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We study the stability of the minimal supersolution of a convex backward stochastic dif-
ferential equation with respect to the generator. More precisely, we give conditions under
which the nonlinear operator of mapping the generator to the minimal supersolution is lower
semicontinuous. To that end we prove results on the stability of closed convex hulls of a
sequence of convex functions.
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1 Introduction

On a filtered probability space, where the filtration is generated by a d-dimensional Brownian motion W ,
a supersolution of a backward stochastic differential equation (BSDE) is given by a càdlàg value process
Y and a control processes Z, such that

Ys −
t∫
s

gu(Yu, Zu)du+

t∫
s

ZudWu ≥ Yt and YT ≥ ξ,

for all 0 ≤ s ≤ t ≤ T . Here the terminal condition ξ is a random variable, and the generator g a
measurable function of (y, z). The main objective of this work is to extend results on the stability of the
minimal supersolution with respect to pertubations of the generator obtained recently in Drapeau et al.
[4]. More precisely, we derive stability theorems for sequences of generators which are not necessarily
increasing as assumed in [4, Theorem 4.14].

To that end, we first establish a stability concept that is associated with an operation of convex analysis,
known as closed convex hull operation: Given a sequence (gk : Rn → R) of functions, we define the re-
lated sequence (conv(gm)m≥k : Rn → R) of closed convex hulls, where, for all k ∈ N, conv(gm)m≥k is
the greatest convex and lower semicontinuous function that is majorized by gm, for allm ≥ k. Assuming
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that (gk) converges pointwise to a proper function g, we give a sufficient and a necessary condition for
the pointwise convergence of (conv(gm)m≥k) to g. Our main idea is to employ a notion of set conver-
gence for the related epigraphs which is known as epi-convergence in the sense of Painlevé-Kuratowski.
In addition, a convenient representation for (conv(gm)m≥k) allows to combine results of the theories of
convex duality and epi-convergence. We are not aware of existing literature for this specific problem, but
we benefit from numerous statements concerning convex, lower semicontinuous functions in connection
with concepts from ’Variational Analysis’ by R.T. Rockafellar and R. J.-B. Wets.

In the second part of this paper we use these results to investigate the stability of the minimal supersolu-
tion with respect to the generator. The setting we work in is inspired by [4], and their Theorem 4.14 is our
starting point. It roughly states that for a monotone increasing sequence of generators (gk) converging to
a generator g the corresponding sequence of minimal supersolutions increases and converges to the mini-
mal supersolution associated with g. The objective of the present paper is to complement these results by
dropping the assumption that the sequence (gk) is monotone increasing. We prove that in this case one
still obtains lower semicontinuity of the operator that maps the generator to the minimal supersolution.
The main idea is to find an increasing sequence of generators (hk) converging to g such that hk ≤ gm,
for all m ≥ k, and then to apply [4, Theorem 4.14]. Since we work with generators that are convex in the
control variable it is natural to define hk as the convex hull of (gm)m≥k. Under some assumptions, which
also rely on the results found in the first part of the paper, the sequence (hk) has the desired properties.

This work is organized as follows. We collect some notation in Section 2. Then, in Section 3, we
give results on the stability of closed convex hulls. Finally, we prove our main results on stability of the
minimal supersolution in Section 4.

