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Arakelov geometry was initiated by Arakelov in his paper [1], where he shows that one can

compactify a curve defined over the (spectrum of the) ring of integers of a number field by

considering Green functions on the associated complex curve. Subsequently, Arakelov’s
ideas have been successfully refined by Deligne [25] and Faltings [29], and generalized to
higher dimensional arithmetic varieties by Gillet and Soulé who introduced arithmetic
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Chow groups for higher codimensional arithmetic cycles in [36]. An important application
of this formalism was Vojta’s proof of Faltings’s theorem, formerly known as Mordell’s
conjecture (see [74]).

The use of analytical objects such as Green functions allows various modifications and
extensions of the formalism of arithmetic Chow groups, which is adapted to different
situations. Among others, we mention Zhang’s work [75] on admissible metrized line
bundles and Maillot’s work [60] taking into account hermitian line bundles whose metrics
are no longer smooth but still continuous; Bost’s work [9] on L2-Green functions and
Moriwaki’s work [63] on degenerate Green currents; Kithn’s work [58] treating hermitian
line bundles on arithmetic surfaces having logarithmically singular metrics, e.g. the line
bundle of modular forms equipped with the Petersson metric on a modular curve, and
Burgos’s work [14,17] on arithmetic Chow groups and Deligne-Beilinson cohomology.

Motivation

The main motivation of these notes is to extend Kiihn’s generalized arithmetic inter-
section pairing on arithmetic surfaces to higher dimensional arithmetic varieties. While
Kihn’s intersection pairing, which was motivated by preliminary results of Kramer
(see [53]), is given in terms of an explicit formula for the arithmetic intersection number
of two divisors (in the spirit of Arakelov), the development of a corresponding higher
dimensional theory needs to be approached in a more abstract way. Moreover, we will
extend this theory, not only to line bundles with singular metrics, but also to higher
rank vector bundles such as the Hodge bundle that appear when considering fibrations
of semi-abelian varieties. The study of higher rank vector bundles will be the subject of
the forthcoming paper [19].

Arithmetic intersection theory

An arithmetic ring (A, X, F) is a triple consisting of an excellent regular noetherian
integral domain A, a finite non-empty set X' of monomorphisms ¢ : A — C, and an
antilinear involution F,, : C¥ — C* of C-algebras. For simplicity, we will forget about
the antilinear involution F,, in this introduction. Then, an arithmetic variety is a flat,
regular scheme X over S = Spec(A) together with a complex analytic space X, obtained
from X by means of X; S will be called the base scheme. Intuitively, the elements of X' are
the points at infinity of S providing a ‘compactification’ of S, and the analytic space X is
the fibre at these points at infinity or archimedean fibre of X. An arithmetic intersection
theory will involve three main ingredients: first, a geometric intersection theory over
the scheme X, the geometric part; second, a ‘refined’ intersection theory over X, the
analytic part; and finally an interface relating the geometric and the analytic part. The
main theme of this paper is to study the second and third of these ingredients, and we
will rely on existing geometric intersection theories.

Geometric intersection theory

It might be useful to review, at this point, the geometric intersection theories we have
at our disposal.
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The first of these theories is based on the moving lemma to reduce the intersection
product of two algebraic cycles to the case of proper intersection. In order to be able
to apply the moving lemma we need the scheme X under consideration to be quasi-
projective and the arithmetic ring A to be a field. Since we are interested in more general
arithmetic rings, we cannot use this method.

The second approach is the deformation to the normal cone technique due to Fulton
and MacPherson (see [33]). This method is much more general, since the scheme X need
not be quasi-projective and, moreover, it can also be applied to the case in which the base
scheme is the spectrum of a Dedekind domain. But in this case X needs to be not only
regular, but smooth over S. Since most interesting arithmetic varieties are not smooth
over the base scheme, this method is not general enough for our purposes. Note however
that, in the case in which X is smooth over S, this method provides an intersection
pairing which is defined without tensoring with Q. We should also note that, in contrast
to the case of an intersection product, this method can be used to define the inverse image
morphism for a morphism between regular schemes of finite type over the spectrum of
a regular, noetherian ring without the assumption of smoothness. The lack of a general
theorem of resolution of singularities prevents us from obtaining an intersection product
from this inverse image morphism.

However, as a third approach, one can use de Jong’s theorem on alterations [22] to
reduce the intersection of algebraic cycles to the inverse image between regular schemes,
and then apply the deformation to the normal cone technique. Nevertheless, these alter-
ations are finite morphisms whose degree is larger that one, in general. Therefore, this
method yields an intersection product with rational coefficients.

The last general approach that we will mention (and the one introduced originally by
Gillet and Soulé) is to use the isomorphism between K-theory and Chow groups to trans-
fer the ring structure of K-theory to the Chow groups. This method is valid for any reg-
ular, noetherian scheme X of finite Krull dimension. The main drawback of this method
is that the isomorphism between K-theory and Chow groups is only true in general after
tensoring with Q. Therefore, one also obtains a rational valued intersection product.

Finally, we note that the intersection product with a divisor on a regular scheme can be
defined directly using a simple version of the moving lemma for divisors (see [36, 4.2.3.2]),
which holds in complete generality.

The K-theoretical method and the alteration method are the most general of the above
methods. Since the K-theoretical approach was the one used by Gillet and Soulé in [36]
and, conceptually, fits very well with the cohomological approach we will be using for the
analytical part, we also use it as the geometric part of our arithmetic intersection theory.
But, since the geometric and the analytic part of our arithmetic intersection theory are
isolated and related by a clear interface, we hope that the reader will have no difficulty
in using any other of these geometric methods when applicable.

Green currents and Green forms

We now discuss the refined intersection theories which have been used as the analytic
part of a higher dimensional arithmetic intersection theory.
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The first one is the notion of a Green current introduced in [36]. Let y be a p-
codimensional cycle on X. A Green current for y is a class of currents

gy € D IPTH= DRI (ODK T 4+ DR Y

satisfying the residue equation
dd®gy + 0y = wy, (0.1)

where J, is the current given by integration along the cycle yo, and wy is a smooth form
uniquely determined by (0.0).

If y and z are two cycles intersecting properly (i.e. with the appropriate codimension)
in X, the product of two Green currents, called the star-product or *-product, is given
by the formula

9y * 9z :gy/\éz T wy Age.

It is a Green current for the intersection cycle y - z. This approach has many analytical
difficulties. For instance, some care has to be taken to define g, A 6,. Moreover, this
product is not obviously associative and commutative, and the proof that this is indeed
the case, is not trivial.

As we have already mentioned this approach has been generalized in several direc-
tions. Typically, these generalizations allow the presence of certain singularities for the
differential form w,. But usually only the case when X is of dimension one is treated
(see [9,58]), or one does not obtain a full ring structure for the generalized arithmetic
Chow rings (see [60]).

There are other proposals for the definition of the product of Green currents. For
instance, Harris and Wang [41] have given a definition of the star-product of two Green
currents for non-properly intersecting cycles that depends on a deformation of one of
the cycles, and Dan [20] has given a definition of the star-product using meromorphic
continuation of certain zeta functions.

In [17] Burgos introduced a new definition of Green forms along the following lines.
To every complex algebraic manifold X (not necessarily compact), there is associated
a graded complex Dy, (X, *), which consists of smooth forms on X with logarithmic
singularities at infinity. For instance, if X is proper, then

D (X,p) = EPP(X) N (2mi)P B (X),

DN (X, p) = EPTRPTHX) N (2mi)PTLEP T (X)),

log
where EPP(X) is the space of smooth complex valued differential forms of type (p, p) and
Eﬂip (X) is the space of smooth real valued differential forms. The boundary morphism

dp : DY (X, p) = Db (X, p)

is given by dpn = —200n. Observe that, up to a normalization factor, this is the same
differential operator as the one that appears in the residue equation (0.0).

The complex Dl*og(X , %) computes the real Deligne—Beilinson cohomology of X, which
is denoted by HA(X,R(p)). If Y is a closed subset of X, then the real Deligne—Beilinson
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cohomology of X with supports on Y, denoted by Hyp, 1 (X, R(p)), is the cohomology of
the simple complex associated to the morphism of complexes

Diog (X, %) = Diog (X \ Y, %).

Every p-codimensional algebraic cycle y with support Y defines a cohomology class
cl(y) € H%’TY (X,R(p)). Moreover, if W C X is a closed subvariety of codimension p — 1
and f € K(W)*, then f defines a class

cl(f) € Hy' ™ (X \ div(f), R(p)).

These classes satisfy the compatibility condition

o(cl(f)) = cl(div(f)),

where

8 Hy " (X \ div(f),R(p)) = HE giy ) (X, R(D))

is the connecting homomorphism.
In this setting a Green form for a p-codimensional algebraic cycle y is a representative
of the class cl(y). More explicitly, we write

Z'Df‘og(X, x) = Ker(dp),
D (X, %) = Djp (X, )/ Im(dp).

The space of Green forms associated to a p-codimensional cycle y with support Y is then
given by

- ~ 2p ~2p—1 dpgy = wy
GE() = { (@.3) € 2D, () DX\ Yo | P L
The star-product of Green forms is now simply the cup product in cohomology with
supports. With this approach, the proof of the associativity and commutativity of the
star-product is straightforward and completely formal.

In [16] and [17] it is proven that, when X is projective, the arithmetic Chow groups
obtained by this method agree with the ones obtained by the method of Gillet and
Soulé. It is interesting to note that all the analytical complexities appearing in the proof
of the associativity and commutativity of the star-product in [36] are needed to prove
the compatibility of the two definitions.

In contrast, in the quasi-projective case, the groups obtained by this new method
have better Hodge theoretical properties. For instance, they possess a certain homotopy
invariance with respect to vector bundles. Another advantage of this new definition is
that it is very easy to make variants adapted to new problems just by changing the
complex Diog.

We should stress here that a Green form associated to a cycle is a representative of
the cohomology class of the cycle with support in the same cycle. In order for the star-
product of two Green forms to be a Green form for the intersection cycle, we need the
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cycles to intersect properly in X,,. Therefore, as was the case in [36], the arithmetic
intersection product relies on the moving lemma for complex varieties. In particular, this
implies that our varieties should be at least geometrically quasi-projective.

In the preprint [45], Hu uses the homotopy invariance and the flexibility of the defini-
tion of Green forms to give a new definition of the inverse image morphism of arithmetic
Chow groups for a regular closed immersion by means of Fulton’s deformation to the
normal cone technique. The main result of this paper is the construction of a special-
ization morphism for Green forms. Combining this technique with de Jong’s result on
alterations mentioned above, one can define the arithmetic intersection pairing without
using any moving lemma, thereby removing the hypothesis of quasi-projectivity.

The interface between the geometric and the analytic part

In the definition of arithmetic Chow groups by means of Green currents, this inter-
face is implemented by very concrete objects. Namely, to any p-codimensional algebraic
cycle y, one assigns the current ‘integration along the cycle y.,’, denoted by d,, and
to every rational function f, one associates the current —log|fs|?. Compared with to
the approach of Green currents, this interface is more abstract. It is implemented by
the theory of characteristic classes for cycles and rational functions. The two approaches
are compatible because in the appropriate complexes, the currents d, and —log | fool?
represent the cohomology class of yo, and f, respectively.

Abstract arithmetic Chow groups

Recall that our main motivation is to extend Kiihn’s generalized arithmetic intersection
pairing on arithmetic surfaces to higher dimensional arithmetic varieties. In order to
accomplish this goal we will use the flexibility of the Green form approach, changing the
complex Diog by a complex of differential forms with certain mild singularities along a
fixed subvariety. Nevertheless, the arithmetic Chow groups that we will define in this
way, and their properties, depend strongly on the actual complex used. And there is no
one best choice for this complex of singular differential forms. For instance, in this paper
we introduce the complex of pre-log-log differential forms which, although it does not
have all the cohomological properties one would expect, is enough to define an arithmetic
intersection pairing and, in particular, the height with respect to log singular hermitian
line bundles. On the other hand, in the paper [19], we introduce the complex of log-
log singular differential forms. This complex has the expected cohomological properties,
but is slightly more difficult to handle because one has to bound all the derivatives of
the functions involved. Moreover, as we mentioned previously, in the literature there are
several other variants of arithmetic Chow groups with singular differential forms.

In addition, if one uses completely different kinds of complexes, one can obtain arith-
metic Chow groups with new properties. For instance, in his PhD thesis [14], Burgos
constructed a fully covariant version of the arithmetic Chow groups by choosing a com-
plex of currents instead of the complex of smooth differential forms. Similar arithmetic
Chow groups were introduced independently by Moriwaki in [63].
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In another direction, one may consider the following example. Let p;, i = 1,...,4, be
four different points in I%). Then, the archimedean component of the height pairing of
p1 — p2 and p3 — p4 is essentially given by the logarithm of the norm of the cross ratio of
the four points. Thus, this height pairing has a canonical lifting from R to C*, namely
the cross ratio of the four points. This suggests that one can define a finer version of
arithmetic Chow groups, where the role of real Deligne-Beilinson cohomology is played
by integral Deligne-Beilinson cohomology.

Even more, one can think of an adelic version of the arithmetic Chow groups, similar
to the one introduced in [7], but where each geometric fibre is substituted by a suitable
complex that computes a certain cohomology theory, or a theory, where only certain
geometric fibres are substituted by a cohomological complex.

All these considerations lead us to the conclusion that it is worthwhile to develop a
formalism of arithmetic Chow groups with respect to an abstract complex and to explore
how the properties of the complex are reflected by the properties of the arithmetic Chow
groups. In this way, different variants of arithmetic Chow groups can be obtained as
particular cases.

Results

The main achievement of this paper is the systematic development of the formalism of
abstract arithmetic Chow groups in arbitrary dimensions depending on a suitable coho-
mological complex. Every choice of such a complex gives rise to new types of arithmetic
Chow groups with different properties reflected by the complexes under consideration.
As special cases we recover Burgos’s version of the arithmetic intersection theory devel-
oped by Gillet and Soulé in [36], we introduce a theory of arithmetic Chow groups which
are covariant with respect to arbitrary proper morphisms, and we develop a theory of
arithmetic Chow rings using a complex of differential forms with pre-log-log singularities
along a fixed normal crossings divisor. This latter theory is suitable for the study of
automorphic line bundles. In particular, we generalize the classical Faltings height with
respect to a logarithmically singular hermitian line bundle to higher dimensional cycles.
As an application we compute the Faltings height of Hecke correspondences on a product
of modular curves.

This formalism of arithmetic Chow groups is an abstraction of [17]. Note however that
the passage from the concrete example of [17] to the abstract version presented here is
not completely straightforward. Although some constructions such as the definition of
truncated cohomology classes and their product are already (at least implicitly) present
in [17], others, like the notions of G-complex and of covariant f-morphism of complexes,
are new.

The basic idea of this paper is that the role of the complex Di,s can be played by
any graded complex of sheaves in the Zariski topology C. We only require two proper-
ties for this complex. The first is that the hypercohomology of this complex of sheaves
always agrees with the cohomology of the complex of global sections. In this way we can
represent cohomology classes by concrete elements of this complex. A convenient way
to ensure this is to ask the complex to satisfy a Mayer—Vietoris condition. The second
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property we require is that the complex receives characteristic classes from cycles and
rational functions (i.e. from Kj-chains). Typically, in order to ensure the existence of
characteristic classes, one imposes a series of axioms to the cohomology. Nevertheless,
in many applications it is not convenient to impose too many conditions to the cohom-
ology. Therefore, we use an auxiliary cohomology, given by a graded complex of sheaves
G satisfying the axioms of [34]; we call it a Gillet cohomology. The characteristic classes
will be induced by a morphism ¢¢ : G — C in the derived category.

