Optimisation and Control of PDEs

Theory and Numerics

Michael Hintermüller

Humboldt-Universität zu Berlin

MASDOC Summer School, University of Warwick, July 2-6, 2012.

\square

Motivation, Basics, Existence and First Order Optimality.

Motivation: Optimal control of fluid flow

Example: Lid driven cavity flow

Mathematical model: Navier Stokes system

$$
\begin{array}{ll}
\frac{\partial y}{\partial t}+(y \cdot \nabla) y-\nu \Delta y+\nabla \varpi=u & \text { in } Q:=(0, T) \times \Omega, \\
\operatorname{div} y=0 & \text { in } Q, \\
y(t, \cdot)=0 & \text { on } \Sigma=(0, T) \times \partial \Omega, \\
y(0, \cdot)=y_{0} & \text { in } \Omega,
\end{array}
$$

Motivation: Optimal control of fluid flow

Optimisation problem:

Minimize $J(y, u)$
over $\quad(y, u) \in W \times U_{\text {ad }}$
subject to (s.t.)

$$
\begin{array}{ll}
\frac{\partial y}{\partial t}+(y \cdot \nabla) y-\nu \Delta y+\nabla \varpi=u & \text { in } Q=(0, T) \times \Omega, \\
\operatorname{div} y=0 & \text { in } Q, \\
y(t, \cdot)=0 & \text { on } \Sigma=(0, T) \times \partial \Omega, \\
y(0, \cdot)=y_{0} & \text { in } \Omega,
\end{array}
$$

with, for example,

$$
U_{\mathrm{ad}}=\{v \in U: a \leq v \leq b \text { almost everywhere (a.e.) in } Q\} .
$$

We call y the state and u the control (variable), respectively.

Motivation: Optimal control of fluid flow

Define $e: W \times U \rightarrow Z^{*}$ as

$$
e(y, u)=\left(\frac{\partial y}{\partial t}+(y \cdot \nabla) y-\nu \Delta y-u, y(0)-y_{0}\right)
$$

$y_{0} \in H$.

Here we have

$$
\begin{aligned}
H & =\left\{v \in C_{0}^{\infty}(\Omega)^{2}: \operatorname{div} v=0\right\}^{-|\cdot| L^{2}} \\
V & =\left\{v \in C_{0}^{\infty}(\Omega)^{2}: \operatorname{div} v=0\right\}^{-|\cdot| H_{H^{1}}} \\
W & =\left\{v \in L^{2}(V): v_{t} \in L^{2}\left(V^{*}\right)\right\} \\
Z & =L^{2}(V) \times H \\
U & =L^{2}(Q)^{2} .
\end{aligned}
$$

Sequential quadratic programming (SQP)

- Original problem in abstract form:

$$
\begin{array}{ll}
\text { Minimize } & J(y, u) \quad \text { over }(y, u) \in W \times U \\
\text { s.t. } & e(y, u)=0 \quad \text { in } Z^{*}, \\
& a \leq u \leq b \quad \text { a.e. in } Q .
\end{array}
$$

- QP-problem: We use $x:=(y, u), \delta_{x}:=\left(\delta_{y}, \delta_{u}\right)$.

Minimize $\quad\left\langle\hat{L}_{x}, \delta_{x}\right\rangle+\frac{1}{2}\left\langle\hat{L}_{x x} \delta_{x}, \delta_{x}\right\rangle$ over $\delta_{x} \in W \times U$
s.t.

$$
\begin{aligned}
& e+e_{x} \delta_{x}=0 \text { in } Z^{*}, \\
& a-u \leq \delta_{u} \leq b-u \quad \text { a.e. in } Q .
\end{aligned}
$$

$\hat{L}\left(x, p, \lambda_{a}, \lambda_{b}\right):=J(x)+\langle e(x), p\rangle+\left(\lambda_{a}, u-a\right)+\left(\lambda_{b}, u-b\right)$ is the Lagrange function of the original problem, and $p \in Z$ is the adjoint state.

Reduced sequential quadratic programming (rSQP)

Reduced QP-problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2}\left\langle T^{*} \hat{L}_{x x} T \delta_{u}, \delta_{u}\right\rangle+\left\langle r, \delta_{u}\right\rangle \\
\text { s.t. } & a-u \leq \delta_{u} \leq b-u \quad \text { a.e. in } Q,
\end{array}
$$

where

$$
T=\binom{-e_{y}^{-1} e_{u}}{\text { id }}, \quad r=T^{*} J_{x}+e_{u}^{*} e_{y}^{-*} \hat{L}_{y y} e_{y}^{-1} e
$$

Usual work flow in PDE constrained optimisation

Analysis.

- Analysis of the underlying PDE model (stability, sensitivity).
- Existence of a solution of optimisation problem.
- First order optimality characterization.
\Rightarrow Establish and analyse adjoint equation.
- Possible: Second order necessary / sufficient optimality.

Solver development (function space).

- SQP or rSQP approach.
\Rightarrow Quasi-Newton approach.
\Rightarrow Structured modification of Hessian of Lagrangian.
- QP-solver.
\Rightarrow E.g. generalized Newton method as a QP-solver.
\Rightarrow Establish (local) convergence (q-superlinear).
■ Establish outer (r)SQP convergence (locally q-quadratic - analysis via generalized equations.)

Usual work flow in PDE constrained optimisation

Discrete problem / solver.
■ FD / FV / FE discretization (of problem resp. solver).

- Discrete solver analysis.
\Rightarrow Ideally: Mesh independence.
- Efficiency through adaptive finite element methods (AFEM).
\Rightarrow A posteriori error residual based estimators.
\Rightarrow Dual weighted residual based goal oriented approach.
\Rightarrow Refinement / coarsening (bulk criterion).
\Rightarrow Convergence of the AFEM cycle.
- Practical realization.
\Rightarrow Develop or supplement software (DUNE, COMSOL,...)

Back to: Optimal control of fluid flow

Problem data for "lid driven cavity flow".

Tracking type objective:
Desired flow y_{d} is given by the Stokes flow (constant in time):

$$
J(y, u)=\frac{1}{2} \int_{Q}\left|y-y_{d}\right|^{2} d x d t+\frac{\alpha}{2} \int_{Q}|u|^{2} d x d t .
$$

Control bounds:

$$
-0.3 \leq u \leq 0.3 \text { a.e. on } Q=(0,1)^{2} \times(0, T) .
$$

Cost of the control: $\alpha=0.01$.

Evolution of control and state.

Evolution of active sets.

Model problem

Elliptic Optimal Control Problems: Unconstrained Case.

Given $y_{d} \in L^{2}(\Omega)$ and $\alpha>0$, find $(y, u) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ such that

$$
\left\{\begin{array}{l}
\inf J(y, u):=\frac{1}{2} \int_{\Omega}\left|y-y_{d}\right|^{2} d x+\frac{\alpha}{2} \int_{\Omega}|u|^{2} d x, \\
\text { s. t. }-\Delta y=u \quad \text { in } H^{-1}(\Omega), \quad y=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Reduced formulation: Denoting by $\mathcal{G}: H^{-1}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ the control-to-state map, which assigns to a control $u \in L^{2}(\Omega)$ the solution $y=\mathcal{G}(u) \in H_{0}^{1}(\Omega)$ of the state equation, the reduced formulation reads:

$$
\inf \hat{J}(u):=\frac{1}{2} \int_{\Omega}\left|\mathcal{G}(u)-y_{d}\right|^{2} d x+\frac{\alpha}{2} \int_{\Omega}|u|^{2} d x \text { over } u \in L^{2}(\Omega) .
$$

Existence of a solution via convex analysis.

Basic facts from convex analysis I

Let $\overline{\mathbb{R}}:=\mathbb{R} \cup\{ \pm \infty\}, U$ a Banach space, and $F: U \rightarrow \overline{\mathbb{R}}$ convex.

- F is proper if it nowhere takes the value $-\infty$ and is not identically equal to $+\infty$.
- epi $F:=\{(u, d) \in U \times \mathbb{R}: F(u) \leq d\}$ is the epigraph of F.
- F convex \Leftrightarrow epi F convex.
- F is lower semicontinuous (l.s.c.) on U if it satisfies:

$$
\text { For all } a \in \mathbb{R} \quad\{u \in U: F(u) \leq a\} \text { is closed; }
$$

or, equivalently,

$$
\text { For all } \bar{u} \in U \quad \liminf _{u \rightarrow \bar{u}} F(u) \geq F(\bar{u}) .
$$

- F is l.s.c. on U if and only if epi F is closed.
- Every I.s.c. convex F remains I.s.c. when U is supplied with its weak topology.

Basic facts from convex analysis II

- Let $S \subset U$. The indicator function $I_{S}: U \rightarrow \overline{\mathbb{R}}$ is convex if and only if S is convex.

■ Let $u^{*} \in U^{*}$, the (topological) dual space of U. The function

$$
F^{*}\left(u^{*}\right)=\sup _{u \in U}\left\{\left\langle u, u^{*}\right\rangle-F(u)\right\}
$$

is the polar or conjugate function of F.