2 Preliminaries and notations

Given a set C ⊂ Rn, its convex hull is the smallest convex set including C, and we denote it by
conv(C). Accordingly, the closed hull, cl(C), of C, is defined as the smallest closed superset of C,
and conv(C) := cl(conv(C)) is the smallest closed and convex set that contains C, the so-called closed
convex hull of C, see [3, Theorem 3.6.]. Given an extended real-valued function g : Rn → R̄, we
denote its epigraph by epi(g) := {(x, α) ∈ Rn × R : α ≥ g(x)}, and we call g proper if its domain
dom(g) := {x ∈ Rn : g(x) < ∞} is non-empty and g(x) > −∞, for all x ∈ Rn. Furthermore, we say
that g is lower semicontinuous, or simply closed, if its epigraph epi(g) is a closed subset of Rn ×R. The
lower closure or closed hull of a function g, denoted by cl(g), is defined to be the greatest lower semi-
continuous function that is majorized by g. An equivalent characterization is given by the set equality
epi(cl(g)) = cl(epi(g)), since, by definition, the set cl(epi(g)) is the smallest closed and epigraphical
set that includes epi(g). Moreover, a function g is said to be convex if its epigraph is a convex subset
of Rn × R. Given a function g, its convex hull, conv(g), is defined as the greatest convex function that
is majorized by g. It is straightforward to verify that epi(conv(g)) is equivalently characterized as the
smallest convex and epigraphical set that includes epi(g), see [10, p.33+]. Furthermore, given a sequence
(gk) of functions, the two hull concepts of lower semicontinuity and convexity can be combined to define
the sequence (conv(gm)m≥k) of closed convex hulls, where, for all k ∈ N, conv(gm)m≥k is the greatest
convex, lower semicontinuous function that fulfills

conv(gm)m≥k(x) ≤ gl(x), for all x ∈ Rn, and all l ≥ k. (2.1)

In this context, a convenient representation is given by

conv(gm)m≥k(x) = ( inf
m≥k

gm)∗∗(x), for all x ∈ Rn, all k ∈ N, (2.2)
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if either conv(gm)m≥1(x) > −∞, for all x ∈ Rn, or the convex biconjugate of (infm≥1 g
m) satis-

fies (infm≥1 g
m)∗∗(x) > −∞, for all x ∈ Rn, see [6, Theorem 4.1.2]. Moreover, we recall that the

convex conjugation or Legendre-Fenchel transformation is an involution on the space of proper, convex,
lower semicontinuous functions. Hence, given a proper, convex, lower semicontinuous function g, its
biconjugate g∗∗ : Rn → R fulfills

g(x) = g∗∗(x) := sup
y∈Rn

{〈y, x〉 − g∗(y)}, for all x ∈ Rn, (2.3)

where g∗(y) := supx∈Rn{〈y, x〉 − g(x)}, for all y ∈ Rn, is also proper, convex, and lower semicontinu-
ous, see for example [11, Theorem 11.1].

Throughout this work, if extended arithmetic is applied, we regard∞+ ρ as∞ for any real ρ, and we
use the so-called inf-addition, that is,∞+(−∞) = (−∞)+∞ =∞. Furthermore, we need the notion of
pointwise convergence to be applicable to extended real-valued functions: A sequence (gk) of functions
is said to converge pointwise to a function g at x ∈ Rn if lim supk g

k(x) = lim infk g
k(x) = g(x), and

to converge pointwise on a set D if this is true for every x ∈ D. The case D = Rn is denoted by gk
p−→ g

or limk g
k = g. Moreover, we understand inequalities and strict inequalities between any two functions

g1, g2 in the pointwise sense, that is, g1 ≤ (<)g2 is equivalent to g1(x) ≤ (<)g2(x), for all x ∈ Rn.
In addition, we employ the notion of epi-convergence in the sense of Painlevé-Kuratowski: A sequence

(gk) of functions is epi-convergent to a function g, denoted by g = e-limk g
k or gk e−→ g, if at each point

x ∈ Rn holds true that there exists a sequence (xk) ⊂ Rn, with xk −−−−→
k→∞

x, such that g(x) ≥ lim sup
k→∞

gk(xk),

for all sequences (xk) ⊂ Rn, with xk −−−−→
k→∞

x, holds g(x) ≤ lim inf
k→∞

gk(xk).
(2.4)

Without any further condition, epi-convergence neither implies nor is implied by pointwise conver-
gence, see [1, p.156+], but in the case of an increasing sequence (gk) of lower semicontinuous functions
it is known that

e- lim
k
gk = sup

k
(cl(gk)) = sup

k
gk = lim

k
gk, (2.5)

see for example [11, Proposition 7.4]. In addition, the following relation between epi-convergence and
pointwise convergence will be used in the next sections:

Theorem 2.1. [11, Theorem 7.17, Theorem 11.34] Let g and (gk), k ∈ N, be proper, convex, lower
semicontinuous functions. If int dom(g) 6= ∅, then the following statements are equivalent:

(a) g = e-lim gk,

(b) g∗ = e-lim(gk)∗,

(c) there is a dense subset D of Rn such that gk(x)→ g(x), for all x ∈ D.