In this abstract setting, instead of Green forms, we will define Green objects that
live in a space that we call ‘truncated cohomology classes’. These truncated cohomology
classes are something between relative cohomology classes and representatives of relative
cohomology classes.

Of course, very little can be done with this minimal set of properties. Therefore, we
undertake a complete study of how the properties of the complex C are reflected by the
properties of the Green objects and the arithmetic Chow groups. For instance, in order to
have an intersection product in the arithmetic Chow groups, we only need the existence
of a cup product in the complex C, which is compatible with the cup product of the
complex G. This implies that the cup product in C is compatible with the intersection
product of cycles.

We emphasize here that this abstract approach also simplifies many difficulties that
appear when working with Green currents. We have already mentioned the proof of the
associativity and commutativity of the star-product, but our approach also provides a
new and logically independent proof of the well-definedness of the arithmetic intersec-
tion product due to Gillet and Soulé. This proof does not rely on the K;-chain moving
lemma. We point out that in Burgos’s preceding work the arguments for proving the well-
definedness of the arithmetic intersection product relied on the corresponding arguments
n [36]. We will give a more detailed discussion on how we avoid the Kj-chain moving
lemma in Remark 4.22. We also emphasize that some problems with the K-chain moving
lemma have been discussed and successfully solved using completely different techniques
by Gubler in [40].

Once the abstract theory is developed, in the subsequent sections, we study particular
cases of this construction. For instance, we recover the original arithmetic intersection
theory of Gillet and Soulé for projective varieties. We point out that we will show in [19]
how to recover these arithmetic Chow groups for quasi-projective varieties as a particular
case of our construction. This example agrees with the theory developed in [17].

As a second example we introduce a theory of arithmetic Chow groups which are covari-
ant with respect to arbitrary proper morphisms. This construction was first introduced
in [14], and a similar construction can be found in [63].

Furthermore, by choosing for C a complex of forms satisfying certain growth conditions
of log- and log-log-type, we obtain a theory which is compatible with the theories devel-
oped by Bost and Kiihn in the one-dimensional setting. This latter theory is specifically
suited for the study of automorphic line bundles and allows to generalize the classical
Faltings height with respect to a logarithmically singular hermitian line bundle to higher
dimensional cycles. As an application, we compute the Faltings height of certain Hecke
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correspondences. Note that the same result has been obtained recently by Autissier [3]
using the one-dimensional theory.

We point out that Bost’s theory can also be seen as a particular case of our abstract
setting. Nevertheless, the definition of the corresponding complex C involves a mixture
of L2?-forms, L3-forms, L2 ;-currents, forms with logarithmic singularities, and currents;
we will not write it explicitly.

It would be interesting to extend the abstract setting of this paper to cover also Hu’s
deformation to the normal cone technique. This would involve incorporating the special-
ization functor to the axiomatic system and asking for the existence of a specialization
morphism at the level of complexes.

Applications

The theory developed in this paper is extensively used in the forthcoming paper [13] by
Bruinier, Burgos and Kiihn, where explicit calculations for the arithmetic self-intersection
number of the line bundle of modular forms and the Faltings height of Hirzebruch—
Zagier cycles on Hilbert modular surfaces are carried out. Further calculations in this
direction for other naturally metrized automorphic line bundles have been made in [12].
In his forthcoming thesis Freixas-Montplet will prove finiteness results for the height
with respect to such naturally metrized line bundles, which generalize Faltings’s original
result for points to cycles of higher dimensions. In the sequel [19] of this paper, we will
show that our abstract arithmetic Chow groups attached to the complex of forms having
suitable growth conditions of log- and log-log-type combined with the work [18] allow us
to construct arithmetic characteristic classes for vector bundles equipped with hermitian
metrics, which are logarithmically singular along a divisor with normal crossings. These
arithmetic characteristic classes give rise to operations on the arithmetic Chow groups,
even for non-regular arithmetic varieties. In addition, we show in [19] that automorphic
vector bundles equipped with the natural invariant metric (Petersson metric) on Shimura
varieties of non-compact type are hermitian vector bundles of the type considered above.

The framework of our arithmetic Chow groups attached to forms having certain log-
and log-log-type singularities is one of the key ingredients in order to formulate various
conjectures: in this context, we mention a conjecture of Kéhler on arithmetic intersection
numbers on the moduli space of principally polarized abelian varieties (see [52]); secondly,
we mention a conjecture of Maillot and Roessler on arithmetic Chern numbers associated
to fibrations of motives with complex multiplication (see [61]); finally, we emphasize
the conjectures of Kudla on Faltings heights and generating series for special cycles on
Shimura varieties of orthogonal type (see [55,56]).

Outline of the paper

Let us now give a more detailed outline of the contents of each section.

Section 1

In the first section we review various results relating K-theory, Chow groups and
cohomology theories satisfying Gillet’s axioms [34]; these facts will be needed in the
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sequel. For our purposes, the main interest in K-theory is that it provides a method to
define an intersection product and an inverse image for algebraic cycles on regular, sepa-
rated schemes of finite type over a base scheme, which is regular, separated, noetherian,
and of finite Krull dimension. Most of the results needed from K-theory deal only with
the groups Ky and Kj, and can be found in the first chapter of [71]. The main excep-
tion to this is Proposition 1.16; its translation into Chow theory and cohomology theory,
namely Theorem 1.34 and Corollary 1.35, is of crucial importance in §4 in the course of
the proof of the well-definedness of the intersection product of arithmetic cycles. There
is very little new in this section and its main purpose is to gather together all the needed
results, some of which are difficult to find explicitly in the literature.

Section 2

The second section is devoted to a systematic study of relative cohomology groups
H*(A, B) attached to a morphism f : A — B of abstract complexes of abelian groups
and their product structure based on a product structure of the complexes under consider-
ation. Furthermore, we study truncated relative cohomology groups H* (A, B) associated
to the above data together with their product structure, which is the basis of the defini-
tion of the *-product in the third section. We have also included a discussion of the signs
appearing when considering multidimensional complexes, complexes of complexes, and
products between them. This section is an extended and much more detailed version of
the corresponding chapter of [17].

Section 3

The aim of the third section is to develop an abstract theory of Green objects as ele-
ments of a suitable truncated cohomology theory. The main property for such a cohom-
ology theory is that it receives characteristic classes from K-theory, at least from K
and K1, and that it satisfies some additional natural properties. More precisely, we fix a
Gillet complex G = G*(x) over the site of regular schemes X of finite type over a field k.
A graded complex C = C*(x) of sheaves of abelian groups together with a morphism
¢c : G — C in the derived category will be called a G-complex over X. A Green object
for a p-codimensional cycle y on X with values in C is then given by an element

gy € H(C(X,p),C(U,p))

such that the class of g, equals the class of the cycle y in the relative cohomology
group H??(C(X,p),C(U,p)); here U denotes the complement of the support of y in X.
After studying the basic properties of such Green objects, we define a *-product for two
Green objects using the techniques developed in the second section. We end this section
with a proof of the associativity and commutativity of the x-product under suitable
assumptions on the G-complexes under consideration. The material in this and the next
section, although a generalization of the results of [17], is new.

Journal style is to
use the section
symbol, rather than
the word. OK?
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Section 4

In the fourth section we introduce generalized arithmetic Chow groups for arithmetic
varieties X over an arithmetic ring. The idea behind this definition is that the arithmetic
variety X can be ‘compactified’ by adding the associated complex manifold X, or, more
precisely, a truncated cohomology theory on X, to the picture. More specifically, we
proceed as follows: After fixing a Gillet complex G over the site of schemes over the real
numbers, we call the pair (X,C) a G-arithmetic variety, when X is an arithmetic variety
and C a G-complex over the associated real variety Xg. The group of p-codimensional
arithmetic cycles of (X,C) is then given by the set of pairs (y,g,), where y is a p-
codimensional cycle on X and g, is a Green object for (the class of) the cycle induced
by y on Xg. The C-arithmetic Chow group CH? (X,C) is now obtained from the group
of p-codimensional arithmetic cycles of (X,C) by factoring out by a suitable rational
equivalence relation. We prove various properties for these generalized arithmetic Chow
groups, emphasizing how the properties of the G-complexes involved are reflected in the
properties of the arithmetic Chow groups; a typical example is the ring structure of the
direct sum @p>06ﬁp(X7 Co.

Section 5

In all the examples of generalized arithmetic Chow groups presented in this paper,
the underlying Gillet cohomology will be the Deligne-Beilinson cohomology. Therefore,
we recall in the fifth section the basic definitions and facts of Deligne—Beilinson cohom-
ology and homology, which will be needed in the sequel. In particular, we use the fact
that real Deligne—Beilinson cohomology can be computed as the sheaf cohomology of
the Deligne algebra associated to the Dolbeault algebra of differential forms with log-
arithmic singularities at infinity. We denote this graded complex of sheaves by Diyg.
Towards the end of this section, we give explicit representatives for the classes of cycles,
in particular for the classes of divisors of sections of (hermitian) line bundles, in real
Deligne—Beilinson cohomology in terms of the underlying singular differential forms.
Most of the material in this section is well known; we include it for the convenience
of the reader.

Section 6

In the sixth section we use our abstract theory of arithmetic Chow groups to define
contravariant and covariant arithmetic Chow groups starting with the Gillet complex
G = Diog. The contravariant Chow groups, which were introduced in [17], are obtained
by considering Dj itself as a G-complex. In this way, we obtain the arithmetic Chow
groups CH* (X, Diog). By means of the properties of the Deligne algebra Diog, we find that
the direct sum €, CHP(X, Diog )g has the structure of a commutative and associative
ring. Furthermore, this ring coincides with the arithmetic Chow ring defined by Gillet
and Soulé in [36] for arithmetic varieties with projective generic fibre. The covariant
Chow groups, which were introduced in [14], are defined using as a Djog-complex a
complex De,, which is made out of certain currents and computes real Deligne-Beilinson
homology. The properties of the Djoe-complex De,, show that the arithmetic Chow groups
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éﬁ*(x , Deur) are covariant for arbitrary proper morphisms and have the structure of
a module over the contravariant Chow ring. We end this section with a reformulation
of the definition of the height of a cycle, originally given in [10], in the framework of
contravariant and covariant arithmetic Chow groups.

Section 7

In the seventh section we again fix the Deligne algebra D, as our Gillet complex
G. We then construct a Djoz-complex by means of differential forms satisfying (together
with their derivatives with respect to 0, 9, and 99) certain growth conditions of log-
and log-log-type. We call these differential forms pre-log and pre-log-log forms, respec-
tively, and denote the corresponding Djoe-complex by Dp,.. The notation is justified in
order to distinguish these differential forms from the forms satisfying the same type of
growth conditions together with all their derivatives; the corresponding Djog-complex
will be introduced and studied in [19]. By means of the properties of the complex Dpye,
the direct sum @p>(] CH? (X, Dpre)o has the structure of a commutative and associative
ring. This provides the desired higher dimensional extension of the generalized arith-
metic intersection pairing introduced in [57]. A useful application of this formalism is
the extension of the definition of the height of a cycle with respect to line bundles
equipped with a hermitian metric, which becomes logarithmically singular along a divi-
sor with normal crossings. As an illustration, we compute the arithmetic self-intersection
number of the line bundle of modular forms on the product of two modular curves
equipped with the Petersson metric. Furthermore, we determine the Faltings height of
Hecke correspondences on this product of modular curves with respect to the line bundle
of modular forms. The same result has been obtained recently by Autissier [3] using a
different approach. Related but more elaborate results in the case of Hilbert modular sur-
faces are contained in the paper [13] mentioned above. The general theory of arithmetic
characteristic classes of automorphic vector bundles of arbitrary rank will be developed
in [19].

1. Background results on K-theory

In this section we will review some facts relating to K-theory, Chow groups and cohom-
ology theory that will be needed in the sequel. For our purposes, the main interest of
K-theory is that it provides a method to define the intersection product and the inverse
images of algebraic cycles for regular schemes. Most of the results we need are only
concerned with the groups Kjy; they are explained in Chapter 1 of [71]. The main excep-
tion to this is Proposition 1.16. Its translation into Chow theory, Theorem 1.34, and
cohomology theory will be used in the proof of the fact that the intersection product of
arithmetic cycles is well defined. Note however that Proposition 1.16 is proven in [34],
and is used in [36].

In this section all schemes will be noetherian, separated and of finite Krull dimension.
Given an abelian group A we will write Ag = A® Q.

Journal style is to
use ‘Chapter’
rather than your
preferred ‘chapter’
here. OK?
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1.1. K-theory
K -theory of schemes

For any exact category A, Quillen has introduced a simplicial space 2BQA, and has
defined the K-groups of the category A as the homotopy groups of this simplicial space
(see [68]), i.e.

Ky (A) =1, 2BQA.

Let X be a scheme (recall that this means a noetherian, separated scheme of finite
Krull dimension). Then, we will denote by M(X) the exact category of coherent sheaves
on X, and by P(X) the exact category of locally free coherent sheaves on X. We write

Km(X) = Kn(P(X)).

In particular, Ko(X) is the Grothendieck group of locally free coherent sheaves on X,
and K{(X) is the Grothendieck group of coherent sheaves on X.

We will use many standard facts about the K-theory of schemes. For more details the
reader is referred, for instance, to [68], or [72]. Let us quote some of these facts.

Functoriality of K-theory

The first property we want to quote is the functoriality of K-theory. Let F': A — B
be an exact functor between exact categories. Then, there is an induced morphism

2BQA — QBQB,

and hence morphisms
K., (A) = K., (B).
From this one can derive the following proposition.

Proposition 1.1. If f : X — X' is a morphism of schemes, then the inverse image of
locally free sheaves induces morphisms

£ K (X') = Ko(X).

With these morphisms, K, is a contravariant functor between the category of schemes
to the category of graded abelian groups. (I

Proposition 1.2. If f : Y — Y’ is a proper morphism of schemes, then the higher direct
images of coherent sheaves induce morphisms

f« K (Y)— K. (Y").

With these morphisms, K. is a covariant functor between the category of schemes with
proper morphisms and the category of graded abelian groups. (I



Cohomological arithmetic Chow rings 15

Localization

Given exact functors A — B — € such that the composition A — € is zero and the
induced maps 2BQ(A) — 2BQ(B) — 2?BQ(C) form a fibration up to homotopy, then
there is a long exact sequence

o K (A) = Ko (B) = K (€) 5 K1 (A) = -+ .

This applies to the case when A is a Serre subcategory of B, and € = B/A. In particular,
this can be used to derive the following result [68, §7, 3.2].

Proposition 1.3 (localization). Let X be a scheme, Y C X a closed subscheme, and
U = X \'Y. Then, there is a long exact sequence

S KLY KL(X) = KL (U) S KL (V) =

m

O
K and K’ of reqular schemes
Another important result is the comparison between the groups K and K’ [68, §7].
Proposition 1.4. If X is a regular scheme, then the natural morphism
K (X) = K7, (X)
is an isomorphism. O

K -theory with support

Let X be a scheme, Y C X a closed subscheme, and U = X \ Y. Then, the K-theory
groups of X with support in Y are defined by

K (X) = 7y (homotopy fibre (BQP(X) — BQP(U))).

m

By definition, there is a long exact sequence

s KX (X) = Ko (X) = K (U) S KY,

m—1

(X)—---.
Combining Proposition 1.4, the above exact sequence and Proposition 1.3 we obtain the
following proposition.

Proposition 1.5 (purity). If X is a regular scheme and Y C X a closed subscheme,
then there is a natural isomorphism

KY(X)— K, (Y).
O
The purity property clearly implies the following excision property.

