ in x, yields that limn h
′(xn) =

h′(x).

Since IT has a density, (hn)′(In,t,y,v
T ) converges to h′(It,y,v

T ) almost everywhere. Consequently,

by dominated convergence, we obtain limn Ẽ|Īt,y,v
T ||(hn)′(In,t,y,v

T )− h′(It,y,v
T )| = 0. Thus we have

shown that limn ∂vψ
n(t, y, v) = ∂vψ(t, y, v) for all t ∈ [0, T ], y ∈ R and v ∈ (−1, 1).

Notice that In,t,y,v
s = yIn,t,1,v

s and Īn,t,y,v
s = yĪn,t,1,v

s , which implies that for all t ≥ 0 and

v ∈ (−1, 1), the sequence ∂vψ
n(t, ·, v) converges to ∂vψ(t, ·, v) uniformly in y on all compact sets

of R. Similarly, one can show locally uniform convergence in y of the partial derivatives ∂yψ
n

to ∂yψ.

This finally yields that ∂vψ
n(s, In,t,y,v

s , ρt,v
s ) converges to ∂vψ(s, It,y,v

s , ρt,v
s ), and ∂yψ

n(s, In,t,y,v
s , ρt,v

s )

to ∂yψ(s, It,y,v
s , ρt,v

s ), almost surely. Moreover, by combining this with Equation (36), we get that

Zn converges almost surely to σ(s, It,y,v
s , ρt,v

s )∗
(

∂yψ(s, It,y,v
s , ρt,v

s )

∂vψ(s, It,y,v
s , ρt,v

s )

)

. Since Zn converges also to

Z in H
2, we obtain the result.
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4 A class of correlation dynamics which fulfill the main assump-

tions

In this part of the work we characterize a class of dynamics which fulfill Conditions (H1) and

(H2). The result has already been mentioned as Theorem 2.5 in Section 2 above. For ease of

reference we state it again below.

Moreover we will give an extension of Theorem 2.5 in Proposition 4.3. We will see in the

example section, that this extension enables us to show that the so-called Jacobi processes also

fit into our framework. In contrast to the dynamics given in Theorem 2.5 the diffusion coefficient

of a Jacobi processes has unbounded derivatives in −1 and 1.

We first collect some notation and facts on attainability of boundaries for diffusions. The

material is taken from [10]. Suppose we are given a general diffusion

dXt = µ(Xt)dt + σ(Xt)dWt, l ≤ X0 ≤ r,

where l (resp. r) denote the left boundary l (resp. the right boundary). In the following we

only consider the analysis for the left boundary. We define, for x ∈ (l, r),

s(v) = exp(−
∫ v

v0

2µ(w)

σ2(w)
dw), v0 ∈ (l, x),

S(x) =

∫ x

x0

s(v)dv, x0 ∈ (l, x),

S[c, d] = S(d) − S(c), (c, d) ∈ (l, r),

S(l, x] = lim
c→l

S[c, x].

We already indicate that x0 and v0 will be of no relevance in the following. S is called the scale

measure whereas M is the speed measure:

m(x) =
1

σ2(x)s(x)
,

M [c, d] =

∫ d

c
m(x)dx.

We also need

Σ(l) = lim
c→l

∫ x

c
M [v, x]dS(v).

According to [10] the boundary l is attracting if S(l, x] <∞ and this criterion applies indepen-

dently of x ∈ (l, r). Moreover the boundary l is said to be

1. attainable if Σ(l) <∞,

2. unattainable if Σ(l) = ∞.

For a proof of the following Lemma see Chapter 15.6 in [10].
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Lemma 4.1. S(l, x] = ∞ implies Σ(l) = ∞.

With this at hand, we can find sufficient conditions on the coefficients of the correlation

dynamics so that condition (H1) is satisfied. Let again ρt,v and ρ̄t,v be defined as in the SDEs

(8) and (9). To simplify notation, from now on we will suppress the dependence on t and v and

only write ρ resp. ρ̄.