3 Stability of closed convex hulls

In this section we study properties of a stability concept that is associated with the closed convex hull
operation: Given a sequence (gk) of functions which converges pointwise to a proper function g, we state
conditions for the pointwise convergence of (conv(gm)m≥k) to g. First, we prove a sufficient condition
that will provide stability statements for minimal supersolutions of convex BSDEs in the next section. In
addition, we give a necessary condition for the pointwise convergence of (conv(gm)m≥k) to g.
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Theorem 3.1. Let (gk) be a sequence of convex, lower semicontinuous functions converging pointwise
to a lower semicontinuous function g. If int dom(g) 6= ∅ and int dom(g∗) 6= ∅, then (conv(gm)m≥k)

converges pointwise to g.

Proof. First, we deduce that g is convex, since it is the pointwise limit of convex functions, see [11,
Proposition 2.9]. Moreover, if int dom(g) 6= ∅ and int dom(g∗) 6= ∅, then g is proper: Suppose the op-
posite. Then, along with the assumption that int dom(g) 6= ∅, there exists x ∈ Rn such that g(x) = −∞.
It follows that g∗ ≡ +∞, in contradiction to int dom(g∗) 6= ∅. Hence, g is proper. As a consequence,
given x ∈ dom(g), the convex, lower semicontinuous function gk is finite at x and thus proper, for all
k ≥ k̃ for some suitable k̃ ∈ N, see for instance [2, Proposition 2.111]. A consecutive application of
Theorem 2.1 yields (gk)∗

e−→ g∗, providing a dense subset D of Rn such that (gk)∗(x) → g∗(x), for all
x ∈ D. Now, it is straightforward to verify that we may deduce

( inf
m≥k

gm)∗(x) = sup
m≥k

(gm)∗(x)→ g∗(x), for all x ∈ D, (3.1)

see for instance [11, Theorem 11.23]. The conjugate (infm≥k g
m)∗ is even proper, for all k ≥ k̂ for

some suitable k̂ ∈ N: Given x ∈ int dom(g∗), there exists a real ε > 0 with Bε(x) ⊆ dom(g∗) and
Bε(x)∩D 6= ∅, according to the density property of D ⊆ Rn. Take an arbitrary element y ∈ Bε(x)∩D.
Hence, g∗(y) ∈ R by standard arguments, and there exists k̂ ∈ N such that (infm≥k g

m)∗(y) is finite, for
all k ≥ k̂. Here again, the result follows from [2, Proposition 2.111]. As a consequence, relation (3.1)
along with an application of Theorem 2.1 yield (infm≥k g

m)∗∗
e−→ g∗∗, where g∗∗ = g by the involution

property (2.3). In addition, it follows from (2.5) that (infm≥k g
m)∗∗

p−→ g such that, by means of the
representation (2.2), for all k ≥ k̂,

conv(gm)m≥k = ( inf
m≥k

gm)∗∗
p−→ g.

�

Theorem 3.1 will be essential for the proof of Theorem 4.2 which gives a stability result in a BSDE
context. We complete this section by showing a necessary condition for the pointwise convergence of
(conv(gm)m≥k) to g.

Proposition 3.2. Let (gk) be a sequence of functions. If (conv(gm)m≥k) converges pointwise to a proper
function g, then cl(infk( inf

m≥k
gm)∗) = g∗. If, in addition, the function infk( inf

m≥k
gm)∗ is lower semicon-

tinuous at 0, then
lim
k→∞

inf
m≥k

inf
Rn
gm = inf

Rn
g.

Proof. The function g is clearly convex and lower semicontinuous as the pointwise limit of an increasing
sequence of convex, lower semicontinuous functions, see [11, Proposition 2.9] and [11, Proposition 1.26].
Moreover, given x ∈ dom(g), it follows that, for all k ≥ k̃ for some suitable k̃ ∈ N, the convex, lower
semicontinuous function conv(gm)m≥k is finite at x and thus proper, see [2, Proposition 2.111]. Hence,
we may use (2.2) such that, by means of (2.5),

( inf
m≥k

gm)∗∗
e−→ g.