Proposition 1.6. Let X be a regular scheme, Y a closed subscheme of X, and V an
open subscheme of X satisfying Y C V. Then, the restriction map

K (X) = Ky(V)

is an isomorphism. (]
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1.2. K-theory as generalized sheaf cohomology

The K-theory groups can also be realized as generalized cohomology groups [11]. This
allows us to treat K-theory and cohomology in a uniform way, and is the basis of the
construction by Gillet [34] of characteristic classes for higher K-theory. In this section
we will briefly recall the definition of generalized sheaf cohomology and how to see higher
K-theory as generalized sheaf cohomology. We will follow [37] and Appendix B of [46].
There is also a short account in [21]. The reader may also consult the book [50] for a
slightly different point of view.

Homotopy theory of spaces

Let us fix a regular noetherian scheme S of finite Krull dimension. Let C' be one of
the following sites: zar(S) the small Zariski site over S, ZAR(S) the big Zariski site of
all schemes of finite type over S, or ZAR the big Zariski site of all noetherian schemes of
bounded Krull dimension. Let T' = T'(C) be the topos of sheaves over the site C as in [2].
Let us denote by sT the category of pointed simplicial objects in T'. The elements of sT'
will be called spaces. Given a scheme X in the site C', we can consider X as a sheaf by

U — Hom¢ (U, X).

We will also denote by X the corresponding constant simplicial object pointed by a
disjoint base point.

Definition 1.7. A space is said to be constructed from schemes if all components are
representable by a scheme in the site plus a disjoint base point. If P is a property of
schemes, we will say that a space X constructed from schemes satisfies P, if all the
schematic parts of X satisfy P.

The following result, due to Joyal, is fundamental for passing to the homotopy category
of spaces. A published proof in the non-pointed case can be found in [49] (see [37],
and [46]).

Proposition 1.8. The category sT is a pointed closed model category in the sense of
Quillen [67]. O

A part of the definition of a closed model category comprises the concepts of weak
equivalence, fibrations and cofibrations, and, in particular, the concept of fibrant objects
and cofibrant objects. We refer to [46, Appendix B] for the definition of these concepts
in the present setting.

Let us denote by Ho(sT') the homotopy category associated to the closed model cat-
egory sT. If X and Y are spaces, we denote by [X,Y] the morphism in Ho(sT). If
Y is fibrant, it is just the homotopy classes of morphisms. If Y is not fibrant, then
[X,Y] =[X, }N’], where Y is a fibrant space weakly equivalent to Y. We will denote by
SX and 2X the suspension and the loop space of a space X, respectively. The loop
space functor {2 is the right adjoint functor of the suspension functor S (see [67]).
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Generalized cohomology

Definition 1.9. Let A be a space and let X € C. Then, the cohomology space with
coefficients in A is defined for m > 0 by

Hop"(X,A) = [S™ A X, A

where S™AX is the smash product between the pointed m-dimensional sphere S and X.
Note that S™ A X is canonically isomorphic to the m-fold suspension S™X = S SX.

Remark 1.10. If X is a scheme in the site ZAR and A is an element of sT(ZAR), we
will denote also by A the restriction of A to ZAR(X) or to zar(X). By the argument at
the beginning of the proof of [37, Proposition 5] the cohomology groups H ™ (X, A) are
the same in the three sites.

Pseudo-flasque presheaves
If A is a fibrant space, the generalized cohomology can be computed as homotopy
groups
H " (X,A)=[S"NX,A] = 1, (A(X)) = T (Hom(X, A)).

More generally, the above equality is a property of pseudo-flasque presheaves.

Definition 1.11. A presheaf A is pseudo-flasque, if A(U) is a fibrant simplicial set for
all U, A(() is contractible, and for each pair of open sets the diagram

AUUV) ——= A(U)

i |

AV) ——= A(UNV)

is homotopically Cartesian.

Proposition 1.12 (Brown—Gersten [11]; Gillet—Soulé [37]). Let A be a pseudo-
flasque presheaf, and let A’ be the associated sheaf. Then, we have for any scheme X in
ZAR

H™™(X, A') = 1 (A(X)).

K-theory as generalized sheaf cohomology

Let us denote by K the pointed simplicial sheaf Z x Z., BGL (see [37, 3.1]), and by
K" the pointed simplicial sheaf Z x Z., BGLy. If X is a space, we define for m > 0 its
mth K -theory group by H™™(X, K ). We also define the unstable mth K-theory group by
H—™(X,K"). In general, H°(X, KV) are only pointed spaces, but H~™(X, K") are
abelian groups for m > 1. Following [37], we make the following definition.
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Definition 1.13. We say that a space X is K-coherent, if the natural maps

lim H™(X,KY) - H (X, K)
¥

and

lig H™ (X, 1, KN) = H™(X, 7, K)
N

are isomorphisms for all m,n > 0.

The fact that the groups H~ "™ (X, K) agree with the K-groups defined by Quillen is
proved in [37]. They use the argument of [11] together with some modifications due to
the different definitions. The main ingredients are the ‘+ = @’ result of Quillen [68],
Proposition 1.12, and the fact that the homotopy category used in [11] agrees with the
one considered in [37].

Proposition 1.14. Let X be a scheme in the site C. Then, there are canonical isomor-
phisms
K, (X)—> H ™X,K).

Moreover, X is K-coherent. ([

From the above proposition and a little homological algebra (see [37, 3.2.3], [21, 2.1]
and [46, B.2.3]) one can derive the following proposition.

Proposition 1.15. Let X be a noetherian space constructed from schemes of finite Krull
dimension (see Definition 1.7) that is degenerate above some simplicial degree, i.e. there
exists N such that X = sky X, where sky X is the Nth skeleton of X. Then, X is
K -coherent. |

The mapping cone

Let f: X — Y be a morphism of spaces. We can define the mapping cone C(X,Y) =
C(f) of f as the space
C(X,Y)= (YILX x I)/ ~,

where I is the simplicial unit interval and ~ is the equivalence relation generated by

with % denoting the distinguished point in all spaces. Then, we write
H™™(Y, X, K) = H"™(C(f), K).
There is a long exact sequence

S H(Y,K) = H™X,K) S H ™ (Y, X K) — -
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The connection morphism of this exact sequence is defined as follows. Let
a:SM"ANX - K

be an element of H~"(X, K) = [S™ A X, K]. Then, §(«) is given as the following com-
position of maps

STIANCX,Y)=CS™IAX,S"TIAY) =
CS™MIANX,x)2SIAST IAX =S"AX B K,

where * is the simplicial point; here we also use the fact that the smash product and the
mapping cone commute, and that C'(X, x) = S* A X is the suspension.

K -theory with support

Let X be a regular noetherian scheme of finite Krull dimension, f : U — X an open
immersion, and set Y = X \ U. The mapping cone of f is a space C(f) € sZAR. It is
clear that there are canonical isomorphisms

K (X) = Kn(C(f)), m=0.

Loday product in K -theory

Let us discuss the existence of a product in K-theory and its basic properties. The
choice of any bijection N x N — N induces a map [59] (see [46, p. 103] for details in this
setting)

(Z % Zog BGLN) A (Z % Zoo BGLy) — Z x Zoo BGL.

Hence, if X and Y are K-coherent spaces, there is a well-defined external product
H™X,K)xH "Y,K)-H " "XAY,K)

via
SMTAXAY XS AXAS"AY - KN AKY 5 K.

When X = Y, composing with the pull-back of the diagonal map X — X A X, we
obtain an associative and graded commutative ring structure (possibly without unit) in
H~*(X, K). Clearly, the product is functorial.

Let X, Y and Z be K-coherent spaces, and let f : X — Y be a morphism of spaces.
Having defined the product for spaces and using the fact that the mapping cone commutes
with the smash product, we observe that there is a product

H ™Y, X,K)x H"(Z,K)—» H ™ ™Y NZ, X A Z,K).

The following result is a version of [34, Corollary 7.14].
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Proposition 1.16. Let X, Y and Z be K-coherent spaces, and let f : X — Y be a
morphism of spaces. If « € H-™(X, K) and 3 € H "(Z, K), then the Loday product is
compatible with long exact sequences, i.e. we have

S(a-B)=0(a)-BEH ™™ Y ANZ,XNZ K),
§(B-a)=(-1)"3-6(a) e HT" T HZAY, Z AN X,K).

Proof. The first equality follows from the commutative diagram

ST ANC(X,2Y)NZ ———— ST ANC(X,Y)ANS"ANZ

C(S™MANXNZ,S™TANY A Z) C(S™ANX,S"ANY)ANS"NZ

C(S™T ANX A Z, %) C(S™AX,*x)ANS"NZ

SEANSTMANXNZ ———————>S'ASTAXANS"NZ
The second statement follows from a similar diagram that involves the isomorphism
STASEAS™ — ST ASTAS™.
But identifying both sides with S™*"*1 the above isomorphism has degree (—1)". [

Products in K-theory with support

We will now construct the product of K-theory with support. Let X be a scheme in
the site, let U, V be open subsets of X, and set Y = X \ U, Z = X \ V. Then, there is
a pairing

En(X)® KJ(X)=H "™(C(U.X),K)® H"(C(V,.X), K) —

H " "COUX)NCV,X),K).

Using the fact that the smash product and the mapping cone commute, we obtain that
C(U,X)NC(V,X) is weakly equivalent to either of the spaces

C(C(UANV,UANX),C(X ANV, X AX)),
or
C(CUAV,XAV),C(UANX,X AX)).

We will denote any of them as C(UAV; X AV,UAX; X A X). The diagonal map induces
a morphism of diagrams

uvny — UNV —=UAX

R

V—/— XNV —XANX
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Since {U,V'} is an open covering of U U V| we find that C(U N V;U,V; X) is weakly
equivalent to C'(U UV, X). Therefore, we obtain a pairing
KX (X))@ KZ(X) S H ™ ™(CUUV,X),K)=K-(X).

m m4n
A consequence of Proposition 1.16 is the following proposition.

Proposition 1.17. Let X be a scheme in the site, let U, V be open subsets of X, and
set Y = X \U, Z=X\V. Then, the following diagram commutes:

o®id

Kn(U) @ K7 (X) — Ky, (X) ® K7 (X)

y )

KUGZ(X\ (Y N 2) KY0Z ,(X)

m+n m+n—1

here we have identified KY0%(U) with KY0%(X \ (Y N Z)) using excision, and § is the

m—+n m—+n
connection morphism. O
Direct images and the projection formula
Let f: X — X’ be a proper morphism of regular schemes in the site. Let Z C X be
a closed subscheme. The isomorphisms K/ (Z) — KZ(X) and K, (f(Z)) — Km(z)(X’)

m
together with the direct image of the K’-groups induce direct image morphisms

fo: KZ(X) = KID(X).
These morphisms satisfy the projection formula.

Proposition 1.18. Let f : X — X’ be a proper morphism of regular schemes. Let
Z C X, and Z' C X' be closed subschemes. Then, for o € KZ'(X') and 3 € KZ(X), we
have

£ (@)U B) = aU f.(8) € KLOZ (x7),

Gersten—Quillen spectral sequence
Let X be a regular scheme in the site. Let us denote by X (?) the set of p-codimensional
points of X. If 2 € X we will denote
K2 (X) = lim K70 (U),
—

where the limit is taken over all open subsets U of X containing the point x.

Theorem 1.19. Let X be a regular scheme in ZAR. Then, there exists a spectral
sequence
Efj’q(X) = K*pfq(X)
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with

EPIX)= P K*, ,(X).
rxeX®)

Moreover, this spectral sequence is convergent (since X has finite Krull dimension). O
Observe, moreover, that, using purity, we can identify K* ,_ (X) with K_,_,(k(z)),

where k(x) is the residue field at the point z. See [34] for a proof of this theorem for
generalized cohomology.

1.3. A-structure in K-theory and absolute cohomology
A-rings and A-algebras

Recall that a A-ring with involution is a ring R equipped with a family of operators
{A\*}1>0 and an involution ¢! satisfying certain relations (see [5]). In particular, any
A-ring has a unit. Let R be a A-ring with involution, and A an R-algebra. We call A a
A-R-algebra with involution, if it is equipped with a family of operators {\¥};>; and an
involution ¥ ~! such that R @ A is a A-ring (see [54] and [46]).

A-structure in K -theory

For any N > 1, one can define a family of operators {\% }x>1 (see [37, §4])
M7 x 2o BGLy — Z x 7o BGL,

which are compatible with the inclusions BGLy_; — BGLy. Therefore, for any space
X, there are induced operators

N HT™(X,KY) - H™(X, K).
If the space X is K-coherent, we have induced operators
MNoHT™(X,K) - H™(X, K).

In the same way one can define an involution ¢ ~1.

Let S° be the simplicial pointed 0-sphere. Following [46], we will write Ko(sT) =
H°(S° K). This is a A-ring. If the site C' equals ZAR(S), we have Kq(sT) = Ko(S). A
proof of the following theorem can be found in [37] (see also [46]).

Theorem 1.20. Let X be a K-coherent space. The family of operators {\*};>1 together
with the involution 1 ~! turn H=™(X, K) into a \-K(sT)-algebra with involution. More-
over, H'(X, K) is provided with a natural augmentation

e: H'(X,K) - H(X,7Z).
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Adams operations and y-filtration

Let @ be the monoid of natural operations on A-rings with an involution. Among the
operations in @, there are the y-operations v*, k > 1, and the Adams operations ",
k € Z\ {0}. These operations are defined by the usual formulae

)= Nt k1), k31,
d}k _ )\lwk—l N (_1)]6—1)\16—1,(/}1 + (_1)k)\k _ 07 k 2 1,
and ™% = =1 o ¢*. Since these operations do not involve the unit, they are also

operations of \-algebras. By means of the y-operations we can define a filtration in the
K-groups.

Definition 1.21. Let X be a K-coherent space. Then Ff;H*m(X, K) is defined as the
subgroup of H ™ (X, K) generated by the products

O (1) 4O (z,),
where i(1)+---+i(r) > i, z; € H-™U)(X, K) with m(1)+---+m(r) = m and €(x;) = 0.
The following properties of the Adams operations are well known.

Proposition 1.22. The Adams operations respect the additive structure of K-theory,
the Loday product and pull-backs. Moreover, we have ¢F o ¥ = (*+k", O

Observe that the A-structure in K-theory involves only the product between Ky and
higher K-theory and not the Loday product. Nevertheless, in order to see that the Adams
operations are compatible with the Loday product one can argue as in [54] (see also [21]).

Eigenspaces for the Adams operations

Let us write
H™(X,K)Y ={z e H™(X,K)® Q| ¢*(x) = k'z, Yk € Z\ {0}}.
We will also write K,,(X)® = H-™(X, K)®. The following proposition is proven
in [37].

Proposition 1.23. Let X be a K-coherent space of dimension at most d. Then, for
m > 0, there is a decomposition

m4d
H™X,K)oQ=>Y H ™X,K)Y,

=
where o = min(m, 2). Moreover, we have

H™(X,K)" =Gl H™(X,K)® Q.
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Riemann—Roch without denominators

The Riemann-Roch theorem without denominators studies the effect of closed immer-
sions on the operations in K-theory. Let X and Y be regular schemes in ZAR(S), let
Jj Y — X be a closed immersion, and let us denote by N = Nx,y the class of the
normal bundle of Y in X in Ky(Y). For any operation 7 € &, let us write 7(NV,z) as
in [70, §4]. Let Z be a closed subset of Y. Using the identifications K/ (Z) = KZ(Y)
and K! (Z) = KZ(X), we obtain an isomorphism

jut KZ(Y) = KZ

m m

(X).
Theorem 1.24 (Soulé [70]). For z € KZ(Y) and T € ®, we have

7(J(2)) = ju (7(N; ).
(]

Remark 1.25. This result is generalized in [21] and [46] to a certain class of closed
immersions of spaces. Nevertheless, in these papers the schemes are assumed to be smooth
over the base S.