Lemma 4.2. Let a and g be continuously differentiable. We assume that g does not have any

roots in (−1, 1). If

lim sup
x↑1

2a(x)(1 − x)

g2(x)
< 0 and lim inf

x↓−1

2a(x)(1 + x)

g2(x)
> 0, (39)

then Condition (H1) is satisfied.

Proof. We show that ρ does not reach −1. By Condition (39) there exist ε > 0, δ > 0 and

v0 ∈ (−1, 1) such that 2a(w)
g2(w)

≥ ε
1+w , for all −1 < w < v0 < −1 + δ. Hence

s(v) = exp(

∫ v0

v

2a(w)

g2(w)
dw) ≥ exp(

∫ v0

v

ε

1 + w
dw) = C exp(− log(1 + v)) = C

1

1 + v
.

Hence

S[c, x] ≥ C

∫ x

c

1

1 + v
dv −→ ∞,

for c → −1, i.e. by Lemma 4.1 we obtain that ρ does not reach −1. We treat the boundary 1

similarly and hence get Assumption (H1).

�

The next proposition provides conditions under which Condition (H2) is satisfied. We will

need two auxiliary processes ã and g̃ defined by

ãu =
2ρu

(1 − ρ2
u)
g(ρu) + 2g′(ρu), and

g̃u =
2ρu

(1 − ρ2
u)
a(ρu) + 2a′(ρu) +

g2(ρu)

1 − ρ2
u

+
4ρ2

ug
2(ρu)

(1 − ρ2
u)2

+ (g′(ρu))2 +
4ρu

1 − ρ2
u

g(ρu)g′(ρu).

(40)

Proposition 4.3. Assume the conditions of Lemma 4.2 are satisfied. Then Assumption (H1)

holds, and therefore, ã and g̃ are well defined. Suppose ã is bounded and g̃ is bounded from

above. Then Assumption (H2) is satisfied, and hence, the delta hedge is given as in Theorem

2.1.

Proof. We start by an application of Ito’s formula on the process Φ defined by Φs = f(ρs, ρ̄s),

where f is given by f(x, y) = y2

1−x2 . Note that fx(x, y) = 2xy2

(1−x2)2 , fxx = 2y2

(1−x2)2 + 8x2y2

(1−x2)3 ,
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fy(x, y) = 2y
1−x2 , fyy = 2

1−x2 and fxy = 4xy
(1−x2)2

. We have

Φs = Φt +

∫ s

t

2ρuρ̄
2
u

(1 − ρ2
u)2

[a(ρu)du+ g(ρu)dŴu] +

∫ s

t

2ρ̄u

1 − ρ2
u

[a′(ρu)ρ̄udu+ g′(ρu)ρ̄udŴu]

+
1

2

∫ s

t
[

2ρ̄2
u

(1 − ρ2
u)2

+
8ρ2

uρ̄
2
u

(1 − ρ2)3
]g2(ρu)du+

1

2

∫ s

t

2

1 − ρ2
u

(g′(ρu))2ρ̄2
udu

+

∫ s

t

4ρuρ̄u

(1 − ρ2)2
g(ρu)g′(ρu)ρ̄udu

= Φt +

∫ s

t
Φu

[

2ρu

(1 − ρ2
u)
g(ρu) + 2g′(ρu)

]

dŴu

+

∫ s

t
Φu

[

2ρu

(1 − ρ2
u)
a(ρu) + 2a′(ρu) +

g2(ρu)

1 − ρ2
u

+
4ρ2

ug
2(ρu)

(1 − ρ2
u)2

+ (g′(ρu))2 +
4ρu

1 − ρ2
u

g(ρu)g′(ρu)

]

du.

Thus, Φ is the solution of a linear stochastic equation and given by

Φs = ΦtE(

∫ s

t
ãudŴu +

∫ s

t
g̃udu).

Hence by our assumptions on ã and g̃, and by Lemma 3.5, all moments of supt≤u≤T Φu are finite,

which further yields Assumption (H2). �

We use the two preceeding statements to prove Theorem 2.5.