The continuity of the Legendre-Fenchel transform with respect to epi-convergence on the space of proper,
convex, lower semicontinuous functions further gives

( inf
m≥k

gm)∗∗
e−→ g ⇐⇒ ( inf

m≥k
gm)∗

e−→ g∗,
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see for example [11, Theorem 11.34]. By means of a standard argument, see [11, Proposition 7.4 (c)], the
epi-limit of the decreasing sequence ( inf

m≥k
gm)∗ is explicitly given by cl(infk( inf

m≥k
gm)∗) such that

cl(inf
k

( inf
m≥k

gm)∗) = g∗.

Recalling that the conjugate of any function g fulfills g∗(0) = − inf
Rn
g, we obtain by assumption, along

with [11, Theorem 11.23] as above, that

cl(inf
k

( inf
m≥k

gm)∗)(0) = inf
k

( inf
m≥k

gm)∗(0) = inf
k

sup
m≥k

(gm)∗(0) =

inf
k

sup
m≥k

(− inf
Rn
gm) = inf

k
(− inf

m≥k
inf
Rn
gm) = − sup

k
inf
m≥k

inf
Rn
gm.

Hence, lim
k→∞

inf
m≥k

inf
Rn
gm = inf

Rn
g. �

4 Minimal supersolutions of convex BSDEs

We now apply the results of the previous section in order to obtain stability theorems for minimal super-
solutions of convex BSDEs. We start by introducing the stochastic framework and further notations.

4.1 Stochastic framework and notations

Given a time horizon T > 0, we consider a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ), where the
filtration (Ft) is generated by a d-dimensional Brownian motion W and satisfies the usual conditions as
well as FT = F . We further denote with L0 and L0

t the set of F-measurable and Ft-measurable random
variables, respectively, that are identified in the P -almost sure sense. In this connection, the sets Lp and
Lpt denote the set of elements in L0 and L0

t , respectively, with finite p-norm, for p ∈ [1,+∞]. In addition,
we introduce the notation S := S(R) for the set of all càdlàg progressively measurable processes Y with
values in R, and we denote by Lp := Lp(W ), for p ∈ [1,+∞[, the set of progressively measurable
processes Z with values in Rd such that ||Z||Lp := E[(

∫ T
0
Z2
sds)

p/2]1/p < +∞. Hence, given Z ∈ Lp,
the stochastic integral

∫
ZdW is well-defined and is a continuous martingale, see for instance [9]. In

addition, we define with L := L(W ) the set of progressively measurable processes Z with values in Rd,
such that an increasing sequence (τk : Ω → [0, T ]) of stopping times with P (

⋃
k{τk = T}) = 1 exists,

providing Z1[0,τk] ∈ L1, for all k ∈ N. Here again, the stochastic integral
∫
ZdW is well-defined and

is a continuous local martingale. Throughout this section, unless otherwise stated, inequalities and strict
inequalities between any two random variables or processes X1, X2 are understood in the P -almost sure
or in the P ⊗ dt-almost everywhere sense, respectively.

Throughout this chapter, a generator is a jointly measurable function g from Ω× [0, T ]×R×R1×d to
R ∪ {±∞} where Ω × [0, T ] is endowed with the progressive σ-field. Moreover, g(ω, t, ·, ·) is assumed
to be proper for all (ω, t) ∈ Ω× [0, T ].