Direct images and the gamma filtration

Proposition 1.26. Let f : X — X’ be a proper morphism between regular quasi-
projective schemes of ZAR(S) of dimension d and d', respectively. Let Z be a closed
subscheme of X . Then, there is an inclusion

F(FEL(X)®Q) € KD (X") @ Q.
Proof. The Riemann—Roch theorem [70, 7.2] states that there are increasing filtrations
F of K] (Z)®Q and K, (f(Z)) ®Q satisfying f.(F;) C F;. These filtrations are defined
as follows. One chooses a closed immersion ¢ : Z — M, where M is an equidimen-

sional scheme of dimension n, smooth and surjective over the base S. Then, there is an
isomorphism 4, : K,,(Z) — KZ(M), and we have

FiK,(Z2)® Q=i ' (Fy K7 (M)).
We can choose M such that the inclusion i factors as Z <Z—> X (i> M. Using the Riemann—
Roch theorem without denominators (as in the proof of the independence of M in [70,
7.2, 3]) one obtains that j.(F/K/(X)® Q) = Fﬁ;_d+"K7vzl(M). This leads to

FIK(X)®Q=Fy ;K (Z)©Q

which implies the claim. O
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Absolute cohomology

The graded pieces for the ~-filtration tensored by @Q or, put another way, the
eigenspaces for the Adams operations, form a cohomology theory. By the Riemann-—
Roch theorem for higher K-theory given in [34], it is a universal cohomology. One can
define it for coherent spaces satisfying certain technical conditions. Since we will not need
it in the sequel, we will define it only for a pair of schemes.

Definition 1.27. Let X be a regular scheme in the site and let Y be a closed subset
of X. Then, the absolute cohomology groups of X with support on'Y are defined by

HE™(X, Q) = K5 (X)®.

Let us summarize the basic properties of absolute cohomology. The next theorem
follows easily from the properties of K-theory and the Adams operations.

Theorem 1.28.

(i) Let X be a regular scheme in ZAR, and let Y, Z be closed subsets of X. Then, the
product in K-theory induces a product

HT(X,Q0) ® Hj 7(X,Q() = HE R (X, Q6 + 5)).

(ii) Let f : X' — X be a morphism of regular schemes in ZAR. Let Y be a closed
subset of X, and Y’ a closed subset of X' satisfying f~*(Y') C Y’. Then, there is
pull-back morphism

£ Hyy (X,Q(0) = Hj v (X', Q(4))

respecting the multiplicative structure and turning absolute cohomology into a
contravariant functor.

(iii) Let X be a regular scheme in ZAR, and Y closed a subset of X. Then, there is a
long exact sequence

o HE(X,Q() = HY(X\Y,Q(0)) & HIHHX,Q(0) — ---

(iv) Let X be a regular scheme in ZAR, let Y, Z be closed subsets of X, and set
U = X \Y. Then, the following diagram commutes:

HR(U,Qp) ® HY £(X,Q(q)) “2% HTEH X, Qlp) ® HY 4(X.Qlq))

H (X \ (Y N 2),Qp +q)) —— HEP5HX,Qp + q))
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(v) Let f : X — X' be a proper morphism of regular, equidimensional, quasi-projective
schemes in ZAR(S) of dimension d and d’, respectively. Let Z be a closed subscheme
of X. Then, there are morphisms

fo: HY 2(X,Q(p) = HL 73 (X, Qp— d+d)).

If g : X’ — X" is another proper morphism, then (g o f). = g« o f«. Moreover, if
Z' is a closed subscheme of X', a € H} ,,(X',Q(p)), and § € H »(X,Q(q)), we
have

fo(f (@)U ) = U fu(8) € HEF 2020 (X, Qo+ g — d + ).

The Adams operations and the Gersten—Quillen spectral sequence

Since the Adams operations are defined on the level of sheaves of simplicial spaces,
they induce morphisms of Gersten—Quillen spectral sequences. Therefore, after tensoring
with Q, the Quillen spectral sequence splits as a direct sum of spectral sequences

BP0 = Koy (X)),

where EP4(X)®) C EP4(X)q is the eigenspace of 9* of eigenvalue k’. By the Riemann—
Roch theorem without denominators (see Theorem 1.24, or [70, Theorem 4]), we have
for z € X®)

K5 (X)) = Ko (k(2)) 7).

Therefore, we have the equality

EPIX0)® = @ Kooy (k@) 07,

Since we have for a field k (see [70])

Ko(k)g = Ko(k)®,
Ki(k)g = K1 (k)M and (1.29)
Ky (k) = Ka(k)?,

we obtain the following proposition.

Proposition 1.30. Let X be a regular scheme in the site. Then, the lines p = —q and
p = —q— 1 of the spectral sequence EF'9(X)qg degenerate at the term Ey. Thus there are
natural isomorphisms
EPTP(X)g Ko(x)(?)’
BN (X)g 2 K (X)),
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Proof. By (1.28) we have EI""7(X)g = EV'"P(X)®). Again by (1.28) we have for r > 2
Byl X)W = D Ka(k(2) ™ =0
zeXP—r)

This leads to the isomorphism E5 7(X)g = Ko(X)®). The same argument applies to
the line p = —q — 1. O
Note that in [70] it is also proven that the line p = —q — 2 degenerates at the term

FE5. A consequence of Proposition 1.30 is the following.

Proposition 1.31. Let X be a regular scheme in the site. Then, there are natural
isomorphisms
B} (X)g = HY'(X,Q(p),
By (X)o = HY (X, Q(p))-

1.4. Chow Groups of regular schemes
K-chains and Chow groups
Let X be a regular scheme in ZAR. Let us denote

RZ(X) =E{ (X)) = @ Kp—q(k(z)),
reX (@)

where E{""P(X) are the terms of the Gersten—Quillen spectral sequence.

Recall that Ko(k(z)) = Z, and K;(k(z)) = k*(z). Therefore, the group RP(X) equals
the group ZP(X) of p-codimensional cycles on X. Any element f € RE~'(X) can be
written as f =Y. -1 fo With f, € k*(2). The elements of RE™(X) are called K-
chains. As usual we denote by CH? (X)) the pth Chow group of X. In [68, § 5], the following
proposition is proven.

Proposition 1.32. The differential d : Rb='(X) — RE(X) in the Gersten—Quillen spec-
tral sequence is given by df = div(f) = > c xo-1 div(fe). O

Therefore, we obtain an identification
CHP(X) = RE(X)/dRE™1(X) = ES P (X).
Hence, by Proposition 1.31, we obtain a natural isomorphism
CH(X)q = HZ' (X, Q(p)).

The discrepancy in sign between Proposition 1.32 and [17, p. 365] stems from the fact
that we are using a different convention for the connecting morphism (see Remark 2.71).
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Let us write
CHP™'"7(X) = ZRr™H(X)/dRE*(X) = E§ ™V 7P(X),
where Z RP~!(X) = Ker(d : RE~!(X) — RE(X)) is the subgroup of cycles. Then, again
by Proposition 1.31, we have an isomorphism

CHP™'?(X)q = HY' ™ (X, Q(p))-

Chow groups with support
For a closed subset Y C X, we define
Rg,Y<X) = @ Kp—q(k(2)).
zeX(@ny

In particular, R;Y(X ) equals the group Z%,(X) of p-codimensional cycles on X with
support on Y. We write

CHY (X) = R (X)/dR}3! (X),

CHY '7(X) = Z RV N (X)/dRP(X).
We call CHY,(X) the Chow group of p-codimensional cycles on X with support on Y. As
before we have isomorphisms
CHY. (X)q = E5yP (X)o 2 HYy (X, Q).
CHY P (X)o = ES ' "(X)o = HYY (X, Q(p)).

Writing U = X \ Y, we have a long exact sequence
CHP~1P(U) % CHE (X) — CHP(X) — CHP(U) — 0.

A family ¢ of supports on X is a family of closed subsets of X such that, if Y, Z € ¢,
then Y U Z € . For any family ¢ of supports on X, we define
R (X) = lim B, (X),
Yecp
CHE(X) = limy CHJ, (X),
Yep
CHYMP(X) = lig CHY™ (X)),
Yep

HY (X, Q(p) = lim HY y (X, Q(p)-
Yep

We have the isomorphisms
CHE (X)g 2 HZ (X, Qp)),
CHL P (X)g = HY ' (X, Q(p)).
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Intersection of cycles on regular schemes

A method of defining products for the Chow groups of regular schemes, where no
moving lemma is available and it is not possible to use the deformation to the normal
cone technique, is given by means of the isomorphism between Chow groups and absolute
cohomology groups. In this way we can transfer the multiplicative properties of K-theory
to the Chow groups. Namely, we define a pairing

CHY (X)g ® CH% (X)g = CHY Y, (X)g
by means of the commutative diagram

CHY, (X)q ® CH(X)g ———— CHY T, (X)g

HYy(X,Q(p) © HY ,(X,Q(q)) —2= HFT2, (X, Qp + q))

Theorem 1.33 (Gillet—Soulé [35]). If X is a regular scheme of finite Krull dimension,
and Y, Z are closed subsets, then the above pairing

CHY.(X)q ® CH%(X)g — CHY LY (X)g
satisfies the following properties.
(i) It turns @y, CHY, (X)q into a commutative ring with unit [X] € CH’(X).
(ii) It is compatible with the change of support maps
CHY (X)q — CHY, (X)q,
whenever Y CY' C X.

(iii) Let y € CHY, (X)g, z € CH%L(X)q with Y = suppy, Z = supp z, and Y, Z having

proper intersection. Then, their intersection product y -z € CH’;,ngZ(X o Is given

by Serre’s Tor-formula
vi=| 2 (1 o (T 0re.02.) ) 1),
TEYNZ Niz0
where o , denotes the length of a Ox ,-module.
O

It is clear from this result that, if ¢ and ¢ are two families of supports, then there is
an induced pairing
: +
CHE(X)o ® CHZ}(X)Q — CHZO?ZJ(X)@’
where ¢ N is the family of supports given by

Ny ={YNZ|Y €y, Zec}.
We will also need products between CH? ~'*(X) and CHY(X).
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Theorem 1.34. Let X be a regular scheme, let Y, Z be closed subsets of X, and set
U = X \Y. Then, there exists a well-defined pairing

CHP™'?(U)g ® CHY(X)q = CHERL (X \ (Y N 2))g
such that the diagram

CHP™?(U)g ® CHY(X)g —— CHy i, P (X \ (Y N Z))g

ml | |

CHY. (X)g ® CHZ(X)qg CHY L (X)g

commutes.

Proof. The pairing is defined by imposing the commutativity of the diagram

CHP ™7 (U)g @ CHY (X )g —— H' ™' (U, Qp)) @ H3! (X, Q(q))

CHIFG M PH (X O\ (Y M Z))g — = HE (X (Y N 2),Q(p + q))

The compatibility of the pairing with the connection morphism now follows from Theo-
rem 1.28 (iv). O

For a Kj-chain f € Rb=!(X), put y = div(f), ¥ = suppy, and U = X \ Y; observe
that f determines an element [f] € CH?~"?(U). Let z be a g-codimensional cycle with
Z = supp z. By the above theorem, there is a well-defined element

/][] € CHyY, PH(X A\ (Y N 2))e.

Using that REZY (X \ (Y N Z)) is a direct summand of R~ (X), the above theorem

implies the following corollary.

Corollary 1.35. Assume that UNZ # 0. Then, there exists a K1-chain g € Rgig_l (X)o,

determined up to dRZigd(X)Q +RZIZS}HZ(X)@, such that its class in CHERO P (X0

(Y NZ))g is equal to [f] - [z]. Moreover, we have

[div(g)] = [div(f)] - [2] (1.36)

in the group CHYYL (X)q. O

Remark 1.37. If we have codim(Y N Z) = p + ¢ in Corollary 1.35, the equality
CHYYO (X) = 78+ (X) shows that identity (1.35) holds true on the level of cycles, i.e. we
have

div(g) = div(f) - 2.
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Pull-back

Here we recall the properties of the pull-back of algebraic cycles and K;-chains by
a quasi-projective morphism of regular schemes. Let us start with the case of cycles.
Since any such morphism can be factored as the composition of a closed immersion and
a flat morphism, we will discuss both cases separately. For flat morphisms the pull-back
is defined as in [33, 1.7], and for closed immersions one uses the deformation to the
normal cone technique (see [36, 4.4.1]). Hence one can define the inverse image for a
quasi-projective morphism using any factorization into a closed immersion followed by a
flat morphism, and then proves that the result is independent of the chosen factorization.
The main properties we need are those in the following theorem.

Theorem 1.38. Let f : X — Y be a quasi-projective morphism of regular schemes.
Let o be a family of supports on Y, and let ¢ = f~1(p) be the corresponding family of
supports on X.

(i) Assuming that f = goi = hoj, where i, j are closed immersions and g, h are flat
morphisms, we have
Z*Og*:j*oh*

Therefore, for all p > 0, there is a well-defined homomorphism of Chow groups

[ CHE(Y) — CHZ(X).
(ii) The map f* induces a ring homomorphism

f* @ CHP(Y)g — €D CHP (X)q.

p=0 p=0
(iii) The pull-back map f* : CH?(Y)qg — CHP(X)q corresponds via the isomorphisms
CH'(Y)o = HZ(Y,Q(p)) and CH(X)g = H(X,Q(p))
to the pull-back defined in absolute cohomology.
(iv) If g : Y — Z is another morphism, then we have (go f)* = f* o g*.

O

To define the pull-back for K;-chains, one observes first that the Gersten—Quillen spec-
tral sequence is contravariant for flat morphisms. Moreover, in [34], there is a definition
for a pull-back of K;-chains for closed immersions using the deformation to the normal
cone technique. The next result follows from [34] and [36, 4.4.2].

Theorem 1.39. Let f : X — Y be a quasi-projective morphism of regular schemes. Let
f = goi be a factorization of f into a closed immersion i followed by a flat morphism g.
Let U CY be an open subset and Z C U a closed subset. Let us write U’ = ffl(U) and
Z'=f"Y2).
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(i) For any p > 0, there is a homomorphism
f*=i*og": CHY VP(U) — CHY, VP (U")
which does not depend on the factorization chosen.

(ii) Let us denote by ¢ the connection morphisms

— §
CHY P(U) & CHY, ,(Y),

— §
CHY, "7 (U') = CHE,, ,(X).

Then, we have f*od = o f*.

(iii) The induced map f* : CHY “P(U)q — CHY, "P(U")q corresponds via the isomor-
phisms

CHY “(U)g = HY,'(U,Q(p)) and CHY, '*(U')q= HZ, (U, Q(p))
to the pull-back defined in absolute cohomology.

Proof. The definition of i* is given in [36, 4.4.2]. By definition, to show that f* is
compatible with the connection morphisms and with the pull-back in absolute cohom-
ology, it is enough to treat the flat morphisms and the closed immersions separately.
For flat morphisms the result is clear. The compatibility with the connection morphisms
for closed immersions is proven in [36, 4.4.2]. To prove the compatibility with the pull-
back in absolute cohomology, one observes that all the steps in the definition of i* are
compatible with the isomorphism with absolute cohomology. ]

Push-forward and the projection formula

Let f : X — X’ be a proper morphism of regular, equidimensional, quasi-projective
schemes in ZAR/(S) of relative dimension d. Then, the Gersten—Quillen spectral sequence
is covariant for proper morphisms (see [34]). In particular, for any closed subset Y C X
we have morphisms

—d
f«: CHY(X) — CH?(Y)(X')7

fo: CHY VP (X) — CHEA7HP4(X0),

These morphisms satisfy the following properties.

Theorem 1.40. Let f : X — X’ be a proper morphism of regular, equidimensional,
quasi-projective schemes in ZAR(S), of relative dimension d.