- F is subdifferentiable at $u \in U$ if it has a continuous affine minorant ℓ which is exact at u, i.e. $\ell(v)=F(u)+\left\langle u^{*}, v-u\right\rangle$. The slope of such a minorant is called the subgradient of F at u, and the set of all subgradients at u is called the subdifferential at u and is denoted by $\partial F(u)$.
- If F is not subdifferentiable at u, then $\partial F(u)=\emptyset$.
- We have $u^{*} \in \partial F(u)$ if and only if $F(u)$ is finite and

$$
F(u)+\left\langle u^{*}, v-u\right\rangle \leq F(v) \quad \forall v \in V .
$$

Basic facts from convex analysis III

- We have $F(u)=\min _{v \in U} F(v)$ if and only if $0 \in \partial F(u)$.
- We have $u^{*} \in \partial F(u)$ if and only if $F(u)+F^{*}\left(u^{*}\right)=\left\langle u, u^{*}\right\rangle, \partial F(u)$ (possibly empty) is convex and closed.
- If F is Gâteaux differentiable at u, then $\partial F(u)=\left\{F^{\prime}(u)\right\}$, where $F^{\prime}(u)$ is the Gâteaux derivative of F at u.
- Calculus:
* $\kappa \in \mathbb{R}_{+}: \partial(\kappa F)(u)=\kappa \partial F(u)$.
* $F_{1}, F_{2}: U \rightarrow \mathbb{R}$. Then:

$$
\partial\left(F_{1}+F_{2}\right)(u) \supset \partial F_{1}(u)+\partial F_{2}(u) .
$$

Suppose F_{1}, F_{2} are I.s.c. and F_{1}, F_{2} are identically equal $-\infty$ if they take the value $-\infty$, respectively, then equality holds if there exists a point $\hat{u} \in \operatorname{dom} F_{1} \cap \operatorname{dom} F_{2}$ where F_{1} is continuous.

Basic facts from convex analysis IV

* Let $\Lambda \in \mathcal{L}(U, V)$, i.e., a linear and continuous map from U to the Banach space V. If there exists \hat{u} such that F is continuous at $\Lambda \hat{u}$, then for all $u \in U$ we have

$$
\partial(F \circ \Lambda)(u)=\Lambda^{*} \partial F(\Lambda u)
$$

■ F is coercive over a non-empty, closed and convex set $C \subset U$ if and only if

$$
\lim F(u)=+\infty \quad \text { for } u \in C,\|u\| \rightarrow+\infty
$$

- Let $C \subset U$ be non-empty, convex, closed. Consider

$$
\inf _{v \in C} F(v)
$$

Then this problem has at least one solution if C is bounded or F is coercive over C. The solution is unique if F is strictly convex over C.

Back to our model problem

Elliptic Optimal Control Problems: Unconstrained Case.

Given $y_{d} \in L^{2}(\Omega)$ and $\alpha>0$, find $(y, u) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)=: X$ such that

$$
\left\{\begin{array}{l}
\inf J(y, u):=\frac{1}{2} \int_{\Omega}\left|y-y_{d}\right|^{2} d x+\frac{\alpha}{2} \int_{\Omega}|u|^{2} d x, \\
\text { s. t. }-\Delta y=u \quad \text { in } H^{-1}(\Omega), \quad y=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Reduced formulation: Denoting by $\mathcal{G}: H^{-1}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ the control-to-state map, which assigns to a control $u \in L^{2}(\Omega)$ the solution $y=y(u)=\mathcal{G}(u) \in H_{0}^{1}(\Omega)$ of the state equation, the reduced formulation reads:

$$
\inf \hat{J}(u):=\frac{1}{2} \int_{\Omega}\left|\mathcal{G}(u)-y_{d}\right|^{2} d x+\frac{\alpha}{2} \int_{\Omega}|u|^{2} d x \text { over } u \in L^{2}(\Omega) .
$$

- What about: $-\Delta y+f(y)=B u$? (semi-linear PDE).

Back to our model problem

Lagrange multiplier approach (- keep y, u independent!).

- Let A : $H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ be the operator associated with the bilinear form a : $\left.H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega) \rightarrow \mathbb{R},\left(a(y, w):=(\nabla y, \nabla w)_{L^{2}(\Omega)}\right)\right)$.
Lagrange function (through coupling the PDE to the objective): Set $e(y, u):=A y-u, e: H_{0}^{1}(\Omega) \times L^{2}(\Omega) \rightarrow H^{-1}(\Omega)$, and define

$$
L(y, u, p):=J(y, u)+\langle A y-u, p\rangle .
$$

- We call $p \in H_{0}^{1}(\Omega)$ a Lagrange multiplier associated with $e(y, u)=0$ in $H^{-1}(\Omega)$, if, at a solution pair $\bar{x}:=(\bar{y}, \bar{u})$,

$$
e_{x}(\bar{x}) X=H^{-1}(\Omega) .
$$

- Then, for \bar{x}, there exists $\bar{p} \in H_{0}^{1}(\Omega)$ such that

$$
\begin{aligned}
A \bar{y}-\bar{u} & =0, \\
A^{*} \bar{p}+J_{y}(\bar{x}) & =0, \\
J_{u}(\bar{x})-\bar{p} & =0 .
\end{aligned}
$$

■ Saddle point formulation. $\inf _{y, u} \sup _{p} L(y, u, p)$.

Pointwise CONTROL constraints

Elliptic Optimal Control Problem: Control constrained Case.

Find $(y, u) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)=: X$ such that

$$
\left\{\begin{array}{l}
\inf J(y, u):=\frac{1}{2} \int_{\Omega}\left|y-y_{d}\right|^{2} d x+\frac{\alpha}{2} \int_{\Omega}|u|^{2} d x, \\
\text { s. t. } u \in U_{\mathrm{ad}} \\
\quad-\Delta y=u \quad \text { in } H^{-1}(\Omega), \quad y=0 \text { on } \partial \Omega,
\end{array}\right.
$$

where $U_{\text {ad }} \subset L^{2}(\Omega)$ is non-empty, closed and convex. E.g.: Let $a, b \in L^{2}(\Omega), a<b$ a.e. in Ω, and define

$$
U_{\mathrm{ad}}:=\left\{v \in L^{2}(\Omega): a \leq v \leq b \text { a.e. } \Omega\right\} .
$$

Reduced formulation: The reduced formulation reads:

$$
\inf \hat{J}(u):=\frac{1}{2} \int_{\Omega}\left|\mathcal{G}(u)-y_{d}\right|^{2} d x+\frac{\alpha}{2} \int_{\Omega}|u|^{2} d x \text { over } u \in U_{\text {ad }} .
$$

Pointwise CONTROL constraints

Lagrange multiplier approach.

- Let, for simplicity $U_{\text {ad }}=\left\{v \in L^{2}(\Omega): v \leq b\right.$ a.e. $\}$, and define

$$
L(y, u, p):=J(y, u)+\langle A y-u, p\rangle+(u-b, \lambda) .
$$

- We call $(p, \lambda) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ a Lagrange multiplier pair associated with $e(y, u)=0$ in $H^{-1}(\Omega)$ and $u \in U_{\text {ad }}$, if, at a solution pair $\bar{x}:=(\bar{y}, \bar{u})$,

$$
e_{x}(\bar{x}) X_{\mathrm{ad}}(\bar{x})=H^{-1}(\Omega),
$$

with $X_{\mathrm{ad}}(\bar{x}):=H_{0}^{1}(\Omega) \times U_{\mathrm{ad}}(\bar{u})$ and

$$
U_{\mathrm{ad}}(\bar{u}):=\left\{\kappa(v-\bar{u}): v \in U_{\mathrm{ad}}, \kappa \geq 0\right\} .
$$

- Then, for \bar{x}, there exists $(\bar{p}, \bar{\lambda}) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ such that

$$
\begin{aligned}
A \bar{y}-\bar{u} & =0, \\
A^{*} \bar{p}-J_{y}(\bar{x}) & =0, \\
J_{u}(\bar{x})-\bar{p}+\bar{\lambda} & =0, \\
\lambda \geq 0, \quad(\bar{u}-b, \bar{\lambda}) & =0 .
\end{aligned}
$$

Pointwise STATE constraints

Let $\Omega \subset \mathbb{R}^{n}, n<r<\infty$, set $W_{0}^{1, r}(\Omega):=W^{1, r}(\Omega) \cap H_{0}^{1}(\Omega)$, and define

$$
K:=\left\{z \in W_{0}^{1, r}(\Omega): z \leq \psi \text { in } \Omega\right\}
$$

with $\psi \in W^{1, \infty}(\Omega),\left.\psi\right|_{\Gamma}>0$.
Consider the problem

$$
\left\{\begin{array}{l}
\inf \quad J(y, u) \\
\text { s. t. } y \in K
\end{array}\right.
$$

$$
-\Delta y=u \quad \text { in } \Omega, \quad y=0 \text { on } \partial \Omega,
$$

Reduced formulation: Denoting by $\mathcal{G}: W^{-1, r}(\Omega) \rightarrow W_{0}^{1, r}(\Omega)$ the control-to-state map, which assigns to a control $u \in W^{-1, r}(\Omega)$ the solution $y=\mathcal{G}(u) \in W_{0}^{1, r}(\Omega)$ of the state equation, the reduced formulation reads:

$$
\inf _{u \in L^{2}(\Omega)} \hat{J}(u):=\frac{1}{2} \int_{\Omega}\left|\mathcal{G}(u)-y_{d}\right|^{2} d x+\frac{\alpha}{2} \int_{\Omega}|u|^{2} d x \text { s.t. } \mathcal{G}(u) \in K .
$$

Pointwise STATE constraints

- Constraint Qualification (CQ) - Slater CQ:

$$
\exists u_{0} \in L^{2}(\Omega): \quad y_{0}:=\mathcal{G}\left(u_{0}\right) \in \operatorname{int} K .
$$

- Continuous embedding: $W_{0}^{1, r}(\Omega) \subset C_{0}(\Omega)$ for $r>n$.
- Dual spaces. $\left(W_{0}^{1, r}(\Omega)\right)^{*}=W^{-1, s}(\Omega)$ for $r^{-1}+s^{-1}=1$.
- Unconstrained, but nonsmooth problem. Consider $I_{K}: C_{0}(\Omega) \rightarrow \overline{\mathbb{R}}$, and

$$
\inf \quad \hat{J}(u)+\left(I_{K} \circ \mathcal{G}\right)(u) \quad \text { over } u \in L^{2}(\Omega)
$$

Pointwise constraints on the GRADIENT of the STATE

Let $\Omega \subset \mathbb{R}^{n}, n<r<\infty$, and $\psi \geq \epsilon>0$ in Ω. define

$$
K:=\left\{z \in L^{2}(\Omega)^{n}:|z|_{2} \leq \psi \text { a.e. } \Omega\right\},
$$

Consider the problem

$$
\begin{cases}\inf & J(y, u) \quad \text { over }(y, u) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega) \\ \text { s. t. } \nabla y \in K \\ & -\Delta y=u \quad \text { in } \Omega, \quad y=0 \text { on } \partial \Omega,\end{cases}
$$

Reduced formulation: Denoting by $\mathcal{G}: L^{2}(\Omega) \rightarrow V \subset H_{0}^{1}(\Omega), V$ a reflexive Banach space, the control-to-state map, the reduced formulation reads:

$$
\inf _{u \in L^{2}(\Omega)} \hat{J}(u):=\frac{1}{2} \int_{\Omega}\left|\mathcal{G}(u)-y_{d}\right|^{2} d x+\frac{\alpha}{2} \int_{\Omega}|u|^{2} d x \text { s.t. } \nabla \mathcal{G}(u) \in K .
$$

Slater point. For $V=W^{2, r}(\Omega) \cap H_{0}^{1}(\Omega)$ (PDE regularity theory!) there exists a Slater point $\nabla y_{0} \in$ int K with

$$
K=\left\{v \in C(\bar{\Omega})^{n}:|v|_{2} \leq \psi \text { in } \Omega\right\} .
$$

KKT-theory in Banach space.