Let us define some properties of the generator that will be used in the sequel. We say a generator is

(LSC) if (y, z) 7→ g(y, z) is lower semincontinuous,

(POS) positive if g(y, z) ≥ 0, for all (y, z) ∈ R× Rd,

(CON) convex if g(y, λz + (1− λ)z′) ≤ λg(y, z) + (1− λ)g(y, z′), for all y ∈ R,
all z, z′ ∈ Rd, and all λ ∈ (0, 1),
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(INC) increasing if g(y, z) ≥ g(y′, z), for all y, y′ ∈ R with y ≥ y′, and all z ∈ Rd,

(DEC) decreasing if g(y, z) ≤ g(y′, z), for all y, y′ ∈ R with y ≥ y′, and all z ∈ Rd,

for all (ω, t) ∈ Ω×[0, T ]. Furthermore, we say that a sequence (gk) of generators converges pointwise to a
generator g, denoted by gk

p−→ g, if, for all (ω, t) ∈ Ω×[0, T ], for all (y, z) ∈ R×Rd, gk(y, z)→ g(y, z).

4.2 Definitions

Given a generator g and a terminal condition ξ ∈ L0, a supersolution of a BSDE is a pair (Y, Z) ∈ S×L
that satisfies, for all s, t ∈ [0, T ] with s ≤ t,

Ys −
t∫
s

gu(Yu, Zu)du+

t∫
s

ZudWu ≥ Yt and YT ≥ ξ, (4.1)

where Y is called the value process and Z its control process. In our setting, we additionally require Z to
be admissible, that is, the continuous local martingale

∫
ZdW is a supermartingale, in order to exclude

doubling-strategies, see [7, Section 6.1] or [5]. Hence, we are interested in the set of supersolutions

A(ξ, g) := {(Y,Z) ∈ S × L : Z is admissible and (4.1) holds}.

A supersolution (Y,Z) of A(ξ, g) is called minimal if, for any other element (Y ′, Z ′) ∈ A(ξ, g), and for
all t ∈ [0, T ], it holds Yt ≤ Y ′t . Consider the process

Êgt (ξ) := ess inf{Yt ∈ L0
t : (Y, Z) ∈ A(ξ, g)}, t ∈ [0, T ]. (4.2)

Under the assumptions ξ− ∈ L1, A(ξ, g) 6= ∅, and g fulfills (POS), (LSC), (CON) and either (INC) or
(DEC), it can be shown that

Egt (ξ) := lim
s↓t,s∈Q

Êgs (ξ), for all t ∈ [0, T ), EgT (ξ) := ξ, (4.3)

is a well defined càdlàg supermartingale, that it is a modification of Êg(ξ), and that it is the value pro-
cess of the unique minimal supersolution, that is there exists an admissible control process Z such that
(Eg(ξ), Z) ∈ A(ξ, g), see [4, Proposition 3.4.] and [4, Theorem 4.1.]. Under the preceding assump-
tion on the generator and the terminal condition we will work with following convention. In case that
A(ξ, g) = ∅, we define Êg(ξ) and Eg(ξ) as processes which are constant +∞. Note that this and the fact
that otherwise Êg(ξ) is a modification of Eg(ξ) allows us to work exclusively with the notation Eg(ξ).

4.3 Stability

Given a generator g and a terminal condition ξ, we now address the stability of the minimal supersolution
Eg(ξ) with respect to perturbations of the generator. As in [4] we will consider sequences of generators
converging pointwise. However, in contrast to Drapeau et al. [4, Theorem 4.14] we do not assume that
the sequence is monotone increasing. Given a sequence (gk) of generators we will rely on the following
regularization. We define, for all k ∈ N, the functions fk, hk : Ω× [0, T ]× R× Rd → R by

fk(ω, t, y, z) := inf
m≥k

gm(ω, t, y, z), (4.4)

and
hk(ω, t, y, z) := conv(gm(ω, t, y, ·))m≥k(z). (4.5)
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Lemma 4.1. Let k ∈ N. Assume that, for all (ω, t, y) ∈ Ω× [0, T ]× R,

conv(fk(ω, t, y, ·))(z) > −∞, (4.6)

for all z ∈ Rd. Suppose further that, for all k ≤ m ∈ N, for all (ω, t, y) ∈ Ω× [0, T ]× R, holds

int dom(gm(ω, t, y, ·)) 6= ∅ and int dom((fk(ω, t, y, ·))∗(·)) 6= ∅. (4.7)

Then hk is a generator.