(i) Let Y be a closed subset of X'. Let us write U/ = X’ \Y and U = X \ f~1(Y).
Then, the following diagram commutes:

_ 8
CHP 1’p(U) —_— CHijcfl(y)

f*l lf*

CHP 17 (U') —— CHY(X')

(X)
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(ii) If g : X’ — X" is another proper morphism of regular, equidimensional, quasi-
projective schemes in ZAR(S), we have

(gof)e=g«o fu

(iii) The direct image of cycles and K-chains is compatible with the direct image in
absolute cohomology.

(iv) For a € CH?(X’) and 8 € CHY(X) we have
fo(f*(@) - B) = a- fo(B) € CHPTTI(X")qg.

Proof. The first and second statement follow from the covariance of the Gersten—Quillen
spectral sequence. The third statement follows from the Riemann—Roch theorem, and
the fourth statement follows from the third and the projection formula for absolute
cohomology. O

1.5. Gillet cohomology and characteristic classes

In this section we will recall some facts about characteristic classes from higher K-
theory to a suitable cohomology theory. We will follow the axiomatic approach of [34];
hence, we will ask the cohomology theory to satisfy all the properties stated in [34].
Any such cohomology theory will be called a Gillet cohomology. Note however that the
definition of Gillet cohomology given here is slightly different from the definition in [34].

Gillet cohomologies

We fix a field k. Let 'V be the category of smooth schemes over k (recall that by scheme
we mean a noetherian, separated scheme of finite Krull dimension). Let V, be a category
of schemes and proper morphisms that contains all closed immersions Y — X with X in
V. Let C be the big Zariski site of the category V.

Definition 1.41. A Gillet cohomology is given by the following data.

(1) A graded complex of sheaves of abelian groups G*(x) in the site C, together with
a pairing in the derived category of graded complexes of abelian sheaves on C'

G'(5) $T"(x) = G°(+),

which is associative, (graded-)commutative, and has a unit. Given such a complex
G = G*(x), for each pair (Y, X), with X in V and Y a closed subscheme of X, we
define the cohomology groups of X with coefficients in G and support in Y by

Hy (X,6(5)) = Hy (X, 6" ()

Since these cohomology groups are defined as the hypercohomology groups of a
multiplicative Zariski sheaf, they satisfy the usual multiplicative and functorial
properties (see [34, Definition 1.1]).
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(2) A homology theory, that is, a covariant functor from the category V. to bigraded
abelian groups
X s @) Hi(X,9(7)).
>0
JEZ
This homology—cohomology theory has to satisfy the properties (i)—(xi) of [34, Defini-
tion 1.2] with d = 2. Since we are distinguishing between objects of V and of V., we
have to specify to which category the objects in question in properties (i)—(xi) belong:
in (i), (ii), (viii), X,Y € V,; in (iii), (v), X € V, Y € V,; in (iv), X € V,; in (vi), (vii),
X,Y €V; and in (ix), (x), X € V. In addition to Gillet’s axioms, following Beilinson [4],
we will also assume

(xii) H(-,G(j)) =0 for all i < 0 and all j € Z.

Definition 1.42. A Gillet complex over k is the graded complex of sheaves of abelian
groups G = G*(x) of a Gillet cohomology.

Remark 1.43. The main discrepancy between the definition here and that of [34] is
that the objects of V and of V, are not the same. The reason for this is that we want
a Gillet complex as a sheaf only over smooth schemes. On the other hand, we want to
have cycle classes for arbitrary subschemes. Therefore, we need the homology also to be
defined for singular schemes.

Purity

Property (vi) of the Gillet axioms includes the following purity condition: If (X,Y") is
a pair of schemes in C with Y a closed subscheme of X of pure codimension p, then the
natural map

H'(Y,G(j)) = HyP*P(X,G(j + p))

is an isomorphism.
This purity condition, together with the vanishing assumption (xii), implies the fol-
lowing proposition.

Proposition 1.44. Let G be a Gillet complex over k, and X a regular scheme in
ZAR(Spec(k)). For any closed subset Y of X of codimension greater or equal to p,
we then have

Hy (X,G(p)) =0

for all i < 2p. (I

Sheaf cohomology as generalized cohomology

Usual sheaf cohomology of abelian sheaves can also be realized as generalized cohom-
ology. The reader is referred to [11], [34], [21] and [46, Appendix B] for details.

Given a cohomological complex of abelian groups G* indexed by non-positive integers,
the Dold-Puppe functor associates to it a simplicial abelian group K(G) pointed by 0
such that

hHG*) = (K (G),0).
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Given a general cohomological complex G, we will denote by o, the béte filtration
(see §2.4). Then, we can define an infinite loop spectrum

K(G)n = K(0o(GIN])).

We can recover all the cohomology groups of G from the stable homotopy groups of this
spectrum.

We can sheafify the above construction and then associate to each complex of abelian
sheaves G an infinite loop spectrum of spaces K(G). Moreover, we have the following
proposition (see [46]).

Proposition 1.45. Let G be a bounded below abelian sheaf over the site C. Then, we
have for every X in C,

(X, K(G)) = Hyar (X, G).

Characteristic classes

To a Gillet cohomology theory, one can associate a theory of characteristic classes from
higher K-theory (see [4,34]). These characteristic classes can be constructed on the level
of spaces (see [21,34]). More specifically, we have the following result.

Theorem 1.46. Let @jez G*(j) be a Gillet complex over k. Moreover, assume that the
sheaves G*(j) are injective for all i, j. Then, for every j > 0, there is a Chern class map
of spaces
¢ K = K(G(5)[24])-
These maps induce morphisms
¢j - Hip (X, K) > HE"(X, K(G(7)) = HyAR (X, 6(7))
for all spaces X.

Proof. The injectivity of G'(j) implies that G*(j) are pseudo-flasque complexes
(see §1.2). This result is a particular case of [46, Theorem B.3.7]. g

This theorem implies in particular that there is a definition of Chern classes with
support. That is, if Y is a closed subscheme of X, then there are classes

¢f Ky (X) = HY™"(X,G(5).
Moreover, these Chern classes are natural and satisfy the following proposition.
Proposition 1.47. Let Y be a closed subset of X and U = X \'Y. Then, the Chern
classes form a morphism of exact sequences

Kp(U) —— s KY

Km(X) m—1

y .| ;|

H2= (X, G(j)) ——= H¥"(U,G(j)) —"> HY " (X,G(j)) —> -

(X)
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Bloch—Ogus spectral sequence

Since the set of axioms in [34] include in particular all the axioms of [6], we can form
the Bloch—Ogus spectral sequence associated to the cohomology G. Moreover, by the fact
that characteristic classes are defined on the level of sheaves, characteristic classes induce
morphisms from the Gersten—Quillen spectral sequence of K-theory to the Bloch—-Ogus
spectral sequence of G-cohomology (see [34, §3]).

Let z € X, and let ¢ : {x} — X be the inclusion. We will write

H'(z,6(j)) = lig H'({z} N U,G(3)),
U

H,(X,6(5)) = lig Hiw (X,G(5),
U

where the limit is taken over all open sets U of X containing x. By the purity property
of a Gillet cohomology, ¢ induces isomorphisms

w: H'(2,6(j)) = Hy 7P (X,6(j +p)).
The Bloch—Ogus spectral sequence is a spectral sequence
EP(j) = H" (X, G(j))
with

EPU(j) = P HEYUX.G()))

zeX(P)

B H @6 - ).

zeX®)

1%

Characteristic classes induce morphisms between the Gersten—Quillen spectral sequence
and the Bloch—Ogus spectral sequence (see [34, §3]).

Proposition 1.48. For each Chern class c; there is a morphism of spectral sequences
z Sav] 2j+p+q ;
B K2, (X) == P HTTUXGG)).
zeX(®) zeX ()
Moreover, this morphism is contravariant for flat morphisms. ([l

We can form a commutative diagram

T
@Cj

@mGX(F) Kfpfq(X) @meX(P) H§j+p+q(X7g(j))

@zEX(P) Kfp*q(k(m)) E— @zexm HQj_p+q(33a g(j - p))

where the bottom arrow is determined as a consequence of the Riemann—Roch theorem
without denominators (see [34, Theorem 3.9]).
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Lemma 1.49. Let X be a smooth, noetherian k-scheme of finite Krull dimension. Let
x € X and let n, € H°(x,G(0)) be the fundamental class. Then, there is a commuta-
tive diagram

K*,_(X) —2 s g2ivia(x,G(j))

—p—q
K- g (k(2)) —> H¥ (2, G(j - p))
such that o € K_,,_,(k(x)) satisfies
(PG -1,
()= G—p—1) G-rl):

if j > p,

Classes for cycles and Ki-chains

For the construction of arithmetic Chow rings we are mainly interested in the induced
classes of algebraic cycles and K;-chains.

Definition 1.50. Let 2 € X and let + : {x} — X be the inclusion. For a € Ky (k(x)),
we will denote by clg(«) the class
clg(a) = u(vy(a)) = ultk(a)n,) € HZP(X,G(p)).

Furthermore, for f € K;(k(x)), we will denote by clg(f) the class

clg(f) = u((=1)Pvp1 (F)/p)) = ulcl () € HZH(X,G(p +1)).
By linearity, we obtain well-defined morphisms
cg: RE(X) — @ H(X,G(p)),
reX (@)
dg:REVX)— P HFTHX.G().

reX(r—1)

These classes should be interpreted as the Chern character. Namely, using the iso-
morphism between Chow groups and absolute cohomology, the classes of Definition 1.50
induce classes between absolute cohomology groups and the Gillet cohomology groups
which agree with the Chern character.

Proposition 1.51. There are commutative diagrams

CH"(X) ——— H¥(X,Q(p))

H?*(X,G(p)) — H**(X,G(p))o
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and
CHP™'P(X) —— HY (X, Q(p))

H*~1(X,G(p)) — H* (X, G(p)o

Proof. This follows from Lemma 1.49 and the power series expansion of the Chern
character. ([
Basic properties of the morphism clg

The next result follows from the purity of a Gillet cohomology, Proposition 1.47 and
Proposition 1.32.

Proposition 1.52.

(i) Let y € @ cxm Ko(k(z)) be a p-codimensional cycle with Y = suppy. Then,
clg(y) determines a well-defined class clg(y) € H}Z,p(X, G(p)).

(ii) For a Ki-chain f € RE~Y(X), put y = div(f), Y =suppy, and U = X \'Y. Then,
clg(f) determines a well-defined class clg(f) € H**~Y(U,G(p)).

(iii) With f as in (ii), the equality
clg(div(f)) = dclg(f) € HY' (X, G(p)
holds, where 0 is the connection morphism
6 H7H(U,G(p)) — HY (X,G(p))-
(iv) If h € Rb=*(X) is a Ky-chain, then the class clg(dh) vanishes in the group
H*~1(X,G(p)).
O

Corollary 1.53. Let ¢ be any family of closed supports. Then, the morphisms clg induce
morphisms

Clg : CHi(X) — Hip(ng(p))v
clg : CHﬁ_l’p(X) — Hip_l(Xag(p))-

Moreover, if Y C X is a closed subset with U = X \ 'Y, then there is a morphism of exact
sequences

CHP~1?(U) CHY(X) CHP(X) CH?(U) ——0

| | | |

H*~Y(U,G(p)) — HY(X,G(p)) —= H*(X,G(p)) — H**(U.G(p))
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Product, pull-back and push-forward

Let us summarize the compatibility properties of characteristic classes from Chow
groups with products, inverse images and direct images. Recall that in this section all
schemes are defined over a field.

Proposition 1.54. The morphism

clg : (P CHP(X) — P H™(X,G(p))

p=0 p=0
is multiplicative. O
Proposition 1.55. For a Ki-chain f € Ry~'(X), put y = div(f), Y = suppy, and
U= X\Y; for z € R(X), put Z = supp z. Then, for any K,-chain g € Rgig_l(X)@
representing [f - z], the equality
clg(9) = clg(f) - clg(2) € Ht 7" (X \ (Y N 2).G(p+a))o
holds. Moreover, we have clg(div(g)) = clg(div(f)) - clg(z). O

Proposition 1.56. Let f : X — Y be a quasi-projective morphism of regular schemes.
Let ¢ be a family of supports on Y, and let 1) = f~1(p) be the corresponding family of
supports on X. Then, we have a commutative diagram

CHZ(Y) —2» H2(Y,G(p))

f*i lf*

cl
CHY(X) —2> pr”(X, G(p))
Furthermore, let U C Y be an open subset and Z C U a closed subset. Let us write
U' = f~Y(U) and Z' = f~1(Z). Then, we have a commutative diagram

cl

CHY "P(U) ——= HP ' (U,G(p))
- l if*
CHY P (U7) —Z B U, G(p)
[

Proposition 1.57. Let f : X — X’ be a projective morphism of regular, equidimen-
sional schemes of relative dimension d. Let Y be a closed subset of X. Then, the diagrams

CHY (X) — = HZ (X, 6(p))

/| B

CHY ) (X) —22s B222(X7 G (p — d))

)
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and
_ cl _
CHY'P(X) —————= HZ> (X, G(p))
A B
—d—1.p— cl —92d—
CH?(}[}) P d(X/) g>H;€y)2d 1(X',g(p—d))
are commutative. |

2. Some topics from homological algebra

2.1. k-iterated complexes

In this section we will introduce the notion of k-iterated complexes and discuss its rela-
tionship with k-complexes. Let R be a commutative ring and A the category of R-
modules.

k-complexes and k-iterated complexes

Definition 2.1. A k-complex A = (A" */dy,...,d) is a k-graded R-module A
together with k& endomorphisms dy, ..., d; of multi-degrees

(1,0,...,0),...,(0,...,0,1),
respectively, such that for all 7, j
Z=0, did; =—d;d;.
We will denote by k-C*(A) the category of k-complexes which are bounded from below,
i.e. there is an integer m such that A"" =0, whenever n; <m (i =1,...,k).

Definition 2.2. A k-iterated compler A = (A**,dy,...,dy) is a k-graded R-module
A together with & endomorphisms dy,...,d; of multi-degrees

(1,0,...,0),...,(0,...,0,1),
respectively, such that for all ¢, j
d? =0, d;d; = d;d;.

7

We will denote by (CT)*(A) the category of k-iterated complexes which are bounded
from below.

By convention, in the sequel all k-complexes and k-iterated complexes will be bounded
from below, even if it is not stated explicitly.

Definition 2.3. Let Cy : (CT)*(A) — k-C*(A) be the functor given by associating to a
k-iterated complex (A™ ™ d;,ds,...,ds) the k-complex

(A dy (<L), (<L),

This functor is an equivalence of categories.
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The simple complex
Definition 2.4.

(i) Let A = (A™>" dy,dg,...,d;) be a k-complex. Then, the associated simple
complezr s(A) is defined by

s(Ar= @ A, d=) ds

nitetng=n i=1

(ii) Let A = (A™»" d;,ds,...,dg) be a k-iterated complex. Then, the associated
simple complex is defined by

S(A) = s(Cu(A)).

We have defined the simple complex of a k-iterated complex by contracting all the
degrees into one degree. Sometimes it will be also useful to contract only some of the
degrees making a partial simple complex.

Definition 2.5. Let A = (A% * da1,...,dax) be a k-iterated complex with k& > 2.
We denote by s; ;1+1(A) the (k — 1)-iterated complex given by

5j7j+1(A)n1""’nk_1: @ AT = 1P s e — 1

ptg=n;
with differentials
daz, if 1 < j,
diz = ¢dar+ (=1)"dainz, ifi=4,
dait17, if i > 7,

where © € ATk

Signs

The simple complex of a k-iterated complex depends on the choice of an ordering of
the degrees. If we choose a different ordering, we obtain a naturally isomorphic complex.
In order to describe explicitly these isomorphisms it suffices to treat the case of the
transposition of two adjacent degrees.