Consider the minimization problem

$$
\begin{equation*}
\min _{x \in X} f(x) \quad \text { s.t. } x \in C, g(x) \in K \tag{P}
\end{equation*}
$$

- f real functional defined on a real Banach space $X\left(C^{1}\right)$,
- C is a non-empty closed convex subset of X,
- g is a map from X into a real Banach space $Y\left(C^{1}\right)$,
- K is a closed convex cone in Y with vertex at the origin.

For fixed $x \in X$ and $y \in Y$ let $C(x)$ and $K(y)$ denote the conical hulls of $C-\{x\}$ and $K-\{y\}$ respectively, i.e.,

$$
\begin{aligned}
& C(x):=\{\kappa(c-x) \mid c \in C, \kappa \geq 0\} \\
& K(y):=\{k-\kappa y \mid k \in K, \kappa \geq 0\} .
\end{aligned}
$$

KKT-theory in Banach space.

$y^{*} \in Y^{*}$ is called a Lagrange multiplier for (P) at an optimal point $x^{*} \in X$, if
(i) $y^{*} \in K^{+}$
(ii) $\left\langle y^{*}, g\left(x^{*}\right)\right\rangle_{Y^{*}, Y}=0$
(iii) $f^{\prime}\left(x^{*}\right)-y^{*}\left(g^{\prime}\left(x^{*}\right)\right) \in C\left(x^{*}\right)^{+}$,
where X^{*} and Y^{*} denote the topological duals of X and Y and for each subset A of X (or Y respectively), A^{+}denotes its polar cone

$$
A^{+}:=\left\{w \in X^{*} \mid\langle w, a\rangle_{X^{*}, X} \geq 0 \quad \text { for all } a \in A\right\} .
$$

Theorem. Let x^{*} be an optimal solution for problem (P). If

$$
g^{\prime}\left(x^{*}\right) C\left(x^{*}\right)-K\left(g\left(x^{*}\right)\right)=Y,
$$

then the set $\Lambda\left(x^{*}\right)$ of Lagrange multipliers for problem (P) at x^{*} is non-empty and bounded.

Efficient Solvers - Semismooth Newton Methods.

Non-smooth operator equations

Let $F: X \rightarrow Z$ be not necessarily Frechet differentiable. Consider the problem:

$$
\text { Find } x^{*} \in X \text { such that } F\left(x^{*}\right)=0
$$

Applications:

- Optimal control problems.
- Ordinary / Partial differential equations with control/state constraints.
- Variational inequalities.
- Apps: fluids, thermal processes, parameter identification, calibration in finance,...
■ Material science: Contact, friction, material identification.
■ Imaging science: restoration, segmentation, TV.
■ etc...

Smooth operator equations: $F \in C^{1}(X, Z)$

Newton's method.

- Choose $x^{0} \in X ; k:=0$.

อ $x^{k+1}=x^{k}-\nabla F\left(x^{k}\right)^{-1} F\left(x^{k}\right)$; set $k:=k+1$.

Versions.

- ∇F Lipschitz continuous. Then, locally

$$
\left\|x^{k+1}-x^{*}\right\| x \leq C\left\|x^{k}-x^{*}\right\|_{x}^{2}
$$

■ ∇F is Hölder continuous (exponent $\tau \in(0,1)$). Then, locally

$$
\left\|x^{k+1}-x^{*}\right\| x \leq C\left\|x^{k}-x^{*}\right\|_{X}^{1+\tau} .
$$

■ ∇F continuous.

$$
\frac{\left\|x^{k+1}-x^{*}\right\|_{X}}{\left\|x^{k}-x^{*}\right\|_{X}} \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

presuming that $x^{k} \neq x^{*}$ for $k \in \mathbb{N}$.

Non-smooth operator equations

Question.

What happens if F is no longer Fréchet differentiable?

Generalized differential

Let X, Z be Banach spaces and $F: D \subset X \rightarrow Z$.
Definition. The mapping $F: D \subset X \rightarrow Z$ is generalized or Newton differentiable in $U \subset D$, if there exists a family of mappings $G: U \rightarrow$ $\mathcal{L}(X, Z)$ such that

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{1}{\|h\|_{X}}\|F(x+h)-F(x)-G(x+h) h\|_{z}=0 \tag{A}
\end{equation*}
$$

for every $x \in U$.

- G need not be unique!
- Generalizes the concept of F. Clarke (UBC).

■ Compare "semismoothness" by L. Qi (HKPU) and Q. Sun (NUS).

Newton's method

Problem. Find $x^{*} \in X$ such that

$$
F\left(x^{*}\right)=0 .
$$

Generalized Newton's method.

- Choose $x^{0} \in X ; k:=0$.

อ $x^{k+1}=x^{k}-G\left(x^{k}\right)^{-1} F\left(x^{k}\right)$; set $k:=k+1$.

Local convergence result.
Theorem. Let
■ $x^{*} \in X$ be a solution of $F(x)=0$;

- F be generalized differentiable in U with $x^{*} \in U$;

■ $\left\{\left\|G(x)^{-1}\right\|: x \in U\right\}$ be bounded.
Then the generalized Newton method converges superlinearly to x^{*}, if $\left\|x^{0}-x^{*}\right\| x$ is sufficiently small.

Complementarity problems

Optimal control problem.

$$
\begin{aligned}
& \operatorname{minimize} J(y, u)=\frac{1}{2}\left\|y-y_{d}\right\|_{L^{2}}^{2}+\frac{\alpha}{2}\|u\|_{L^{2}}^{2} \\
& \text { s.t. } e(y, u)=0, \\
& \quad u \leq b \text { a.e. in } \Omega,
\end{aligned}
$$

with $\Omega \subset \mathbb{R}^{n}$ open and bounded, and with sufficiently smooth boundary, $\alpha>0$ and $y_{d}, b \in L^{2}(\Omega)$.

- Example for $e(y, u)$:

$$
e(y, u)=E(y)-u,
$$

$E(\cdot)$ a semilinear (2nd order) elliptic partial differential operator.

- Also possible: general J; parabolic equations; bilateral constraints $a \leq u \leq b, \ldots$

Reduction approach

Assumption: $u \mapsto y(u)$ (locally) unique.
Reduced problem. $\left(U_{\mathrm{ad}}=\left\{u \in L^{2}(\Omega): u \leq b\right.\right.$ a.e. in $\left.\left.\Omega\right\}\right)$

$$
\begin{aligned}
& \text { Minimize } \hat{J}(u)=J(y(u), u) \\
& \text { s.t. } u \in U_{\text {ad }} \text {. }
\end{aligned}
$$

1st order optimality conditions - variational inequality (VI).

$$
u^{*} \in U_{\mathrm{ad}}, \quad\left(\hat{\jmath}^{\prime}\left(u^{*}\right), u-u^{*}\right)_{L^{2}} \geq 0 \quad \forall u \in U_{\mathrm{ad}} .
$$

We have for $v \in L^{2}(\Omega)$:

$$
\left(\hat{\jmath}^{\prime}\left(u^{*}\right), v\right)_{L^{2}}=\left(y\left(u^{*}\right)-y_{d}, y^{\prime}\left(u^{*}\right) v\right)_{L^{2}}+\alpha\left(u^{*}, v\right)_{L^{2}}
$$

Reduction approach - adjoints

Method of the adjoint.

$$
\left.E^{\prime}(y(u))^{*} p=\nabla_{y} J(y(u), u) \quad \text { (solution } p(u)\right)
$$

Representation of \hat{J}^{\prime}.

$$
\hat{\jmath}^{\prime}(u)=p(u)+\alpha u=: A(u)+\alpha u .
$$

Structural assumption.

- $\hat{\jmath}^{\prime}(u)=A(u)+\alpha u ;$
- A : $L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ cont. Fréchet differentiable;
- A : $L^{2}(\Omega) \rightarrow L^{s}(\Omega), s>2$ fixed, locally Lipschitz.

NCP-Function

- VI equivalent to

$$
\begin{aligned}
& A\left(u^{*}\right)+\alpha u^{*}+\lambda^{*}=0, \\
& \lambda^{*} \geq 0, \quad u^{*} \leq b, \quad \lambda^{*}\left(u^{*}-b\right)=0 .
\end{aligned}
$$

- The optimality condition for u^{*} is equivalent to

$$
\begin{aligned}
& A\left(u^{*}\right)+\alpha u^{*}+\lambda^{*}=0, \\
& \max \left(\lambda^{*}+c\left(u^{*}-b\right), 0\right)-\lambda^{*}=0 .
\end{aligned}
$$

$c>0$ arbitrarily fixed.