Proof. Due to (4.6) we may use the representation of hk given by [11, Theorem 11.1 and Exercise 11.2],
that is hk = (fk)∗∗ and where the dual operator is taken only with respect to the control variable z. In
order to see that hk is measurable we first show that

(ω, t, y, z) 7→ (fk(ω, t, y, ·))∗(z) (4.8)

is measurable. We have

(fk(ω, t, y, ·))∗(z) = sup
z∗∈Rd

{〈z, z∗〉 − fk(ω, t, y, z∗)}

= sup
m≥k

sup
z∗∈Rd

{〈z, z∗〉 − gm(ω, t, y, z∗)}

= sup
m≥k

sup
q∗∈Qd

{〈z, q∗〉 − gm(ω, t, y, q∗)},

where the last inequality follows from convexity and lower semincontinuity of gm in the control variable
in combination with [11, Theorem 2.35] and Assumption (4.7).1 Hence, since (ω, t, y, z) 7→ 〈z, q∗〉 −
gm(ω, t, y, q∗) is measurable for every q∗ ∈ Q, it follows that (4.8) is measurable.

The same argument holds for the mapping (ω, t, y, z) 7→ (fk(ω, t, y, ·))∗∗(z). Indeed, Assump-
tions (4.6) and (4.7) yield that the mapping z 7→ conv(fk(ω, t, y, ·))(z)) is proper. Hence, z 7→
(fk(ω, t, y, ·))∗(z) is convex and lower semincontinuous by [11, Theorem 11.1]. Now, Assumption
(4.7) allows to conclude by the same reasoning as above that hk = (fk)∗∗ is measurable and hence a
generator. �

The following Theorem is our main stability result.

Theorem 4.2. Let ξ ∈ L0 be a terminal condition such that ξ− ∈ L1, and let (gk) be a sequence of
generators which converges pointwise to a generator g. Suppose that each generator fulfills (POS),
(LSC), (CON) and either (INC) or (DEC). Assume that the conditions of Lemma 4.1 are in force and
that for all (ω, t) ∈ Ω × [0, T ], the mapping (y, z) 7→ hk(ω, t, y, z) is lower semicontinuous. Finally,
suppose that int dom(g(ω, s, ·)) 6= ∅ as well as int dom((g(ω, s, ·))∗) 6= ∅, for all (ω, s) ∈ Ω × [0, T ].
Then, we have Eg0 (ξ) ≤ lim infk Eg

k

0 (ξ). If, in addition lim Ehk

0 (ξ) < +∞, thenA(ξ, g) 6= ∅, and, for all

t ∈ [0, T ], it holds that Egt (ξ) ≤ ess lim infk Eg
k

t (ξ).

Proof. For each k ∈ N the function hk, defined in (4.5), is a generator by Lemma 4.1 and (LSC) by
assumption. Moreover each hk inherits (POS), (CON), and either (INC) or (DEC). Along with the
conditions on the domain of g and g∗ all assumptions of Theorem 3.1 are fulfilled and this yields

hk
p−→ g.

1Indeed, we can always find a sequence of rationals (qn), such that a := infz∗∈Rd{gm(ω, t, y, z∗)} = limn gm(ω, t, y, qn).
To see that let (zn) ⊂ Rd be such that limn gm(zn) = a. Then, due to our assumptions on gm and because of [11, Theorem
2.35] we can find, for each n ∈ N, a rational qn such that |gm(zn) − gm(qn)| ≤ 1

n
. Hence, a = lim supn gm(zn) ≥

lim supn(g
m(qn)− 1

n
) = lim supn gm(qn) ≥ lim infn gm(qn) ≥ a, that is limn gm(qn) = a.
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Hence, we obtain from [4, Proposition 3.2], for all k ∈ N, and all t ∈ [0, T ],

Eh
k

t (ξ) ≤ Eg
k

t (ξ) and Eh
k

t (ξ) ≤ Egt (ξ).

If lim Ehk

0 (ξ) = +∞, then also lim infk Eg
k

0 (ξ) = +∞ and hence

Eg0 (ξ) ≤ lim inf
k
Eg

k

0 (ξ).