Definition 2.6. Let T} ;1 be the functor on (CT)*(A) to itself given, for A € (C*)*(A),
by

Ti l_+1(A)n1w~,m7m+17m,nk = AT i1, T
Proposition 2.7. Let A be a k-iterated complex. The map
s(A) = s(Thi11(A))

given by
T (_1)nln1+1x (.’E c An1,.‘.7nk)

is an isomorphism of simple complexes. (]
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Ezxternal product

Definition 2.8. Let A be a k-iterated complex, and let B be an [-iterated complex.
Then, the external product AX B is the (k + [)-iterated complex with groups

(A |Z B)n1:‘~~7nk+l — An17~~~gnk ® Bnk+1,m,nk+z’

and differentials

j =

d; ®id, it i <k,
id®d;—k, ifi>k.

The definitions of the functors C; and of the simple complex of a k-iterated complex
are chosen in order to have compatibility with the usual sign convention in the tensor
product of complexes.

Lemma 2.9. Let A be a k-iterated and B be an [-iterated complex. The map
s(A) ® s(B) = s(AX B)
given by a ® b — a ® b is an isomorphism of complexes. O

Tensor product

Let us show how to define the tensor product in the category of 2-iterated complexes.

Definition 2.10. Let A, B be a pair of 2-iterated complexes. Then, the tensor product
A® B of A and B is the 2-iterated complex

A ® B= 81’283’4(T2,3(A X B))

Remark 2.11. This definition is justified by the fact that A ® B satisfies the universal
properties of a tensor product of A and B in the category of 2-iterated complexes. In
particular, there are canonical isomorphisms AQ B = B®A and AQ(B®C) = (A®B)®C;|
moreover, if A, B, C, D are complexes of R-modules, then the identity map on the level
of elements induces an isomorphism

(AXB)® (CR D)= (A®C)R (B ® D).

Ezamples

Let us discuss some fundamental examples of 2-iterated complexes.

Example 2.12. Let f : (A*,d4) — (B*,dg) be a morphism of complexes. Then, we
can consider the 2-iterated complex (f**,d’,d"”) defined by

o4 = A9, fhe = BY, d = f, d"| o =da, 4’| 1.~ = dp.

By abuse of notation we denote this 2-iterated complex by f. By definition, the simple
complex s(f) = s(A, B) of f is given by s(f) = s(C2(f**)). Explicitly, we have

S(f)n = S(AvB)n =A"® Bnilv d(a7b) = (dACL, f(a) - de)
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Definition 2.13. Given a complex (A*,d), and an integer k, the shifted complex A[k]
is given by A[k]" = A"T* with differential (—1)*d.

Remark 2.14. Recall that the mapping cone of a morphism f : A — B of complexes is
defined as
cone(f)" = A" @ B", d(a,b) = (—daa, f(a) + dgb).

Therefore, we have s(f) = cone(—f)[—1].
Example 2.15. Let f : A — B and g : B — C be morphisms of complexes with
go f=0. We may consider the diagram
¢=A-1B-20)

as a 2-iterated complex (£**,d’,d"”), where the groups are

Qa=ar,  ga=pl i,
the differential d’ is either f or g and the differential d” is the differential of the complexes
A, B or C. By abuse of notation, we denote this 2-iterated complex by &.
Proposition 2.16. With the notation of Example 2.15, let + : A — s(—g) be the

morphism given by v(a) = (f(a),0). Then, there is a natural isomorphism of complexes

5(€) = s(A = s(—g))

given by (a,b,c) — (a, (b, c)). O

The simple complex of a tensor product

For the rest of this section f; : Ay — B; and fs : Ay — By will be morphisms of
complexes. Considering these morphisms as 2-iterated complexes as in Example 2.12, we
have by Definition 2.10

f1® fo=s12834(T23(f1 W fa)). (2.17)

This 2-iterated complex is naturally identified with the 2-iterated complex associated to
the diagram

(f1®id,id ® f2)
T

Bi® Ay ® A @ By —=L2TNTC . B @B,

= (A1 ® As —d @4 hieid ) (2.18)

as in Example 2.15.

Remark 2.19. Note that, if we consider f; : Ay — By and fy : Ay — By as morphisms
and not as 2-iterated complexes, then fi ® fo is the morphism fi1® fo : Ay ®As — B1®DBs>.
It will be clear from the context which point of view is adopted in each case. If there
is a danger of confusion, we will point out whether f; ® fo is a 2-iterated complex or a
morphism.
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Proposition 2.20. There is an isomorphism of complexes

s(f1) @ s(f2) = s(f1 @ f2)
given by
(a1,b1) @ (az,bs) = (a1 @ ag, (by @ az, (—1)"a; @ ba), (=1)""1b; ® ba), (2.21)
where (a1,b1) € s(f1)" and (a2, bs) € s(f2)™.

Proof. By Lemma 2.9, we have an isomorphism s(f1) ® s(f2) = s(f1 X f2). Since s(f1 X
f2) = s(T>3(f1 X f2)) by Proposition 2.7, and since s(T 3(f1 X f2)) = s(s1,2534(T23(f1 X
f2))), the existence of the claimed isomorphism follows by Definition 2.10 of f; ® fs.

Let us compute this isomorphism explicitly: for this we take (a1,b1) € s(f1)" and
(az,b2) € s(f2)™. Viewing aq, by, respectively ag, ba, as elements of the 2-iterated complex
f1, respectively fa, the elements a1, b1, aa, by have bidegree equal to (0,n), (1,n — 1),
(0,m), (1,m — 1), respectively. Then, the element (a1,b1) ® (az,b2) € s(f1) ® s(f2) is
mapped to the element

a1 ®@ag + b1 @ag + a1 @ba + b1 @ by

of s(f1 X f3), where the summands have the following 4-degree:

element 4-degree

a1 ® ag (0,m,0,m)

b1 ® as (I,m—1,0,m)
a1 ® by (0,n,1,m—1)
by @b | (IL,n—1,1,m—1)

Applying T5 3 to f1 X fo, the latter element is mapped to
a1 ®az +by @az + (=1)"a1 @ by + (—=1)""1by @ b,
which by the identification (2.17) is mapped to the element claimed in formula (2.20). O

Commutativity of the external product

The following observations will be needed in the discussion of commutativity and
associativity of the product in relative cohomology defined in the next section.

Proposition 2.22. There is a commutative diagram of complexes

s(f1) @ s(fo) —— s(f1 ® fa)

s(f2) ® s(f1) NN 5(f2 ® f1)

where o and (31 are the isomorphisms determined in (2.20), s is given by

az((a1,b1) ® (az,b2)) = (—1)"" (a2, b2) ® (a1,b1), (2.23)
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and (3, is given by

Ba(a1 @ az, (b1 ® a2, a1 ® ba), by ® ba)

= ((-D)"™az ® ar, (1) Dby @ a1, (—1) " D™ay @ by), (=1)"™ " ""by @ by)
(2.24)

with deg(a1) = n, deg(by) =n — 1, deg(az) = m and deg(bs) = m — 1.

Proof. First we note that 3y is well defined by Proposition 2.20. The commutativity
can now be checked directly. The signs in the definition of the morphisms as and (5 are
obtained as in the proof of Proposition 2.20. O

Associativity of the external product
Furthermore, let f3 : A3 — Bs be a third morphism of complexes, and put ¢; =
fi®ideid, ¢2 = id® fo ® id, ¢3 = id ® id ® f3. Then, the 2-iterated complexes
(fi ® f2) ® f3 and f1 ® (f2 ® f3) are both naturally identified with the 2-iterated
complex associated to the diagram
A @A ®A3 25 B @A, ® A3 ® A1 ® Bo ® A3 ® A ® A3 ® Bs
%, BI@®By® Ay ® B1 ® Ay ® By® A, @ By ® By

%, B, ® By ® B, (2.25)
where

61 (Cl) = (¢1a7 (ZSQCL, ¢3a’)7
d2(a,b,c) = (10 — ¢2a, p1¢c — P3a, pac — P3b),
d3(a,b,c) = p3a — Ppab + ¢1c.

In the sequel we will denote any of the two 2-iterated complexes (f1 ® f2) ® f3 or f1 ®
(f2@ f3) by f1 ® fa® fs.

Proposition 2.26. There is a commutative diagram of complexes

s(f1) @ s(f2) ® s(f3) —— s(f1 ® f2) ® s(f3)

Mi &2

(1) @ 5(f2® fi) — 2> 5(f1 @ fo® f3)

where a and «e are isomorphisms induced by (2.20), 3 is given by

Bi((a,0) @ (¢, (d,e), f)) = (a®¢c, (b@ ¢, (-1)"a®d, (-1)"a @ e),
()" @d (-1)" e a® f),bo f), (2.27)
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with n = deg(a,b), and (2 is given by

62((a7 (b7 c)? d) ® (67 f)) = (a' ®e, (b ®e cRe, (_1)na ® f)7
(d@e,(-1)" @ f,(-1)" e f),(-1)" 2d® f), (2.28)

with n = deg(a, (b, ¢), d).

Proof. The commutativity can be checked directly. The signs in the definition of the
morphisms 3; and (3> are obtained as in the proof of Proposition 2.20. ([

2.2. Relative cohomology groups
Relative cohomology
Definition 2.29. Let f : A — B be a morphism of complexes. Then, the relative
cohomology groups (of the pair A, B) are defined by
H*(A,B) = H*(s(f))-

For a cycle (a,b) € s(f)™ we will denote by [a,b] its class in H"(A, B). Observe that a
cocycle of s(f) is a pair (a,b) with dga = 0 and dgb = f(a). Moreover, the subspace of
coboundaries is generated by elements of the form (d4a, f(a)) and (0,dgbd).

Natural maps

There are two natural maps relating the simple s(f) of a morphism f : A — B with
the underlying complexes A, B:

a:s(f)— A, given by (a,b) — a,
and

B:B — s(f)[1], given by b— (0,b).

We will denote also by « and 3 the corresponding morphisms for the cone given by the
same formulae.

Distinguished exact triangles

Given a short exact sequence of complexes there are two possible choices for the con-
necting morphism; one is the opposite of the other. To choose the sign of the connecting
morphism is equivalent to choose a set of distinguished exact triangles.

Given a morphism of complexes f : A — B, one has chosen in [26, p. 269] the exact
triangle

AL B Z cone(f) =% Al1] (2.30)
as a distinguished exact triangle.

There are two basic principles that can be applied to obtain a distinguished exact
triangle from another. The first one is that any exact triangle isomorphic (in the derived
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category) to a distinguished exact triangle is also distinguished. For instance, by means
of the isomorphism cone(f) 2 s(f)[1] given by mapping (a,b) to (—a,b), we find that
the exact triangle

A5 B2 s(nn) 2 apy (2.31)

is also distinguished. As another example we can change the sign of two out of the three
morphisms of a distinguished exact triangle, and the resulting exact triangle will again
be distinguished; this results from the following isomorphism of exact triangles

A—>pB—s0—"2
idl —idl idi
A—%p—% o0

The second principle is that a distinguished exact triangle can be shifted by one and the
resulting exact triangle is again exact provided that the sign of one of the morphisms is
changed.

Applying these two principles to the distinguished exact triangle (2.29), we see that
the exact triangles

s(f)y »ALp =2 (2.32)
s(-f)»aLBZ. .. (2.33)

are also distinguished. We note that these exact triangles are isomorphic by means of the
isomorphism
s(f) = s(—=f), given by (a,b) — (a,—b). (2.34)

Kernel, cokernel and simple complex of a morphism of complezes

Let
OHALB&C%O

be a short exact sequence of complexes. The sign of the connecting homomorphism § is
determined by the isomorphisms (in the derived category) of exact triangles

Ao B s(p1)
idl idl ﬂl (2.35)
A ! B g C 5
with 7(a,b) = g(b), and
s(=g) > B—= 0 s
1l (236)
A f B g C S ..

with ¢(a) = (f(a),0).
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Definition 2.37. The morphism 7 will be called the simple-cokernel quasi-isomorphism,
and the morphism ¢ will be called the kernel-simple quasi-isomorphism.

The sign of the connecting morphism determined by the above isomorphisms is given
as follows. If ¢ is a cycle in C™ satisfying ¢ = ¢g(b) with b € B™, then we have

§(c) = f~1(dgb). (2.38)
Remark 2.39. Observe that the above connecting morphism is minus the connecting
morphism considered in [17]. This forces us to adjust many of the signs.
The connecting morphism in relative cohomology
Since the exact triangle (2.31) is distinguished, we are led to the following definition.

Definition 2.40. Let f : A — B be a morphism of complexes. The connecting homo-
morphism in relative cohomology is the morphism

§: H"Y(B) - H"(A, B)
induced by the natural map —g.

Split exact sequences

Let
O%ALB&C%O

be a short exact sequence of complexes. Assume that the short exact sequence
0 A" LB gm0

is split for all n. Thus there are sections ¢ : C™ — B"™ such that g o 0 = idg». These
sections allow us to give a quasi-inverse of the simple-cokernel quasi-isomorphism 7 and
the kernel-simple quasi-isomorphism ¢.

Proposition 2.41. Let
0-4LBS 00

be a short exact sequence as above such that for each n there is a section o : C™ — B"
of g. Then, we have the following statements.

(i) The map ' : C — s(f)[1] given by
/() = (f7(dpo(c) — o(dce)), o(c))

is a morphism of complexes, and satisfies m o' = id¢ and (' o ~ idg(fy[), where
~ means homotopically equivalent.

(ii) The map «' : s(—g) — A given by
'(b,c) = f7H(b—a(g(b)) — o(dce) + dpa(c))

is a morphism of complexes satisfying n' o1 = ids, and v o 7’ ~ idg(_4), where ‘~’
means again homotopically equivalent.

O
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Change of complex
The following result is obvious. We quote it for future reference.
Proposition 2.42. Let f: A — B and g : B — C be morphisms of complexes such that

g is a quasi-isomorphism. Then, there is a natural quasi-isomorphism s(f) — s(gof). O

De Rham cohomology with support

Example 2.43. Let X be a differentiable manifold and Y a closed subset of X. Let us
denote by E(X) the complex of C-valued differential forms and by o : E(X) — E(X\Y)
the restriction morphism. Then, the relative de Rham cohomology groups of the pair
(X, X \'Y) are the cohomology groups of the simple s(o). By standard arguments in
sheaf theory these groups can be naturally identified with the cohomology groups of the
constant sheaf C with support in Y, denoted by Hy (X, C). Now let Z be another closed
subset of X and j the morphism

JEX\Y)eEX\Z)—>EX\(YUZ))

given by j(w,n) = —w+n. The restriction of differential forms induces the Mayer—Vietoris
sequence

0= EX\(YNZ) > EX\Y)eEX\2) L EX\(YUZ)) -0,

where the first map assigns to w the pair (w,w). In this case the kernel-simple quasi-
isomorphism of Definition 2.37 is the quasi-isomorphism

L E(X\ (Y N Z)) = s(—j). (2.44)

Using the quasi-isomorphism (2.43) together with Proposition 2.42, we obtain an isomor-
phism

Hyly (X,C) = H" ™ (E(X), s(j)). (2.45)

Using partitions of unity and Proposition 2.41, one can construct a quasi-inverse of the
kernel-simple quasi-isomorphism ¢, hence an inverse of the isomorphism (2.44).

2.3. Products in relative cohomology
FEaxternal product

If A and B are complexes of R-modules, there is a well-defined external product
H*(A)® H*(B) - H*(A® B).
In particular, there is an external product in relative cohomology

H"(s(f1)) @ H™ (s(f2)) = H""™(s(f1) @ s(f2)).
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Proposition 2.46. The external product in relative cohomology can be identified with
the pairing
H"(s(f1)) @ H™(s(f2)) = H"™ (A1 @ Ay, s(id @ — f1 @id))
given by formula (2.20).