- For $c=\alpha$ we get:

$$
\max \left(-A\left(u^{*}\right)-\alpha b, 0\right)+A\left(u^{*}\right)+\alpha u^{*}=0 .
$$

- Setting $x=u \in L^{2}(\Omega)$ we get

$$
F(x)=\max (-A(x)-\alpha b, 0)+A(x)+\alpha x
$$

Convergence

Theorem.

- max : $L^{r}(\Omega) \rightarrow L^{s}(\Omega)$ generalized differentiable for $1 \leq s<r \leq+\infty$.
- For $r=s, \max : L^{r}(\Omega) \rightarrow L^{s}(\Omega)$ not generalized differentiable.
- Due to the structural assumption on A, the generalized Newton method for solving $F(x)=0$ converges locally at a superlinear rate.
- The structural assumption is, e.g., satisfied for $E(y)=-L y+f(y)$, with L a 2nd order linear elliptic partial differential operator and f sufficiently smooth.

Example

Simplified Ginzburg-Landau model for superconductivity:
Minimize $\quad J(y, u)=\frac{1}{2}\left\|y-y_{d}\right\|_{L^{2}}^{2}+\frac{\alpha}{2}\|u\|_{L^{2}}^{2}$
over $(y, u) \in H^{1}(\Omega) \times L^{2}(\Omega)$,
s.t. $\quad-\Delta y+y^{3}+y=u$ in $\Omega, \quad y=0$ on $\Gamma=\partial \Omega$,

$$
u \in U_{\text {ad }}=\left\{u \in L^{2}(\Omega) \mid-4 \leq u(\mathrm{x}) \leq 0 \text { f.a.a. } \mathrm{x} \text { in } \Omega\right\},
$$

with $\Omega=(0,1)^{2}, y_{d}=\sin \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right) \exp \left(2 x_{1}\right) / 6$ and $\alpha=0.001$.
Convergence measures:

$$
\begin{aligned}
\operatorname{res}_{h}^{k} & =\left\|\alpha u_{h}^{k}-P_{[-4 \alpha, 0]}\left(-A_{h}\left(u_{h}^{k}\right)\right)\right\|_{L^{2}} \\
l_{h}^{k} & =\left\|u_{h}^{k}-u_{h}^{*}\right\|_{L^{2}} \\
q_{h}^{k} & =\left\|u_{h}^{k}-u_{h}^{*}\right\|_{L^{2}} /\left\|u_{h}^{k-1}-u_{h}^{*}\right\|_{L^{2}} .
\end{aligned}
$$

h	res $_{h}^{\mathrm{k}}$			
	1	2	3	4
$1 / 16$	$3.797 \mathrm{E}-3$	$1.108 \mathrm{E}-3$	$7.408 \mathrm{E}-5$	$5.325 \mathrm{E}-8$
$1 / 32$	$3.925 \mathrm{E}-3$	$1.207 \mathrm{E}-3$	$7.591 \mathrm{E}-5$	$1.246 \mathrm{E}-6$
$1 / 64$	$3.957 \mathrm{E}-3$	$1.231 \mathrm{E}-3$	$7.005 \mathrm{E}-5$	$5.283 \mathrm{E}-7$
$1 / 128$	$3.968 \mathrm{E}-3$	$1.239 \mathrm{E}-3$	$6.963 \mathrm{E}-5$	$4.470 \mathrm{E}-7$
$1 / 256$	$3.971 \mathrm{E}-3$	$1.243 \mathrm{E}-3$	$6.958 \mathrm{E}-5$	$5.514 \mathrm{E}-7$

h	I_{h}^{k}			
	1	2	3	4
$1 / 16$	3.222	1.195	$7.408 \mathrm{E}-2$	$5.332 \mathrm{E}-5$
$1 / 32$	3.347	1.290	$7.678 \mathrm{E}-2$	$1.247 \mathrm{E}-3$
$1 / 64$	3.378	1.317	$7.085 \mathrm{E}-2$	$5.285 \mathrm{E}-4$
$1 / 128$	3.383	1.325	$7.042 \mathrm{E}-2$	$4.471 \mathrm{E}-4$
$1 / 256$	3.384	1.328	$7.037 \mathrm{E}-2$	$5.512 \mathrm{E}-4$

h	q_{h}^{k}			
	1	2	3	4
$1 / 16$	1.619	0.371	$6.276 \mathrm{E}-2$	$7.111 \mathrm{E}-4$
$1 / 32$	1.646	0.385	$5.952 \mathrm{E}-2$	$1.625 \mathrm{E}-3$
$1 / 64$	1.654	0.390	$5.380 \mathrm{E}-2$	$7.459 \mathrm{E}-3$
$1 / 128$	1.654	0.392	$5.316 \mathrm{E}-2$	$6.349 \mathrm{E}-3$
$1 / 256$	1.654	0.393	$5.297 \mathrm{E}-2$	$7.840 \mathrm{E}-3$

Mesh independence!

Mesh independence

- Assumption 1.(Strict complementarity)

$$
\operatorname{meas}\left\{\left|b-u^{*}\right|+\left|\hat{\jmath}^{\prime}\left(u^{*}\right)\right|=0\right\}=0 .
$$

Let u_{h}^{*} be solution of $F_{h}\left(u_{h}\right)=0 ; s>2$.

- Assumption 2.
- $\lim _{h \rightarrow 0^{+}}\left\|u_{h}^{*}-u^{*}\right\|_{L^{2}}=0, \quad \lim _{h \rightarrow 0^{+}}\left\|A_{h}\left(u_{h}^{*}\right)-A\left(u^{*}\right)\right\|_{L^{s}}=0$.
- Family of discretizations is locally uniformly Lipschitz, i.e., there exist $h_{0}>0, \delta_{0}>0$, and $L_{A}>0$ such that for $h \leq h_{0}$

$$
\begin{aligned}
& \left\|A\left(u^{2}\right)-A\left(u^{1}\right)\right\|_{L^{s}} \leq L_{A}\left\|u^{2}-u^{1}\right\|_{L^{2}}, \quad\left\|u^{i}-u^{*}\right\|_{L^{2}} \leq \delta_{0}, \\
& \left\|A_{h}\left(u_{h}^{2}\right)-A_{h}\left(u_{h}^{1}\right)\right\|_{L^{s}} \leq L_{A}\left\|u_{h}^{2}-u_{h}^{1}\right\|_{L^{2}}, \quad\left\|u_{h}^{i}-u_{h}^{*}\right\|_{U_{h}} \leq \delta_{0} .
\end{aligned}
$$

- Family of discretizations has the uniform linear approximation property, i.e., A and $A_{h}, h \leq h_{0}$, Fréchet differentiable in a neighborhood of u^{*} and u_{h}^{*}, and there exists a function $\rho:\left[0, \delta_{0}\right) \rightarrow[0, \infty)$ such that

$$
\begin{aligned}
& \lim _{t \rightarrow 0^{+}} \frac{\rho(t)}{t}=0 \\
& \left\|A(u)-A\left(u^{*}\right)-A^{\prime}(u)\left(u-u^{*}\right)\right\|_{L^{2}} \leq \rho\left(\left\|u-u^{*}\right\|_{L^{2}}\right) \\
& \forall u \in L^{2}(\Omega), \quad\left\|u-u^{*}\right\|_{L^{2}} \leq \delta_{0} \\
& \left\|A_{h}\left(u_{h}\right)-A_{h}\left(u_{h}^{*}\right)-A_{h}^{\prime}\left(u_{h}\right)\left(u_{h}-u_{h}^{*}\right)\right\| u_{h} \leq \rho\left(\left\|u_{h}-u_{h}^{*}\right\| u_{h}\right) \\
& \forall u_{h} \in U_{h}, \quad\left\|u_{h}-u_{h}^{*}\right\| u_{h} \leq \delta_{0}, \quad h \leq h_{0}
\end{aligned}
$$

Here $U_{h} \subset L^{2}(\Omega)$ with $\operatorname{dim}\left(U_{h}\right)<\infty$.

Mesh independent linear convergence

Theorem. Let $F: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ be generalized differentiable, and $u^{*} \in L^{2}(\Omega)$ with $F\left(u^{*}\right)=0$ and $u_{h}^{*} \in U_{h}$ with $F_{h}\left(u_{h}^{*}\right)=0$, such that Assumption 1-2 are satisfied. Further let $\delta_{2}, \delta_{2}^{\prime}>0, \kappa, \kappa^{\prime}>0$ and $h_{2}^{\prime} \leq h_{0}$ such that for all $0<h \leq h_{2}^{\prime}$

$$
\begin{aligned}
& \sup \left\{\left\|G^{-1}\right\|_{L^{2}, L^{2}}: G \in S\left(u^{*}+s\right),\|s\|_{L^{2}} \leq \delta_{2}\right\} \leq \kappa, \\
& \sup \left\{\left\|G_{h}^{-1}\right\|_{L^{2}, L^{2}}: G_{h} \in S_{h}\left(u_{h}^{*}+s_{h}\right),\left\|s_{h}\right\|_{L^{2}} \leq \delta_{2}^{\prime}\right\} \leq \kappa^{\prime}
\end{aligned}
$$

Then, for $\theta \in(0,1)$, there exist $\bar{\delta}>0$ and $\bar{h}>0$ such that

$$
\begin{aligned}
& \left\|u^{k+1}-u^{*}\right\|_{L^{2}} \leq \theta\left\|u^{k}-u^{*}\right\|_{L^{2}}, \\
& \left\|u_{h}^{k+1}-u_{h}^{*}\right\|_{L^{2}} \leq \theta\left\|u_{h}^{k}-u_{h}^{*}\right\|_{L^{2}}, \quad \forall 0<h \leq \bar{h}
\end{aligned}
$$

if $\max \left\{\left\|u^{0}-u^{*}\right\|_{L^{2}},\left\|u_{h}^{0}-u_{h}^{*}\right\|_{L^{2}}\right\} \leq \bar{\delta}$.

Moreau-Yosida-Based Path-Following for State Constraints and Parameter Balance.