Theorem 2.5. Let a and g be continuously differentiable with bounded derivatives. We assume

that g(−1) = g(1) = 0, and that g does not have any roots in (−1, 1). If

lim sup
x↑1

2a(x)(1 − x)

g2(x)
< 0 and lim inf

x↓−1

2a(x)(1 + x)

g2(x)
> 0, (41)

then Conditions (H1) and (H2) are satisfied, and hence, the delta hedge is given as in Theorem

2.1.

Proof. Condition (H1) follows from Lemma 4.2. Since 1 and −1 are roots of g we can write
g(x)
1−x2 = 1

1+x
g(x)−g(1)

1−x = −1
1+x

g(x)−g(1)
x−1 and hence g(x)

1−x2 is bounded for x ր 1 by the derivative

of g at x = 1. Similarly for x ց −1, i.e. the fraction g(x)
1−x2 is bounded on [−1, 1]. Moreover,

Condition (39) implies that there exists an ε ∈ (0, 1) such that all x ∈ (−1, 1) with |x| ≥ 1 − ε

satisfy xa(x) < 0. Hence ã (resp. g̃) is bounded (resp. bounded from above) and therefore we

obtain the result by Proposition 4.3. �

Remark 4.4. 1. Note that the conditions on the coefficients a and g of the correlation dy-

namics in Theorem 2.5 are more restrictive than in Proposition 4.3. This is mainly for

ease of exposition in Section 2. In Section 5.1 an example is given where the coefficient g

of the correlation dynamics does not have a bounded derivative.

2. It is possible to prove Theorem 2.5 without considering the auxiliary processes ã and g̃ and

using Proposition 4.3. In the following we give a rough sketch of a more intuitive proof of
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Theorem 2.5. That alternative proof consists in showing that all moments of the process

Yt = 1
1−ρ2

t

are finite, from which one easily deduces Condition (H2) to be satisfied. From

Ito’s formula we obtain

dYt =
2ρt

(1 − ρ2
t )
g(ρt)YtdŴt + 2ρta(ρt)Y

2
t dt+

(

1 + 3ρ2
t

) g2(ρt)

(1 − ρ2
t )

2
Ytdt,

showing that Y is a linear SDE with an additional drift term growing quadratically in

Y . Condition (15) implies that there exists an ε ∈ (0, 1) such that all x ∈ (−1, 1) with

|x| ≥ 1 − ε satisfy xa(x) < 0. Moreover, {|ρs| ≤ 1 − ε} = {Ys ≤ 1
2ε−ε2}, and consequently,

the quadratic drift term in the dynamics of Y has a shrinking effect as soon as Y exceeds

Cε = 1
2ε−ε2 . In other words, Y can be shown to be dominated by the SDE

dY̌t =
2ρt

(1 − ρ2
t )
g(ρt)Y̌tdŴt +

(

1 + 3ρ2
t

) g2(ρt)

(1 − ρ2
t )

2
Y̌tdt+ Cεdt,

that, by standard arguments, can be shown to possess finite moments.

5 Examples

The aim of this final section is to give some explicit correlation dynamics which fall within the

framework above. We start by modelling correlation processes directly as solutions of various

SDEs with values in [−1, 1] in Subsection 5.1. Another approach is used in Subsection 5.2 where

we use mappings of an Ornstein-Uhlenbeck process onto the open intervall (−1, 1).

5.1 Modelling correlation directly

Example 5.1. Of course all processes that are bounded away from −1 and 1 also fulfill the

Conditions (H1) and (H2).

Example 5.2. For a(x) = κ(ϑ−x), with κ > 0, ϑ ∈ (−1, 1), and g(x) = α(1−x2) in the dynamics

of ρ, the prerequisites of Theorem 2.5 are fulfilled.

Example 5.3. Let a and g be polynomials. Assume that g(−1) = g(1) = 0, and that g does not

have any roots in (−1, 1). If

lim
x↑1

a(x)

g2(x)
= −∞ and lim

x↓−1

a(x)

g2(x)
= +∞, (42)

then the prerequisites of Theorem 2.5 are satisfied.