Proof. The result is a direct consequence of Proposition 2.20, the identification (2.17),
and Proposition 2.16. O

Cup product

We have defined an external product in relative cohomology. Moreover, if there is a
product defined on the level of complexes, then we obtain a cup product in relative
cohomology.

Theorem 2.47. Let

id 5
A ® By fl;@> B ® By Eyg1——FE1
id ®f2T Tid o —— aT Tw (2.48)
®id
A1 ® Ay Eidd B1 ® A, Eyog—— L1

be a morphism of commutative diagrams in the category of complexes. Let i : Eyo —
E1,0® Ey,1, respectively j : E1 o @ Eg1 — FEq,1, be the morphism given by

i(x) = (B(z),a(x)), respectively j(z,y) = —y(z) + 6(y).
Then, there is a pairing
H"(Ay, B1) @ H™(Az, By) = H""(Eg 0, s(—j))
given by
[a1,b1] @ [az, by] = [a1 ® az, ((by ® az, (—1)"a; @ by), (—1)" "1y @ by)];
note that the map Eo o — s(—j) is given by = — (i(x),0).
Proof. By Proposition 2.20 there is a pairing
H"(Ay, B1) @ H™(Az, B2) — H" ™ (5(€)),
where ¢ is given by (2.17). Let n be the 2-iterated complex
n=(Epy AN E10® Eo EN Ei1).
From the data given in the assumptions, we obtain a morphism e of 2-iterated complexes
°:{—,

hence we obtain a morphism H"t™(s(£)) — H"™(s(n)). By Proposition 2.16 the latter
cohomology group is isomorphic to H"*™(Ey o, s(—7j)), which completes the proof. [
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Remark 2.49. Letting A; = 0 in the above notation and observing that H"(0, By)
H"1(By), we obtain from Theorem 2.47 with Ey o = 0 a pairing, also denoted by e,

H" " '(B1) ® H™(Ag, By) > H" ™ ! (s(—j)) (2.50)
given by
[b1] ® [a2, ba] = [(b1 ® az,0), (—1)"" by & by].

Corollary 2.51. With the assumptions of Theorem 2.47 and Remark 2.49 we have a
commutative diagram:

H™(By) @ H™ (A3, Bs) H™m=1(s(—j))

ml |

H™(Aq, By) ® H™(Ag, By) ——= H"t™(Eq 0, s(—j))

where § is the connecting morphism in the long exact sequence of relative cohomology
described in Definition 2.40.

The cup product in de Rham cohomology with support
Example 2.52. Recall the notation of Example 2.43. Let us illustrate how the formalism
developed in Theorem 2.47 allows us to compute the product

H}(X,C)® HP(X,C) — Hy 7 (X,C)

by means of differential forms. Let us write

Ay = Ay = Eyo = E(X), By =FE,g=EX\Y),
By =Fy; = E(X \ Z)7 B = E(X \ (YU Z)),

and let e be the wedge product A. Then, the assumptions of Theorem 2.47 are satisfied.
Hence the wedge product induces a pairing

Hy(X,C) ® Hp (X,C) — H""™(E(X),s(—j)) (2.53)
given, for appropriate cocycles (w,n) and (w’,7n’), by
(WAW (A, (=D)"w AR, (=1)"InpAn')); (2.54)

this is a cocycle in s(E(X), s(—j)). Then, the desired pairing is defined by composing the
pairing (2.52) with the inverse of the isomorphism (2.44). In particular, the cycle (2.53)
represents a class in H{};Z’(X7 0).

Using standard arguments from sheaf theory one can see that the product constructed
above agrees with the sheaf theoretic product in cohomology with support (see, for exam-
ple, [16, Proposition 2.5]). One can also compare this construction with the definition of
the Loday product in K-theory with support given in §1.2.
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2.4. Truncated relative cohomology groups
Definition of truncated relative cohomology groups

Let A = (A*,d4) be a complex of R-modules. We will denote by Z"(A) the submodule
of cocycles of A™ and by A" = A"/Imd4. For a € A™ we write a for its class in A™.
Recall that the béte filtration o, A of A is given by
A" ifn>p,
0, if n < p.

(opA)" = {

Definition 2.55. Let f : (A*,d4) — (B*,dp) be a morphism of complexes of R-
modules. The truncated relative cohomology groups associated with f are defined by

H"(A,B) = H"(0,A, B).
In other words,

H™(A,B) = {(a,b) € Z"(A) & B " | f(a) = dgb}.

Basic properties
If (a,b) € Z"(s(A, B)), we denote by (a,b) its class in H"(A, B). The relative and
truncated relative cohomology groups are R-modules in a natural way, and there are
various natural maps relating them. The most important ones are the class map
cl: H(A,B) —» H"(A,B), c(a,b) = [a,b],
and the cycle map
w: H"(A, B) — 7"(A), w(a,b) = a.

We also recall the maps a and b, namely

a: A" - H"(A,B), a(@) = (—daa, —f(a)),

and

b: H" Y(B) — H"(A,B),  b([b]) = (0, —b).

Denoting the induced morphism a |gn—1(4) : H" "' (A) — PAI"(A, B) also by a, we observe
for [a] € H"1(A) the relation
a([a]) = b(f(a)). (2.56)

Finally, we note the following commutative diagram:

7"(s(A, B)) — H"(A, B)
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Remark 2.57. The signs of the maps a and b are the reverse of the signs in [17].
This is due to the fact that the map b represents the connecting morphism in relative
cohomology and we have changed the convention on the sign of the connecting morphism
in order to be compatible with [26, p. 269]. The signs in the definition of the map a change
accordingly.

For more details about truncated relative cohomology groups and the proof of the
following proposition we refer to [17, p. 352].

Proposition 2.58. The following sequences are exact:

H" Y(A,B) —» A" ' 2 H"(A,B) < H"(A, B) = 0, (2.59)
0— H"N(B) X H"(A, B) % 7"(A) — H"(B), (2.60)

H" YA, B) — H" Y (A) & H"(A, B) 2% H"(A,B) & Z"(A) — H™(A) — 0. (2.61)
O

Functorial properties

Let f: A— Band f': A — B’ be morphisms of complexes and let g : f — f’ be a
morphism of the 2-iterated complexes f, f’, i.e. g is a pair of morphisms (g4, gp) such
that the diagram

f
A——DB
gAl igB
f/
A —— DB
commutes.

Definition 2.62. The morphism induced (in truncated relative cohomology) by g is the
morphism
§:H"(A,B)— H"(A',B)

defined by g(a,b) = (ga(a), g5(b))-
The exact sequence (2.59) implies the following corollary.

Corollary 2.63. Let g be a morphism of 2-iterated complexes as in Definition 2.62 such
that g4 is an isomorphism and gg is a quasi-isomorphism. Then, the morphism g induced
by g is an isomorphism. O

This fundamental property of truncated relative cohomology groups will be of great
use later. We also note that the requirement of g4 being an isomorphism is essential. If
we replace A by a quasi-isomorphic complex, the truncated relative cohomology groups
are no longer isomorphic.
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2.5. Products in truncated relative cohomology
The x-product

We now specialize the discussion about products in relative cohomology groups to the
case of truncated relative cohomology. Let fi; and fo be as in §2.3. Moreover, suppose
that we have the morphism of commutative diagrams (2.47). Then, there is an induced

morphism
UnAl ® By ——— B ® By EO,l —>E1,1
T o= 1 ]
oAl ® oAy — B ® 0, A2 OntmEoo0 —= E10

Definition 2.64. The *-product in truncated relative cohomology (induced by e) is the
pairing
H™(A1, Br) ® H™(As, By) — > H""™(Eo,0,5(~J))
provided by Theorem 2.47. In particular, for (a1,b1) € H"(Ay, By) and (as,bs) €
H™(As, Bs), it is given by
(a1,b1) * (a,b2) = (a1 ® as, (b ® az, (—1)"a; ® by), (—1)""Lby @ by)™). (2.65)

Notice that, since the *-product is induced by a pairing of complexes, the right-hand
side of the above equation is independent of the choice of representatives by and b of by
and bs.

Properties of the x-product

We now summarize the basic properties of the x-product.

Proposition 2.66. With the above notation, there are commutative diagrams

fIn(Al,Bl>®ﬁ"L(A2,BQ) - >ﬁn+m(E0’o,S(—j))

C1®Cli icl

H"(A1, B1) ® H™ (A2, By) — = H"*"(Eq 0, 5(~j))

and
H™(Ay, By) ® H™(Aq, By) —— H™™™(Ey 0, 5(—j))

w@wi lw

72"(A1) ® Z™(Ay) —————= 7" (Eg )
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(i)
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(iii)

(iv)

Cohomological arithmetic Chow rings 55

osition 2.67. With the above notation we have the following statements.
b(H(By)) * a(A2) =
If [bh] € H"_I(Bl)/\and g = (a2,by) € H™(Ay, By), then the following equality
holds in the group H"*™(Ey o, s(—j)):

b([b1]) * g = b([b1] @ cl(g))
with [b1] e cl(g) € H" ™™~ 1(s(—j)) given by the pairing (2.49).
Ifa; € ﬁ?j and g = (aq, 2) m(Ag, Bs), then the following equality holds in
the group H"*™(Eq o, s(—j)):

a(a1) x g = a(ar e w(g))
with a1 e w(g) € E&‘gm_l given by the pairing A1 ® Ay = Fo 0.
If [a1] € H"Y(Ay), and g = (as,by) € H™(As, By), then, again in the group
H™ ™ (Ey0,s(—j)), we have the equality

a([a1]) * g = a([a1] ® [a2]);

here [ag] is the class of az in H™(Asz).

Proof. (i) For [b;] € H" *(B;) and @, € A,, we have

Since

b([br]) * (@) = (0, ~b1) * (—da,az, — fo(a))
= (07 ((bl b dA2a27 0)7 (_1)n_1b1 bt f2(a2))N)'

b1 is a cycle, we have

(=1)""1d((by ® az,0),0) = ((by ® dayaz,0), (—1)""'bs e fa(as)),

which immediately proves the first statement.

(ii) The formula we seek follows by a straightforward computation.

(iv) For a cycle a; € A7™', we have

a(d1) * (a2, b2) = (0, — fi(ar)) = (az, bo)
= (0, —((f1(a1) ® az,0), (—1)" " fi(a1) ® bs)™).

Now we note

hence

d((O, a; ® b2), 0) = ((07(31,41@1 o b2 + (—1)"_1a1 L] dB2b2)7 —fl(al) [ ] bg),

(=1)™d((0,a1 ®b2),0) = ((0,—ay  fa(az)), (=1)" " fi(a1) ® ba).

This immediately leads to

a(@) * (az, ba) = (0, —((f1(a1) @ az,a; ® fa(az)),0)™) = a(d; & as),

which proves the claim.

(iii) Since w(g) = ag, the equality follows immediately from the proof given for part (iv).

O
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Ezxample

The following gives an example of the formalism developed for truncated cohomology.

Let A be an associative, graded commutative, differential algebra over R, and B a
graded commutative, differential algebra over R, which is associative up to homotopy,
i.e. there exist morphisms

h: B" ® B™ ® Bl N Bn+m+l—1

satisfying
(blbg)bg — bl(bgbg) = dh(bl R by ® b3) + hd(b1 ® by ® bg).

Furthermore, let f : A — B be a morphism of graded differential algebras satisfying

h(f(a1) ® f(az) ® f(az)) =0
for all elements aq, as, ag in A.

Proposition 2.68. Let A, B, f : A — B be as above. Then, we have the following
statements.

(i) The truncated cohomology groups H *(A, B) have a natural structure of an asso-
ciative, graded commutative algebra.

(ii) In the particular case assumed we have b(H*(B)) * H*(A, B) = 0.
(iii) The class map cl : H* (A,B) — H*(A, B) is a morphism of algebras.
(iv) The cycle map w : H* (A, B) — Z*(A) is a morphism of algebras.

Proof. The key point of the proof is to show (i). Then (iii), (iv) will follow from Propo-
sition 2.16; part (ii) is a direct consequence of the explicit description of the #-product
under the above assumptions and will be shown at the end of the proof.

By assumption, we have a morphism of commutative diagrams

A®B——=B®B B——DB
S i
AR A——=B®A A—B

where o is given by the underlying algebra structure. Therefore, if j : B@® B — B is the
morphism given by j(x,y) = —x + y, we obtain a pairing

H™(A, B) @ H™(A, B) % H™ ™ (A, s(—j)).

Now consider the short exact sequence

0 B—>Be&B B 0, (2.69)
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where the morphism ¢ : B — B ® B is given by i(z) = (z,z). By the kernel-
simple quasi-isomorphism (see Definition 2.37), ¢ induces a quasi-isomorphism between
B and s(—j). By means of Corollary 2.63 we then obtain a natural isomorphism
H™™ (A, s(—j)) = H"*™(A, B). Therefore, the s-product defines an inner product
on H*(A, B).

We now give an explicit formula for the #-product. Since the exact sequence (2.68)
is split, we easily find an explicit quasi-inverse for the quasi-isomorphism induced by 1.
Namely, by applying Proposition 2.41, we can choose a quasi-inverse from s(—j) to B by
the morphism given by

(@,9),2) > @.

With this choice we derive from (2.64) the formula

(a1,b1) * (a2,b2) = (a1a2, b1 f(az)). (2.70)

By Corollary 2.63 this product does not depend on the choice of the quasi-inverse.

We now show that the x-product is graded commutative. To do so, let (al,gl) €
H"(A,B), (a2,by) € H™(A, B), and let (a1,b1), (az,bs) be respective representatives.
Then, the difference

(a1,b1) * (ag,ba) — (—1)"™(ag, b) * (a1, by)
is represented by
(a1az — (—1)""aza1, b1 f(az) — (—=1)""b2f(a1)) = (0,b1 f(az) — (—1)" f (a1)b2).
Since db; = f(a1) and dby = f(ay), we obtain
(=)™ d(b1bs) = by f(az) — (=1)" f(a1)by.

This shows B B B B
(a1,b1) * (az,b2) = (=1)""(az, b2) * (a1, b1).

Finally, we show that the x-product is associative. For this purpose, let (ag,gg) €
H'(A, B) be a third element. Consider the difference

((a1,b1) * (a2,b2)) * (as, bs) — (a1, b1) * ((az,b2) * (a3, bs)),
which is represented by
((araz)as, (b1f(az))f(as)) — (a1(azas), bi(f(az)f(as))).

We have to show that the class of the latter difference in H"™ (A, B) is zero. By the
associativity of A, we have (ajas2)as = a1(azas). Moreover, by the associativity of B up
to homotopy we have

(b1f(a2))f(a3) — br(f(a2)f(a3)) = dh(by © f(az) @ f(as)) + hd(br @ f(az) ® f(a3)).
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Since f(az2) and f(as3) are cycles, and since db; = f(a1), we obtain by assumption

hd(by ® f(a2) ® f(az)) = h(f(a1) ® f(az) ® f(az)) = 0.

From this the associativity of the x-product follows.
Statement (ii) is obvious from the explicit formula (2.69) given for the s-product. O

Remark 2.71. There are many discrepancies in the signs between this paper and the
previous papers [16,17]. The main source for these discrepancies is that the convention
for the sign of the connecting morphism in this paper is minus the connecting morphism
in [17]. In particular, compare formula (2.37) with [17, §2]. But there are also some
differences in the sign of the product.

3. Green objects

The aim of this section is to develop an abstract theory of Green objects. It is a generaliza-
tion of [17] and some arguments, like the proof of the associativity and the commutativity
of [17], carry over to this abstract setting directly.

3.1. G-complexes
The Mayer—Vietoris principle

Definition 3.1. Let X be a topological space. We say that a sheaf F is a totally acyclic
sheaf, if the restriction F|y of F to U is acyclic for all open subsets U of X.

We note that for instance every flasque or fine sheaf on X is totally acyclic.