Path-following for state constraints: motivation

Pointwise constraints on the state.

$$
\begin{align*}
& \operatorname{minimize} J(y, u)=J_{1}(y)+\frac{\alpha}{2}\left|u-u_{d}\right|_{L^{2}(\tilde{\Omega})}^{2} \\
& \text { over }(y, u) \in W \times L^{2}(\tilde{\Omega}) \tag{P}\\
& \text { s.t. } A y=E_{\tilde{\Omega}} u \text { in } \Omega, \quad u \in C_{u}, \quad y \in C_{y}
\end{align*}
$$

where

- State space W is a reflexive Banach space,

■ $J_{1} \in \mathcal{C}^{1,1}(W, \mathbb{R})$ convex and $J_{1}\left(y_{n}\right) \rightarrow J_{1}(y), J_{1}^{\prime}\left(y_{n}\right) \rightharpoonup J_{1}^{\prime}(y)$ in W^{*} for $y_{n} \rightharpoonup y$ in $W, \alpha>0, u_{d} \in L^{2}(\tilde{\Omega})$,

- $\tilde{\Omega}$ an open subset of the bounded set $\Omega \subset \mathbb{R}^{d}, d \leq 3$,
- $A \in \mathcal{L}(W, L), L$ a reflexive Banach space such that $L^{r}(\Omega) \subset L$ with dense embedding for $r \geq 2$,
- $E_{\tilde{\Omega}}$ the extension-by-zero operator from $\tilde{\Omega}$ to Ω,
- $C_{u}=\left\{u \in L^{2}(\tilde{\Omega}): \underline{\varphi} \leq u \leq \bar{\varphi}\right\}$ with $\underline{\varphi}, \bar{\varphi} \in L^{2(r-1)}(\tilde{\Omega})$,

Path-following for state constraints: motivation

- $C_{y}=\{y \in W:|(G y)(x)| \leq \psi, x \in \Omega\}$ with $\psi \in \mathcal{C}(\bar{\Omega})$, $\underline{\psi} \leq \psi, \underline{\psi} \in \mathbb{R}_{++}$,
- $G \in \mathcal{L}\left(W, \mathcal{C}(\bar{\Omega})^{\prime}\right)$ for $1 \leq I \leq d$, and $|\cdot|$ the Euclidean-norm in \mathbb{R}^{\prime}.

Hypothesis:
There exists a feasible point for the constraints in (P).
A is a homeomorphism.
$G: W \rightarrow \mathcal{C}(\bar{\Omega})^{l}$ is compact.
$\Longrightarrow \quad \exists$ unique solution $\left(y^{*}, u^{*}\right) \in W \times L^{r}(\tilde{\Omega})$.

Motivation - particular realizations

- Pointwise zero-order state constraints.
- A a second order linear elliptic differential operator

$$
A y=-\sum_{i, j=1}^{d} \partial_{x_{j}}\left(a_{i j} \partial_{x_{i}} y\right)+a_{0} y
$$

with $\mathcal{C}^{0, \delta}(\bar{\Omega})$-coefficients $a_{i j}$ for some $\delta \in(0,1]$, and

$$
\sum_{i, j=1}^{d} a_{i j}(x) \xi_{i} \xi_{j} \geq \kappa|\xi|^{2} \text { for some } \kappa>0
$$

and $a_{0} \in L^{\infty}(\Omega)$ with $a_{0} \geq 0$ a.e. in Ω.

- Ω either polyhedral convex or with a $\mathcal{C}^{1, \delta}$-boundary Γ; locally on one side of Γ.
- $W=W_{0}^{1, p}(\Omega), L=W^{-1, p}(\Omega), p>d$, and $G=i d$, which implies $I=1$. Then

$$
|G y| \leq \psi \text { in } \Omega \quad \Longleftrightarrow \quad-\psi \leq y \leq \psi \text { in } \Omega
$$

- Regular case: $W=H^{2}(\Omega) \cap H_{0}^{1}(\Omega), L=L^{2}(\Omega)$.

Motivation - particular realizations

■ Gradient constraints (pointwise first-order state constraints).

- Let A be as above, but with $\mathcal{C}^{0,1}$-coefficients $a_{i j}$, and Ω with $\mathcal{C}^{1,1}$-boundary.
- $W=W^{2, r}(\Omega) \cap W_{0}^{1, r}(\Omega), L=L^{r}(\Omega), r>d$, and $G=\nabla$, which yields $I=d$. Then

$$
C_{y}=\{y \in W:|\nabla y(\mathbf{x})| \leq \psi(\mathbf{x}), \mathbf{x} \in \Omega\} .
$$

- Sometimes, for some $g \in \mathcal{C}(\bar{\Omega})^{l}$,

$$
C_{y}=\{\tilde{y} \in W:|(G \tilde{y})(\mathbf{x})-g(\mathbf{x})| \leq \psi(\mathbf{x}), \mathbf{x} \in \Omega\}
$$

If $\exists \tilde{y}_{g} \in W$ with $G \tilde{y}_{g}=g$, then $y:=\tilde{y}-y_{g}$ yields (P).

■ Zero-order case. Also possible

$$
\varphi \leq y \leq \psi \quad \text { in } \Omega
$$

Constraint qualification

$$
\begin{align*}
& \exists M \subset C_{y} \times C_{u} \subset W \times L^{r}(\tilde{\Omega}) \text { such that } \tag{H4}\\
& 0 \in \operatorname{int}\left\{A y-E_{\tilde{\Omega}} u:(y, u) \in M\right\} \subset L^{r}(\Omega),
\end{align*}
$$

where the interior is taken in $L^{r}(\Omega)$.
Discussion.

- Range space CQ.
- Weaker then Slater condition.

■ Sufficient for our aims.

Moreau-Yosida regularization

$$
\begin{align*}
& \text { minimize } J(y, u)+\frac{\gamma}{2}\left\|(|G y|-\psi)^{+}\right\|_{L^{2}}^{2}(\Omega) \\
& \text { subject to } A y=E_{\tilde{\Omega}} u, u \in C_{u},
\end{align*}
$$

where $\gamma>0$ and $(\cdot)^{+}=\max (0, \cdot)$ in the pointwise sense.

Moreau-Yosida regularization of I_{K}, with $K:=\left\{v \in L^{2}(\Omega): v \leq \psi\right\}:$

$$
\begin{aligned}
I_{K}^{M Y}(w) & :=\inf \left\{I_{K}(v)+\frac{\gamma}{2}\|v-w\|_{L^{2}(\Omega)}^{2}: v \in L^{2}(\Omega)\right\} \\
& =\frac{\gamma}{2}\left\|(w-\psi)^{+}\right\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

is $L C^{1}$-regular.

Moreau-Yosida regularization

Standard infimizing sequence techniques and KKT-theory in Banach space yield:

- \exists unique solution $\left(y_{\gamma}, u_{\gamma}\right)$;
- $\exists\left(p_{\gamma}, \bar{\mu}_{\gamma}, \underline{\mu}_{\gamma}\right) \in L^{*} \times L^{r^{\prime}}(\tilde{\Omega}) \times L^{r^{\prime}}(\tilde{\Omega}), \frac{1}{r}+\frac{1}{r^{\prime}}=1$,

$$
\begin{align*}
& A y_{\gamma}=E_{\tilde{\Omega}} u_{\gamma}, \quad A^{*} p_{\gamma}+G^{*} \lambda_{\gamma}=-J_{1}^{\prime}\left(y_{\gamma}\right), \\
& \alpha\left(u_{\gamma}-u_{d}\right)-E_{\tilde{\Omega}}^{*} p_{\gamma}+\bar{\mu}_{\gamma}-\underline{\mu}_{\gamma}=0, \\
& \bar{\mu}_{\gamma} \geq 0, \quad u_{\gamma} \leq \bar{\varphi}, \quad \bar{\mu}_{\gamma}\left(u_{\gamma}-\bar{\varphi}\right)=0, \\
& \underline{\mu}_{\gamma} \leq 0, \quad u_{\gamma} \geq \underline{\varphi}, \quad \underline{\mu}_{\gamma}\left(u_{\gamma}-\underline{\varphi}\right)=0, \\
& \lambda_{\gamma}=\gamma\left(\left|G y_{\gamma}\right|-\psi\right)^{+} q_{\gamma}, \\
& q_{\gamma}(\mathbf{x}) \in \begin{cases}\left\{\frac{G y_{\gamma}}{\left|G y_{\gamma}\right|}(\mathbf{x})\right\} & \text { if }\left|G y_{\gamma}(\mathbf{x})\right|>0, \\
\bar{B}(0 ; 1)^{\prime} & \text { else. }\end{cases}
\end{align*}
$$

Moreau-Yosida regularization

Discussion.

- Adjoint equation - very weak form:

$$
\left\langle p_{\gamma}, A v\right\rangle_{L^{*}, L}+\left(\lambda_{\gamma}, G v\right)_{L^{2}(\Omega)}=-\left\langle J_{1}^{\prime}\left(y_{\gamma}\right), v\right\rangle_{W^{*}, W} \text { for any } v \in W .
$$

- Scalar factor of multiplier approximation:

$$
\lambda_{\gamma}^{s}:=\frac{\gamma}{\left|G y_{\gamma}\right|}\left(\left|G y_{\gamma}\right|-\psi\right)^{+} \text {on }\left\{\left|G y_{\gamma}\right|>0\right\} \quad \text { and } \quad \lambda_{\gamma}^{s}:=0 \text { else. }
$$

Hence, $\lambda_{\gamma}=\lambda_{\gamma}^{s} G y_{\gamma}$.
■ Lemma. Let (H 1) $-(\mathrm{H} 4)$ hold. Then the family

$$
\left\{\left(y_{\gamma}, u_{\gamma}, p_{\gamma}, \bar{\mu}_{\gamma}-\underline{\mu}_{\gamma}, \lambda_{\gamma}^{s}\right)\right\}_{\gamma \geq 1}
$$

is bounded in $W \times L^{r}(\tilde{\Omega}) \times L^{r^{\prime}}(\Omega) \times L^{r^{\prime}}(\tilde{\Omega}) \times L^{1}(\Omega)$.