Suppose now lim Ehk

0 (ξ) < +∞. From [4, Proposition 3.2] and (4.3) follows that, for all k ∈ N,
A(ξ, hk) 6= ∅ and Ehk

(ξ) is well-defined. This yields, for all k ∈ N, and all t ∈ [0, T ],

Eh
k

t (ξ) ≤ Eh
k

t (ξ) ≤ Eg
k

t (ξ).

Finally, we conclude with [4, Theorem 3.9] that A(ξ, g) 6= ∅ and, for all t ∈ [0, T ],

Egt (ξ) ≤ ess lim inf
k

Eg
k

t (ξ). �

The following Proposition gives a sufficient condition for the joint lower semicontinuity of hk as re-
quired in Theorem 4.2.

Proposition 4.3. Let k ∈ N. Assume that (4.6) holds and that, for all (ω, t) ∈ Ω × [0, T ], the map-
ping y 7→ fk(ω, t, y, z) is lower semicontinuous, uniformly in z ∈ Rd. Then the mapping (y, z) 7→
hk(ω, t, y, z) is lower semicontinuous. In particular, this is the case when fk does not depend on y.

Proof. As in the proof of Lemma 4.1 Condition (4.6) allows to use the representation of hk given by
hk = (fk)∗∗, where the dual operator is taken only with respect to the control variable z. Fix z∗ ∈ Rd.
We show first that y 7→ (fk(ω, t, y, ·))∗(z∗) is upper semicontinuous. Let (yl) ⊂ R be a sequence
converging to y ∈ R and let m := lim supl(f

k(ω, t, yl, ·))∗(z∗). The case m = −∞ is obvious.
Assume −∞ < m < ∞. Then there exists, for ε > 0, a subsequence of (yl), again denoted by (yl),

such that m ≤ (fk(ω, t, yl, ·))∗(z∗) + ε < ∞, for all l ∈ N. By uniform lower semicontinuity we can
choose l0 ∈ N such that −fk(ω, t, yl0 , z′) ≤ −fk(ω, t, y, z′) + ε, for all z′ ∈ Rd. Now choose z ∈ Rd,
such that (fk(ω, t, yl0 , ·))∗(z∗) ≤ 〈z∗, z〉 − fk(ω, t, yl0 , z) + ε. Hence,

m ≤ (fk(ω, t, yl0 , ·))∗(z∗) + ε ≤ 〈z∗, z〉 − fk(ω, t, yl0 , z) + 2ε

≤ 〈z∗, z〉 − fk(ω, t, y, z) + 3ε ≤ (fk(ω, t, y, ·))∗(z∗) + 3ε,

that is m ≤ (fk(ω, t, y, ·))∗(z∗).
Assume m =∞. Then there exists a subsequence of (yl), again denoted by (yl), such that

(fk(ω, t, yl, ·))∗(z∗) increases to infinity. Let n ∈ N. There exists a subsequence of (yl), again denoted
by (yl), such that n+ 1 ≤ (fk(ω, t, yl, ·))∗(z∗), for all l ∈ N. By uniform lower semicontinuity we can
choose l0 ∈ N such that −fk(ω, t, yl0 , z′) ≤ −fk(ω, t, y, z′) + 1

n , for all z′ ∈ Rd. Now choose z ∈ Rd,
such that n ≤ 〈z∗, z〉 − fk(ω, t, yl0 , z). Hence,

n ≤ 〈z∗, z〉 − fk(ω, t, yl0 , z) ≤ 〈z∗, z〉 − fk(ω, t, y, z) +
1

n
≤ (fk(ω, t, y, ·))∗(z∗) +

1

n

Sending n to infinity implies m = (fk(ω, t, y, ·))∗(z∗).
We conclude that y 7→ (fk(ω, t, y, ·))∗(z∗) is upper semicontinuous and that

(y, z) 7→ hk(ω, t, y, z) = (fk(ω, t, y, ·))∗∗(z) = sup
z∗
{〈z, z∗〉 − (fk(ω, t, y, ·))∗(z∗)}

is lower semicontinuous as supremum of lower semicontinuous functions, see for example [11, Proposi-
tion 1.26]. �
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