The common denominator of the precceding two examples is that the coefficients in the

dynamics of ρ fulfill the prerequisites of Theorem 2.5, which includes bounded derivatives. We

now want to give an example where g does not have bounded derivatives in −1 and 1. We

consider so-called Jacobi processes, which are given by the solution of

ρt,v
s = v +

∫ s

t
κ(ϑ − ρt,v

u )du+

∫ s

t
α

√

(1 − (ρt,v
s )2Ŵu. (43)
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Jacobi processes might be of interest for modelling stochastic correlation, because their station-

ary and transitional densities are well known and can be obtained quite explicit, see for example

[2].

By exploiting the boundary theory at the beginning of Section 4 or by checking when Con-

dition (15) holds one can easily show that for κ, α > 0 and ϑ such that

κ ≥ α2

1 ± ϑ
, (44)

the boundaries −1 and 1 of the process defined in (43) are unattainable. Hence, we have that

Assumption (H1) is fulfilled. We want to apply Proposition 4.3 and therefore have to check the

boundedness of ã and upper boundedness of g̃. Note that g̃ turns into

g̃u =
2ρu

(1 − ρ2
u)
a(ρu) + 2a′(ρu) +

α2

1 − ρ2
u

=
2ρu

(1 − ρ2
u)

(κ(ϑ − ρu)) − 2κ+
α2

1 − ρ2
u

,

and ãu = 0. In order to ensure upper boundedness of g̃u it is sufficient to show the existence of

an ε > 0 such that 2ρu(κ(ϑ − ρu)) + α2 < 0, for all |ρu| > 1 − ε, P-a.s. This is guaranteed by

choosing κ, α > 0 and ϑ such that the constants ρ(1) and ρ(2) defined by

ρ(1),(2) =
ϑ

2
±
√

ϑ2

4
+
α2

2κ
,

fulfill

−1 < ρ(1) ≤ ρ(2) < 1. (45)

Note, for example, that for α = 1 and ϑ = 0.9 Condition (44) is satisfied by κ = 10 and that

this choice of parameters also fulfills (45).

5.2 Modelling correlation with Ornstein-Uhlenbeck processes

In the previous section we assumed that the stochastic correlation process is described in terms

of the SDE (6). The correlation dynamics need not to be modelled directly. Alternatively,

one can use a continuous bijection b : (−1, 1) → R, and model at first place the transformed

process b(ρt) as an SDE. This has the advantage that b(ρt) can be modelled as a diffusion on

R with Lipschitz coefficients. The correlation may be modelled as a standard mean reverting

process, for example an Ornstein-Uhlenbeck process, the dynamics of which can be calibrated

via standard methods.

In this section we will discuss this alternative approach of modelling correlation. As a

paradigma example we will choose as bijection b(x) = x√
1−x2

, and we will assume that Ut = b(ρt)

is an Ornstein-Uhlenbeck process with dynamics

dUt = a(ϑ− Ut)dt+ σUd(γdW
1
t + δdW 2

t +
√

1 − γ2 − δ2dW 3
t ), (46)
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where a > 0, ϑ ∈ R, σU > 0 and γ, δ ∈ (−1, 1) are such that γ2 + δ2 ≤ 1. Notice that

ρt = Ut√
1+U2

t

. We will prove that the prerequisites of Theorem 2.1 are satisfied and hence that

the local risk minimization strategy is defined as in (12).

Lemma 5.4. The correlation process ρt satisfies Conditions (H1) and (H2) and hence Theorem

2.1 holds in this setting.

Proof. The proof is a simple application of Ito’s formula. The first and the second derivative of

b−1 : R →]−1, 1[, x 7→ x√
1+x2

are given by (b−1(x))′ = (1+x2)−
3

2 and (b−1(x))′′ = −3x(1+x2)−
5

2 .

Again we set Ŵt = γW 1
t + δW 2

t +
√

1 − γ2 − δ2W 3
t . We obtain

dρt = (1 − ρ2
t )

3

2σUdŴt + (1 − ρ2
t )

(

aϑ(1 − ρ2
t )

1

2 − aρt −
3

2
ρt(1 − ρ2

t )σ
2
U

)

dt (47)

It is straightforward to show that the coefficients of the SDE (47) satisfy the conditions of

Theorem 2.5. Hence the result. �
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