Moreau-Yosida regularization

- Theorem. Let $(\mathrm{H} 1)-(\mathrm{H} 4)$ hold. Then there exists $\left(p_{*}, \bar{\mu}_{*}, \underline{\mu}_{*}, \lambda_{*}^{s}\right) \in L^{*} \times L^{r^{\prime}}(\tilde{\Omega}) \times L^{r^{\prime}}(\tilde{\Omega}) \times \mathcal{M}(\bar{\Omega})$ such that

$$
\begin{aligned}
& A y^{*}-E_{\tilde{\Omega}} u^{*}=0, \\
& A^{*} p_{*}+G^{*}\left(\lambda_{*}^{s} G y^{*}\right)+J_{1}^{\prime}\left(y^{*}\right)=0, \\
& \alpha\left(u^{*}-u_{d}\right)-E_{\tilde{\Omega}}^{*} p_{*}+\left(\bar{\mu}_{*}-\underline{\mu}_{*}\right)=0, \\
& \bar{\mu}_{*} \geq 0, u^{*} \leq \bar{\varphi}, \bar{\mu}_{*}\left(u^{*}-\bar{\varphi}\right)=0 \\
& \underline{\mu}_{*} \geq 0, u^{*} \geq \underline{\varphi}, \underline{\mu}_{*}\left(u^{*}-\underline{\varphi}\right)=0,
\end{aligned}
$$

and further

- $\int_{\Omega} \lambda_{*}^{s} \varphi \geq 0$ for all $\varphi \in \mathcal{C}(\bar{\Omega})$ with $\varphi \geq 0$;
- $\left(p_{\gamma}, \bar{\mu}_{\gamma}, \underline{\mu}_{\gamma}\right) \rightharpoonup\left(p_{*}, \bar{\mu}_{*}, \underline{\mu}_{*}\right),\left\langle\lambda_{\gamma}^{s}, v\right\rangle \rightarrow\left\langle\lambda_{*}^{s}, v\right\rangle$ for all $v \in \mathcal{C}(\bar{\Omega})$ along a subsequence,
- $\left(y_{\gamma}, u_{\gamma}\right) \rightarrow\left(y^{*}, u^{*}\right)$ strongly in $W \times L^{r}(\tilde{\Omega})$.

Discussion

- Adjoint equation of example 1.

$$
\left\langle p_{*}, A v\right\rangle_{W_{0}^{1, p^{\prime}}(\Omega), W^{-1, p}(\Omega)}+\left\langle\lambda_{*}^{s} y^{*}, v\right\rangle_{\mathcal{M}(\bar{\Omega}), \mathcal{C}(\bar{\Omega})}=-\left\langle J_{1}^{\prime}\left(u^{*}\right), v\right\rangle_{W^{*}, W}
$$

for all $v \in W$.
■ Adjoint equation of example 2.

$$
\begin{aligned}
& \left\langle p_{*}, A v\right\rangle_{L^{\prime}(\Omega), L^{r}(\Omega)}+\left\langle\lambda_{*}^{s} \nabla y^{*}, \nabla v\right\rangle_{\mathcal{M}(\bar{\Omega})^{\prime}, \mathcal{C}(\bar{\Omega})^{\prime}}=-\left\langle J_{1}^{\prime}\left(u^{*}\right), v\right\rangle_{W^{*}, W} \\
& \text { for all } v \in W=W^{2, r}(\Omega) \cap W_{0}^{1, r}(\Omega)
\end{aligned}
$$

■ Condition (H 4) is quite general and allows $\psi=0$ on parts of Ω.

Semismoothness ∞ Newton

Recall:
■ Let $F: \mathcal{X} \rightarrow \mathcal{Y}$, with \mathcal{X} and \mathcal{Y} Banach spaces. $G_{F} \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ is called a Newton or slant derivative of F in an open set $U \subset \mathcal{X}$, iff

$$
\left\|F(x+h)-F(x)-G_{F}(x+h) h\right\|_{\mathcal{Y}}=\mathcal{O}\left(\|h\|_{\mathcal{X}}\right) \quad \text { for } x \in U
$$

as $\|h\|_{\mathcal{X}} \rightarrow 0$.
■ Semismooth Newton method (SSN) for finding x^{*} with $F\left(x^{*}\right)=0$:

$$
x^{k+1}=x^{k}-G_{F}\left(x^{k}\right)^{-1} F\left(x^{k}\right) \quad \text { for } k=0,1 \ldots
$$

- Uniform invertibility of G_{F} in a neighborhood of x^{*} and $\left\|x^{0}-x^{*}\right\| \mathcal{X}$ sufficiently small yield q-superlinear convergence of SSN.

Semismoothness

$\left(\mathrm{OS}_{\gamma}\right)$ can be reduced to

$$
F_{\gamma}\left(u_{\gamma}\right)=0, \quad F_{\gamma}: L^{r}(\tilde{\Omega}) \rightarrow L^{r}(\tilde{\Omega})
$$

with

$$
\begin{aligned}
F_{\gamma}\left(u_{\gamma}\right):= & \alpha\left(u_{\gamma}-u_{d}\right)-\hat{p}_{\gamma}+\left(\hat{p}_{\gamma}+\alpha\left(u_{d}-\bar{\varphi}\right)\right)^{+} \\
& +\left(\hat{p}_{\gamma}+\alpha\left(u_{d}-\underline{\varphi}\right)\right)^{-} .
\end{aligned}
$$

where $\hat{p}_{\gamma}=p_{\gamma}\left(u_{\gamma}\right)$ with

$$
\begin{aligned}
&\left.p_{\gamma}\left(u_{\gamma}\right)=-\gamma B^{*}\left(\left|B u_{\gamma}\right|-\psi\right)^{+} q\left(B u_{\gamma}\right)+J_{1}^{\prime}\left(A^{-1} E_{\tilde{\Omega}} u_{\gamma}\right)\right), \\
& B=G A^{-1} E_{\tilde{\Omega}} \text { and }
\end{aligned}
$$

$$
q\left(B u_{\gamma}\right)(\mathbf{x})=\left\{\begin{array}{l}
\left(B u_{\gamma} /\left|B u_{\gamma}\right|\right)(\mathbf{x}) \text { if }\left|B\left(u_{\gamma}\right)(\mathbf{x})\right|>0 \\
0 \text { else }
\end{array}\right.
$$

Semismoothness

Hypothesis: For some $\hat{r}>r$ we assume:

$$
\begin{equation*}
u_{d}, \bar{\varphi}, \underline{\varphi} \in L^{\hat{r}}(\tilde{\Omega}), \text { and } u \mapsto A^{-*} J_{1}^{\prime}\left(A^{-1} E_{\tilde{\Omega}} u\right) \text { is cont. } \tag{H5}
\end{equation*}
$$

Frechet differentiable from $L^{2}(\tilde{\Omega}) \rightarrow L^{\hat{r}}(\Omega)$,

$$
\begin{equation*}
B^{*} \in \mathcal{L}\left(L^{r}(\tilde{\Omega})^{\prime}, L^{\hat{r}}(\tilde{\Omega})\right) \tag{H6}
\end{equation*}
$$

Our examples satisfy these hypothesis.

Semismoothness

$$
G_{\max }(\omega)(x):= \begin{cases}1 & \text { if } \omega(x)>0 \\ 0 & \text { if } \omega(x) \leq 0\end{cases}
$$

serves as a generalized derivative for

$$
\max (0, \cdot): L^{s_{1}}(\Omega) \rightarrow L^{s_{2}}(\Omega) \text { if } 1 \leq s_{2}<s_{1} \leq \infty .
$$

Analogously for $\min (0, \cdot)$ and the norm- functional
$|\cdot|: L^{s_{1}}(\Omega)^{\prime} \rightarrow L^{s_{2}}(\Omega)$.

- Define

$$
\mathfrak{p}_{\gamma}(u):=-\gamma B^{*}(|B u|-\psi)^{+} q(B u), \quad \text { where } \mathfrak{p}_{\gamma}: L^{r}(\tilde{\Omega}) \rightarrow L^{\hat{r}}(\tilde{\Omega})
$$

- Define

$$
Q(B v):=|B v|^{-1}\left(\mathrm{id}-|B v|^{-2}(B v)(B v)^{\top}\right) .
$$

Semismoothness

- $\mathfrak{p}_{\gamma}: L^{r}(\tilde{\Omega}) \rightarrow L^{\hat{r}}(\tilde{\Omega})$ is Newton differentiable in a neighborhood of every point $u \in L^{r}(\tilde{\Omega})$ and a generalized derivative is given by
$G_{\mathfrak{p}_{\gamma}}(u)=-\gamma B^{*}\left[G_{\max }(|B u|-\psi) q(B u) q(B u)^{\top}+(|B u|-\psi)^{+} Q(B u)\right] B$.
- $F_{\gamma}: L^{r}(\tilde{\Omega}) \rightarrow L^{r}(\tilde{\Omega})$ is Newton differentiable in a neighborhood of every $u \in L^{r}(\tilde{\Omega})$, and a particular generalized derivative of F_{γ} at $u \in L^{r}(\tilde{\Omega})$ is given by

$$
\begin{aligned}
G_{F_{\gamma}}(u)=\alpha \text { id } & -G_{\hat{p}_{\gamma}}(u)+G_{\max }\left(\hat{p}_{\gamma}(u)+\alpha\left(u_{d}-\bar{\varphi}\right)\right) G_{\hat{p}_{\gamma}}(u) \\
& +G_{\min }\left(\hat{p}_{\gamma}(u)+\alpha\left(u_{d}-\underline{\varphi}\right)\right) G_{\hat{p}_{\gamma}}(u)
\end{aligned}
$$

with

$$
G_{\hat{p}_{\gamma}}(u)=G_{\mathfrak{p}_{\gamma}}(u)-E_{\tilde{\Omega}}^{*} A^{-*} J_{1}^{\prime \prime}\left(A^{-1} E_{\tilde{\Omega}} u\right) A^{-1} E_{\tilde{\Omega}} .
$$

Semismooth Newton

■ Newton step: $G_{F_{\gamma}}\left(u^{k}\right) \delta_{u}^{k}=-F_{\gamma}\left(u^{k}\right)$ with $\delta_{u}^{k}=u^{k+1}-u^{k}$.

$$
\begin{aligned}
\overline{\mathcal{A}}^{k} & :=\left\{\mathbf{x} \in \tilde{\Omega}:\left(\hat{p}_{\gamma}\left(u^{k}\right)+\alpha\left(u_{d}-\bar{\varphi}\right)\right)(\mathbf{x})>0\right\}, \\
\underline{\mathcal{A}}^{k} & :=\left\{\mathbf{x} \in \tilde{\Omega}:\left(\hat{p}_{\gamma}\left(u^{k}\right)+\alpha\left(u_{d}-\underline{\varphi}\right)\right)(\mathbf{x})<0\right\}, \\
\mathcal{A}^{k} & :=\overline{\mathcal{A}}^{k} \cup \mathcal{\mathcal { A }}^{k}, \\
\mathcal{I}^{k} & :=\tilde{\Omega} \backslash \mathcal{A}^{k} .
\end{aligned}
$$

- Structure: $G_{F_{\gamma}}\left(u^{k}\right)=\alpha$ id $-\chi_{\mathcal{I}^{k}} G_{\hat{p}_{\gamma}}\left(u^{k}\right)$.
- $\delta_{u \mid \overline{\mathcal{A}}^{k}}^{k}=E_{\overline{\mathcal{A}}^{k}}^{*} \delta_{u}^{k}=E_{\overline{\mathcal{A}}^{k}}^{*}\left(\bar{\varphi}-u^{k}\right)=\bar{\varphi}_{\mid \overline{\mathcal{A}}^{k}}-u_{\mid \overline{\mathcal{A}}^{k}}^{k}$,

■ $\delta_{u \mid \mathcal{A}^{k}}^{k}=E_{\underline{\mathcal{A}}^{k}}^{*} \delta_{u}^{k}=E_{\underline{\mathcal{A}}^{k}}^{*}\left(\underline{\varphi}-u^{k}\right)=\underline{\varphi}_{\mid \mathcal{A}^{k}}-u_{\mid \underline{\mathcal{A}^{k}}}^{k}$.

- Remains in $L^{2}\left(\mathcal{I}^{k}\right)$:

$$
E_{\mathcal{I}^{k}}^{*} G_{F_{\gamma}}\left(u^{k}\right) E_{\mathcal{I}^{k}} \delta_{u}^{\mathcal{I}^{k}}=-E_{\mathcal{I}^{k}}^{*}\left(F_{\gamma}\left(u^{k}\right)+G_{F_{\gamma}}\left(u^{k}\right) E_{\mathcal{A}^{k}} \delta_{u \mid \mathcal{A}^{k}}^{k}\right) .
$$

Semismooth Newton

- The inverse to the operator

$$
E_{\mathcal{I}}^{*} G_{F_{\gamma}}(u) E_{\mathcal{I}}: L^{2}(\mathcal{I}) \rightarrow L^{2}(\mathcal{I})
$$

with $G_{F_{\gamma}}(u)=\alpha$ id $-\chi_{\mathcal{I}} G_{\hat{p}_{\gamma}}(u)$, exists and is bounded by $\frac{1}{\alpha}$ regardless of $u \in L^{r}(\tilde{\Omega})$ as long as meas $(\mathcal{I})>0$.

- The semismooth Newton update step is well-defined and $\delta_{u}^{k} \in L^{r}(\tilde{\Omega})$.
- For each $\hat{u} \in L^{r}(\tilde{\Omega})$ there exists a neighborhood $U(\hat{u}) \subset L^{r}(\tilde{\Omega})$ and a constant K such that

$$
\left\|G_{F_{\gamma}}(u)^{-1}\right\|_{\mathcal{L}\left(L^{2}(\hat{\Omega})\right)} \leq K \text { for all } u \in U(\hat{u})
$$

- For $r=2$ the semismooth Newton method is well-defined and converges locally at a superlinear rate.

Semismooth Newton with lifting $(r>2)$

(i) Choose $u^{0} \in L^{r}(\tilde{\Omega})$.
(ii) Solve for $\tilde{u}^{k+1} \in L^{r}(\tilde{\Omega})$:

$$
G_{F_{\gamma}}\left(u^{k}\right)\left(\tilde{u}^{k+1}-u^{k}\right)=-F\left(u^{k}\right) .
$$

(iii) Perform a lifting step:
$u^{k+1}=\frac{1}{\alpha}\left(u_{d}+p_{\gamma}-\left(p_{\gamma}+\alpha\left(u_{d}-\bar{\varphi}\right)\right)^{+}-\left(p_{\gamma}+\alpha\left(u_{d}-\underline{\varphi}\right)\right)^{-}\right)$,
where $p_{\gamma}=p_{\gamma}\left(\tilde{u}^{k+1}\right)$.

- The semismooth Newton method with lifting step is locally q-superlinearly convergent in $L^{r}(\tilde{\Omega})$ for $r>2$.

Numerics for gradient constraints

Numerics for gradient constraints

- Continuation with respect to γ.

Iterations															
h / γ	1E0	1E1	1E2	1E3	1E4	1E5	1E6	1E7	1E8						
$\frac{1}{32}$	6	6	6	4	3	3	2	2	2						
$\frac{1}{64}$	7	7	6	4	4	3	3	2	2						
$\frac{1}{128}$	7	7	6	5	5	4	3	2	2						
$\frac{1}{256}$	7	7	6	6	5	5	4	3	2						

Numerics for gradient constraints

- Continuation with respect to γ.

Iterations															
h / γ	1E0	1E1	1E2	1E3	1E4	1E5	1E6	1E7	1E8						
$\frac{1}{32}$	6	6	6	4	3	3	2	2	2						
$\frac{1}{64}$	7	7	6	4	4	3	3	2	2						
$\frac{1}{128}$	7	7	6	5	5	4	3	2	2						
$\frac{1}{256}$	7	7	6	6	5	5	4	3	2						

■ Automatize γ-update: Primal-dual path-following.

Primal-dual path

Let $x=(y, u)$ and $X=W \times L^{r}(\tilde{\Omega})$.

- Primal-dual path associated with (P).

$$
\mathcal{C}=\left\{\left(x_{\gamma}, p_{\gamma}, \lambda_{\gamma}, \mu_{\gamma}\right) \in X \times L^{r^{\prime}}(\Omega) \times W^{*} \times L^{r^{\prime}}(\tilde{\Omega}): \gamma \in(0, \infty)\right\}
$$

- Properties.
- The path \mathcal{C} is bounded.
- $x_{\gamma} \rightarrow x^{*}$ in X,
- $\left(p_{\gamma}, \lambda_{\gamma}, \mu_{\gamma}\right) \rightharpoonup\left(p^{*}, \lambda^{*}, \mu^{*}\right)$ in $L^{r^{\prime}}(\Omega) \times W^{*} \times L^{r^{\prime}}(\tilde{\Omega})$.
- \mathcal{C} is Lipschitz continuous.
- From now on: $G=$ id, $\tilde{\Omega}=\Omega, X=W \times L^{2}(\Omega)$ and $C_{u}=L^{2}(\Omega), C_{y}=\{y \leq \psi\}$.
- $\left(\frac{1}{\bar{\gamma}-\gamma}\left(x_{\bar{\gamma}}-x_{\gamma}\right), \frac{1}{\bar{\gamma}-\gamma}\left(p_{\bar{\gamma}}-p_{\gamma}\right)\right)$ admits accumulation point $\left(\dot{x}_{\gamma}, \dot{p}_{\gamma}\right)$ as $\bar{\gamma} \rightarrow \gamma$.
- Similarly for $g(\gamma):=\gamma\left(y_{\gamma}-\psi\right): \dot{g}(\gamma)=y_{\gamma}-\psi+\gamma \dot{y}_{\gamma}$ in $L^{2}(\Omega)$.

Smoothness properties

- Define

$$
\begin{aligned}
S_{\gamma} & :=\{\mathbf{x} \in \Omega: g(\gamma)(\mathbf{x})>0\} \\
S_{\gamma}^{+} & :=S_{\gamma} \cup\{\mathbf{x}: g(\gamma)(\mathbf{x})=0 \wedge \dot{g}(\gamma)(\mathbf{x}) \geq 0\}
\end{aligned}
$$

- Then $\left(\dot{x}_{\gamma}, \dot{p}_{\gamma}\right)$ satisfies the sensitivity equation
$\left\langle J^{\prime}\left(\dot{\chi}_{\gamma}\right), v\right\rangle_{X^{*}, X}+\left\langle\left[A^{*} \dot{p}_{\gamma},-\dot{u}_{\gamma}\right], v\right\rangle_{X^{*}, X}+\left(\left(y_{\gamma}-\psi+\gamma \dot{y}_{\gamma}\right) \chi_{S_{\gamma}^{+}}, v_{1}\right)=0$ for all $v=\left(v_{1}, v_{2}\right) \in X$.

■ Set $S_{\gamma}^{0}=\{\mathbf{x} \in \omega: g(\gamma)(\mathbf{x})=0\}$. If meas $\left(S_{\gamma}^{0}\right)=0$, then $\gamma \mapsto\left(x_{\gamma}, p_{\gamma}\right) \in X \times W^{*}$ is (strongly, weakly) differentiable at γ.

Value and model functions

- Primal-dual path value functional.

$$
\gamma \mapsto V(\gamma)=J\left(x_{\gamma}\right)+\frac{\gamma}{2}\left|\left(y_{\gamma}-\psi\right)^{+}\right|_{L^{2}(\Omega)}^{2}
$$

- V is differentiable with

$$
\dot{V}(\gamma)=-\frac{\gamma}{2}\left|\left(y_{\gamma}-\psi\right)^{+}\right|_{L^{2}}^{2}
$$

- The value functional satisfies

$$
V(0)=J\left(x_{0}\right), \quad \dot{V}(\gamma)>0, \quad \ddot{V}(\gamma)<0
$$

where x_{0} denotes the solution to the unconstrained problem.

- These properties are shared by model functions of the type

$$
m(\gamma)=C_{1}-\frac{C_{2}}{(E+\gamma)^{s}}, \quad m(0)=V(0)
$$

with $C_{1} \in \mathbb{R}, C_{2} \geq 0, E, s>0$.

Algorithm

(i) Initialize γ_{0}; set $k:=0$.
(ii) Find an appproximate solution $\left(x_{k+1}, p_{k+1}, \lambda_{k+1}\right)$ to $\left(P_{\gamma_{k}}\right)$ such that $\left(x_{k+1}, p_{k+1}, \lambda_{k+1}\right) \in \mathcal{N}\left(\gamma_{k}\right)$.
(iii) Update γ_{k} to obtain $\gamma_{k+1}(\Longrightarrow$ use model function m).
(iv) Set $k=k+1$, and go to (ii).

Inexact path-following:

Algorithm

Approximate solution of $\left(P_{\gamma_{k}}\right)$.
■ Apply a semismooth Newton method, or equivalently primal-dual active set strategy.

- locally superlinear convergence in function space.
- efficient implementation as a primal-dual active set method.

Applications + Results

We report on the following algorithms:
■ PDAS. Primal-dual active set method.

- Finite dimensional semismooth Newton method.

■ PDIP. Primal-dual path-following interior point method.
■ Mehrotra's predictor-corrector.

- Large neighborhood.
- No function space theory available.

■ IPF. Inexact path-following (our new method).
■ Test problem.

$$
\begin{aligned}
& \operatorname{minimize} \quad \frac{1}{2}\left|y-y_{d}\right|_{L^{2}}^{2}+\frac{\alpha}{2}|u|_{L^{2}}^{2} \\
& \text { over }(y, u) \in\left(W=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times L^{2}(\Omega) \\
& \text { subj. to }-\Delta y=u \text { in } \Omega, \\
& \quad y \leq \psi \text { in } \Omega .
\end{aligned}
$$

Applications + Results

$$
y_{d}=10\left(\sin \left(2 \pi x_{1}\right)+x_{2}\right), \psi=0.01, \alpha=0.1
$$

Mesh size h	$1 / 16$	$1 / 32$	$1 / 64$	$1 / 128$	$1 / 256$
PDAS	14	27	54	113	226
PDIP	12	14	15	19	19
IPF	$7(11)$	$9(15)$	$9(14)$	$7(13)$	$8(15)$

Error estimates and parameter tuning

Aim. Given a mesh size h, find an optimal selection of $\gamma=\gamma(h)$.
We estimate

$$
\left|u^{*}-u_{\gamma, h}\right|_{L^{2}} \leq\left|u^{*}-u_{\gamma}\right|_{L^{2}}+\left|u_{\gamma}-u_{\gamma, h}\right|_{L^{2}}
$$

and analogously for y_{h}^{γ}. Let

- \mathcal{T}_{h} a (shape regular) triangulation of Ω with $h=\max _{T} \operatorname{diam}(T), T \in \mathcal{T}_{h}$.
- $\left(X_{1}\right)_{h}:=\left\{v_{h} \in C_{0}(\bar{\Omega}) \mid v_{h}\right.$ lin. polynom. on $\left.T \in \mathcal{T}_{h}\right\}$.

Below: $|\cdot|:=|\cdot|_{L^{2}} ; \bar{\lambda} \in L^{2}(\Omega)$ with $\bar{\lambda} \geq 0$ approximates the Lagrange multiplier (compare augmented Lagrangians), and

$$
J(y, u)=\frac{1}{2}\left|y-y_{d}\right|_{L^{2}}^{2}+\frac{\alpha}{2}\left|u-u_{d}\right|_{L^{2}}^{2} .
$$

Regularized problem

Consider for $(y, u) \in W \times L^{2}(\Omega)$ (here: $\psi \equiv 0$):

$$
\begin{aligned}
& \min J(y, u)+\frac{1}{2 \gamma}\left|(\bar{\lambda}+\gamma y)^{+}\right|^{2} \text { s.t. } A y=u . \\
& \Longrightarrow \quad \max \left(\left|y_{\gamma}\right| c_{0}(\bar{\Omega}),|u|\right) \leq C \text { indep. of } \gamma .
\end{aligned}
$$

Theorem
We have

$$
\alpha\left|u^{*}-u_{\gamma}\right|^{2}+\left|y^{*}-y_{\gamma}\right|^{2}+\gamma\left|\left(y_{\gamma}\right)^{+}\right|^{2} \leq \frac{1}{\gamma}|\bar{\lambda}|^{2}+\left\langle\lambda^{*}, y_{\gamma}\right\rangle,
$$

and for the feasibility violation

$$
\left|\left(y_{\gamma}\right)^{+}\right| \leq \sqrt{\frac{2}{\gamma}} \max \left(\frac{|\bar{\lambda}|^{2}}{\gamma},\left|\lambda^{*}\right|_{\mathcal{M}(\bar{\Omega})}\left|\left(y_{\gamma}\right)^{+}\right|_{\mathcal{C}_{0}(\bar{\Omega})}\right)^{1 / 2}
$$

Theorem

Either

- if $y_{d} \geq 0$, or

■ if there exists $\epsilon>0$ such that

$$
-\int_{\Omega} \min \left(0, y_{d}\right) y_{\gamma} d \mathbf{x}-\left|y_{\gamma}\right|^{2}-\alpha\left|u_{\gamma}\right|^{2} \leq-\epsilon
$$

then $\left|\left(y_{\gamma}\right)^{+}\right|=\mathcal{O}\left(\gamma^{-1}\right)$ as $\gamma \rightarrow \infty$.

- [Douglas, Dupont, Wahlbin]. The L^{2}-projection $\Pi_{h}: W^{1, p}(\Omega) \rightarrow\left(X_{1}\right)_{h}(d<p \leq \infty)$ satisfies

$$
\left|v-\Pi_{h} v\right|_{L^{\infty}} \leq C h^{1-\frac{d}{p}}|v|_{W^{1, p}}
$$

and is stable in L^{2}.

- [Brenner, Scott]. For $v_{h} \in X_{h}$, we have

$$
\left|v_{h}\right|_{L^{\infty}} \leq C h^{-\frac{d}{2}}\left|v_{h}\right| .
$$

$■ \mathcal{G}$ solution operator of state equation. For all $v \in L^{2}(\Omega)$

$$
\begin{aligned}
\left|\mathcal{G}(v)-\mathcal{G}_{h}(v)\right| & \leq C h^{2}|v| \\
\left|\mathcal{G}(v)-\mathcal{G}_{h}(v)\right|_{L^{\infty}} & \leq C h^{2-\frac{d}{2}}|v| .
\end{aligned}
$$

Estimate $\left|u^{*}-u_{\gamma}\right|$

Lemma

$$
\left|\left(y_{\gamma}\right)^{+}\right|_{\mathcal{C}_{0}(\bar{\Omega})} \leq C\left(h^{1-\frac{d}{p}}+\gamma^{-\frac{1}{2}} h^{-\frac{d}{2}}\right) .
$$

Proof.

$$
\left|\left(y_{\gamma}\right)^{+}\right|_{\mathcal{C}_{0}(\bar{\Omega})} \leq\left|\left(y_{\gamma}\right)^{+}-\Pi_{h}\left(y_{\gamma}\right)^{+}\right|_{\mathcal{C}_{0}(\bar{\Omega})}+\left|\Pi_{h}\left(y_{\gamma}\right)^{+}\right|_{\mathcal{C}_{0}(\bar{\Omega})} \leq \ldots
$$

Theorem

$$
\left|u^{*}-u_{\gamma}\right| \leq \frac{C}{\sqrt{\alpha}}\left(h^{1-\frac{d}{p}}+\gamma^{-\frac{1}{2}} h^{-\frac{d}{2}}\right)^{\frac{1}{2}}
$$

Estimate $\left|u_{\gamma}-u_{\gamma, h}\right|$

- Optimal in h (but dep. on γ).

Theorem

$$
\left|u_{\gamma}-u_{\gamma, h}\right| \leq \frac{C}{\alpha} \gamma h^{2} \text { for all } 0<h \leq h_{0}
$$

■ Independent of γ.
Theorem

$$
\left|u_{\gamma}-u_{\gamma, h}\right|+\left|y_{\gamma}-y_{\gamma, h}\right|_{H_{0}^{1}} \leq C h^{1-\frac{d}{4}} \text { for all } 0<h \leq h_{0}
$$

Optimal choice: $\gamma=h^{-2}$ yields

$$
\left|u^{*}-u_{\gamma, h}\right|=\mathcal{O}\left(\gamma^{-1 / 4}\right) . \quad\left(\mathcal{O}\left(\gamma^{-1 / 2}\right)\right)
$$

Estimate in weaker norm

Using the sensitivity equation
$\left\langle J^{\prime}\left(\dot{x}_{\gamma}\right), v\right\rangle_{X^{*}, X}+\left\langle\left[A^{*} \dot{p}_{\gamma},-\dot{u}_{\gamma}\right], v\right\rangle_{X^{*}, X}+\left(\left(y_{\gamma}-\psi+\gamma \dot{y}_{\gamma}\right) \chi_{S_{\gamma}}, v_{1}\right)=0$
with a non-degeneracy assumption, then one obtains

$$
\left|y^{*}-y_{\gamma}\right|_{L^{2}} \leq \mathcal{O}\left(\gamma^{-1 / 2}\right) \quad \text { and } \quad\left|u^{*}-u_{\gamma}\right|_{w^{*}} \leq \mathcal{O}\left(\gamma^{-1 / 2}\right)
$$

Example.