Definition 3.2. We say that a presheaf F on X satisfies the Mayer—Vietoris principle,
if the sequence

0o FUUV) S FU) e F(V) L FUNV) =0

with i(n) = (n,n) and j(w,n) = —w + n is exact for any pair of open subsets U and V'
of X.

Proposition 3.3. Let X be a noetherian space. Then, a presheaf F on X satisfies the
Mayer—Vietoris principle, if and only if it is a totally acyclic sheaf.

Proof. Since X is noetherian, the exactness of
0> FUUV) S FUYyeFV) L FUuny)

is equivalent to the fact that F is a sheaf. If F is totally acyclic, then the map j is
surjective. Hence F satisfies the Mayer—Vietoris principle. Conversely, if F satisfies the
Mayer—Vietoris principle, one can use induction on the number of open sets to show
that, for any finite open covering 4 of X, the Cech cohomology group H L(U, F) vanishes.
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This implies that, if F’ satisfies the Mayer—Vietoris principle, then for any short exact
sequence

0—>F -F—=>F"=0

and any open set U, the sequence
0—F(U)—FU)—F'(U) =0

is exact. Then, the Nine Lemma implies that, if the sheaves 7’ and F in an exact sequence
as above satisfy the Mayer—Vietoris principle, then F” also does. One finally concludes
the proof as in [42, IIT 2.5]. O

Definition of G-complezes

In order to define arithmetic Chow groups with Green objects in a certain cohomology
theory, the main property we have to require of the cohomology theory is that it receives
characteristic classes from K-theory (at least from Ky and K7) with natural properties.
Since the arithmetic Chow groups will depend on the choice of the complex used to
compute the cohomology, it might be more important to have a particular property of
this complex than to have all the properties of a Gillet cohomology. Thus, in order to
have characteristic classes, but also to retain flexibility in the choice of the complexes,
we will ask only that the cohomology theory factors through a Gillet cohomology. Thus,
we fix a field k£ and an auxiliary Gillet complex G = G*(x) for regular schemes of finite
type over k. Furthermore, until the discussion of the functoriality, we also fix a regular
separated scheme X of finite type over k.

Definition 3.4. A G-complex over X is a graded complex C = (C*(x),d) of sheaves of
abelian groups over X together with a morphism

Cc:Q—)C

in the derived category of graded complexes of sheaves of abelian groups over X such
that the sheaves C™(p) satisfy the Mayer—Vietoris principle for all n, p. For a G-complex
(C,¢cc) over X we will simply write C as a shorthand.

Definition 3.5. A morphism of G-complezes over X is a morphism f : C — C’ of graded
complexes of sheaves of abelian groups over X such that the diagram

|

HC!

—_—

tc
id
c’

Q=<=—9Q

commutes in the derived category of graded complexes of sheaves of abelian groups
over X.
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Cohomology groups of a G-complex

Notation 3.6. For an open subset U of X, the sections of C™(p) over U will be denoted by
C"(U,p). If w € C"(X,p), we will write w|y for the restriction of w to U; moreover, if the
open set U is clear from the context, we will simply write w instead of w|y. Furthermore,
if Y is a closed subset of X and U = X \ Y, we introduce the following notation:

He(X,p) = H*(C(X,p)),
He(U,p) = H*(C(U, p)),
He y(X,p) = H*(C(X,p),C(U,p)).
Analogously, for any family ¢ of supports on X, we define the cohomology groups with
support in ¢ by Hg (X, p).

Since the sheaves C*(p) are totally acyclic, the cohomology of global sections agrees
with the hypercohomology of the complex. Hence, there are induced morphisms

H*(X,G(p)) = He (X, p),
H*(U,G(p)) = He(U, p),
Hy (X,G(p)) = He v (X, p),
which, by abuse of notation, will be denoted again by cc.
Lemma 3.7. Let Y be a closed subset of X, and U = X \'Y. Then, there is a morphism

of exact sequences

H"(X,G(p)) — H"(U,G(p)) —>= H}*(X,G(p)) — -

J n
HE(X,p) ——— HE(U,p) ——— Hgy (X, p) —— -

Proof. The proof follows immediately from the fact that ¢c : G — C is a morphism of
sheaves. (]
Characteristic classes in C-cohomology

Using the fact that there are well-defined characteristic classes in G-cohomology, we
can also define classes for cycles and Kj-chains in C-cohomology.

Definition 3.8. Let y be a p-codimensional cycle of X, and Y = suppy. We define
cle(y) € Hgfy (X, p) to be the class

cle(y) = ce(clg(y))-

Let f € Rg’l(X) be a Kj-chain, y = div(f), Y = suppy, and U = X \ Y. We define
cle(f) € HZP (U, p) to be the class

cle(f) = ce(clg(f))-

Here clg is given in Definition 1.50.
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If Y =suppy and Y C Z for a closed subset Z of X, by abuse of notation, we will
also denote by cl¢(y) the class in HSTZ(X, p). If there is a danger of confusion, we will
write explicitly cle(y) € ng 7 (X, p) to indicate in which cohomology group the class is
considered. We will use the same convention for clg(f). In particular, if y = div(f), Y =
suppy, U = X\ 'Y, and W = supp f, we will consider the classes cl¢(f) € ngil(U7 D),
and cle(f) € HZ"y (U, p).

Observe that the cohomology G is only an auxiliary device to ensure the existence
of classes for cycles and K;j-chains having good properties. The properties which will
be needed to define arithmetic Chow groups are summarized in the following lemma.
This lemma can be taken as an alternative starting point for the definition of arithmetic
Chow groups. It is an immediate consequence of the properties of characteristic classes
in G-cohomology.

Lemma 3.9. Let C be a G-complex over X. Then, we have the following statements.

(i) For any family ¢ of supports on X, the map cl¢ induces a morphism of groups

Z(X) — He",(X,p)

which is compatible with change of support; here Z!,(X) = Rp (X) is the group
of p-codimensional cycles on X with support on .

(ii) For a Ki-chain f € RE~Y(X), put y = div(f), Y =suppy, and U = X \ Y. Then,
the equality
cle(div(f)) = dcle(f) € Hely (X, p)

holds, where § is the connection morphism
8+ HP"Y(U,p) = Hh (X, p).

Moreover, if g € Rgfl(X) is another Ki-chain, z = div(g), and Z = supp z, we
have
cle(f) +cle(g) = cle(f +g) € H (X \ (Y U Z),p).

(iii) If h € RE™?(X) is a Ky-chain, then the class clc(dh) vanishes in the group
H2p71(X
C ap)

O
Lemma 3.9 has the following direct consequences.

Corollary 3.10. For any family ¢ of supports on X, there are well-defined morphisms

cle : CHE(X) — HZP (X, p),

cle : CHY P (X) — HZPH(X, p).
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Following [6], let us denote by ZP = ZP(X) the set of all closed subsets of X of
codimension greater or equal to p ordered by inclusion. We then write

HE(X\ 27,p) = lim HZ(X\Y.p),
Yezp

HE‘,ZP(X,p) = h& Hg,Y(X,p)~
Yezr

Corollary 3.11. The following diagram is commutative and has exact rows:

CHP 1P (X) — RE~H(X) /dRE2(X) — > RP(X) CHP(X)

C]c J{ Clc \L Clc i Clc l

HZ~Y(X,p) —— HZY(X \ 27, p) — > H".,(X,p) — HZ (X, p)

Purity

In many cases the cohomology theory associated with a G-complex C will satisfy a
purity axiom, e.g. if C-cohomology and G-cohomology agree. Later on we will see that
the arithmetic Chow groups obtained in this case have better properties.

Definition 3.12. We say that the G-complex C satisfies the weak purity condition, if for
any closed subset Y of X of codimension greater or equal to p, we have

HEP (X, p) = 0.

Recall that for any complex A, we let A= A/Imd. In order to be able to deal with
complexes which may not satisfy the weak purity condition, we introduce the following
notation:

CoPH (X, p)Pe = CP (X, p)/ Im(HEP, (X, p) — CPP7H (X, p),
HE" (X, p)P™ = HZ" ™' (X,p)/ Tm(HE"Z,) (X, p) — HZ"™' (X, p)).

Note that, if C satisfies the weak purity condition, then

CoH (X, p)Pe = € (X, p),
HE™H (X, p)P™e = HP (X, p).

3.2. Definition of Green objects
Preliminaries

Given a G-complex C = (C*(x),d) over X, we will define Green objects with values in
this complex. For concrete examples we refer to [17], or §§6 and 7 below.
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Notation 3.13. Let Y be a closed subset of X, and U = X \ Y. We will then write

HE y(X,p) = H"(C(X,p),C(U,p)),

where H"(C(X, p),C(U,p)) are the truncated relative cohomology groups defined in § 2.4.
We will also write

Hg,ZP(va) = hﬂ Hg,Y(X,p)-

Yezr
By writing
C(X\ 2", p)= lim C(X\Y,p),
Yezr
we have

H? z,(X,p) = H"(C(X,p),C(X \ 27,p)).

From the definition of the truncated relative cohomology groups we recall the mor-
phisms

Cl:ﬁg,ZP(va)_)HCZP( ),
w: HE 2,(X,p) = Z(C"(X,p)),
a:C" Y (X,p) = HE 2,(X,p),
a: HY 7 (X,p) — HE 50(X,p),
,D);

(X
b: HF 'YX\ 27,p) — Hc,zp(

)

analogous morphisms exist for H ng(X ,p) with Y a closed subset of X. We leave it to the
reader to write down the exact sequences of Proposition 2.58 in these cases. In particular,
for Y € ZP we note the commutative diagram with exact rows

HEVH(X,p) ——= Cn (X, p) —> HEy(X,p) —2> HE y(X,p) —— 0
l l l (3.14)
HY 24 (X, p) — Cn (X, p) — > HE z,(X,p) —= HE 20(X,p) —>0

While dealing with p-codimensional cycles, we will be mainly interested in the groups
with n = 2p. In this case we obtain as a direct consequence of Proposition 2.58.

Proposition 3.15. There are exact sequences

0 — CH(X, p)Pu & HEP,, (X, p) % HE . (X,p) — 0, (3.16)
0 — HP7H (X, p)Pue & HP,, (X, p) 2% HEP,, (X, p) @ ZC?(X,p) — HIP(X,p) — 0.
(3.17)

0
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Green objects

Definition 3.18. Let y be a p-codimensional cycle on X. A Green object for the class
of y (with values in C) is an element g, € Hgf’zp (X, p) such that

cl(g,) = cle(y) € HZ2, (X, p).

In other words, a Green object for the class of y is a pair g, = (wy,gy) with
wy € ZC?(X,p) and g, € 52”’1(X \ ZP,p) such that w, = dg, and such that this pair
represents the class of y in ng =» (X, p); note that g, here denotes a representative of g,
in C?P~1(X \ 2P, p). ’

Observe that the Green objects for the class of any p-codimensional cycle belong to the
same space ﬁgp =» (X, p). This is the reason for taking the limit over all p-codimensional
cycles of X. Névertheless, sometimes it will be necessary to have a more precise control
on the group in which a Green object is defined.

Definition 3.19. Let y be a p-codimensional cycle on X with Y = suppy. A Green
object for the cycle y is an element g, € ngY(X,p) such that

cl(gy) = cle(y) € Hey (X, p).

Definition 3.20. Let Z be a closed subset of X, and y € CHY(X). A weak Green object
for y with support in Z is an element g, € ng 7 (X, p) such that

cl(gy) = cle(y) € HZ", (X, p).

Remark 3.21. A Green object for the cycle y represents a cohomology class with sup-
port exactly equal to the support of y. A Green object for the class of y represents a
cohomology class whose support has the same codimension as y, but may be bigger than
the support of y. From Proposition 3.23 (iii) below, it will be clear that, if the G-complex
C satisfies the weak purity condition, there is no difference between a Green object for
the class of y and a Green object for the cycle y. As we will see, even in the case of a
complex which does not satisfy the weak purity condition, the distinction between these
two kinds of Green objects is a minor technical point. In contrast to this, a weak Green
object for y represents a cohomology class whose support may be bigger than the support
of y, and may even have codimension smaller than the codimension of y. In general, a
weak Green object g, carries less information than a Green object for y and is not a
Green object for the class of y. Weak Green objects appear naturally when handling
non-proper intersections and are therefore useful in intermediate steps.

Additivity
Remark 3.22. If g, is a Green object for y, and g, a Green object for z such that
supp(y + z) = supp(y) U supp(z), Lemma 3.9 implies that g, + g is a Green object for

y + z. On the other hand, if supp(y + z) C supp(y) U supp(z), then g, + g. determines
only a Green object for the class of y + z.
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Existence of Green objects

Proposition 3.23. Let C be a G-complex on X, and let y be any p-codimensional cycle
on X with' Y = suppy. Then, we have the following statements.

(1) There exists a Green object g, € ﬁgp =» (X, p) for the class of y.

(ii) Any Green object g, for the class of y can be lifted to a Green object
g, € Hgfgy(X,p) for y.

(iii) If the G-complex C satisfies the weak purity condition, the morphism
732 732
HC?Y (va) — HC?ZIJ (X7p)
is injective. Therefore, the Green object g, for y is uniquely determined by the
Green object g, for the class of y in this case.

Proof. (i) The first statement is an immediate consequence of the surjectivity of the
class map cl in the exact sequence (3.15).

(ii) Since the class of the cycle y lies in Hgf’Y(X ,p), the second statement follows from a
standard diagram chase in the commutative diagram (3.13).

(iii) If C satisfies the weak purity condition, the commutative diagram (3.13) gives rise
to the diagram

cl

0 —= C%=1(X,p) ——= HZ(X,p) —= HZ" (X,p) —0

| |

0*>52p_1(Xap) *a>ﬁ§?ZP(Xﬂp) L>H§?Z”(X’p) —0

where the vertical map on the right is injective. Therefore, by the five lemma, the vertical
map in the middle is also injective. O

The Green object associated to a K1-chain

Definition 3.24. For a Ki-chain f € Rb~!(X) with y = div(f), and Y = suppy, we
denote by g(f) the distinguished Green object

a(f) = blcle(£)) € HEY (X, p).
If we need to specify the G-complex C, we will write ge(f) instead of g(f).

Remark 3.25. By Lemma 3.9 (ii), g(f) is a well-defined Green object for y = div f. By
Lemma 3.9 (iii), we have g(dh) = 0 for any Ks-chain h. This means in particular that
the distinguished Green object g(f) depends only on the class of f in CHP~1P(X \ V).
In other words, for any closed subset Z of X and U = X \ Z, there is a well-defined
morphism

CHP™MP(U) — HEP, (X, p)

which we also denote by g.
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3.3. The *-product of Green objects

In this section we will define a pairing of Green objects, the *-product, following
the strategy of Proposition 2.68. We will define the *-product for any pairing of G-
complexes which is compatible with the product given in G-cohomology. This will ensure
the compatibility with the intersection product of cycles.

Pairing of G-complexes

Definition 3.26. Let C, C’ and C” be G-complexes over X with the same auxiliary
cohomology G. A G-pairing is a pairing of graded complexes of sheaves of abelian groups

cec "
such that, in the derived category of graded complexes of sheaves of abelian groups over

X, there is a commutative diagram

L cc®cer L
Grg— el

l Cerr L
G—< ¢
where the vertical arrow on the left is the product in G-cohomology (see [34, 1.1]).

The x-product of Green objects

Definition 3.27. Let C be a G-complex over X. Let Y, Z be closed subsets of X,
U=X\Y,V =X\ Z, respectively, and let

j:C"(Up)@®C"(V,p) = C(UNV,p)
be the map given by j(w,n) = —w + n; we then put

Observe that this complex is, up to the sign of the morphism, the Cech complex associated
to the sheaf C and the open covering {U, V'}.
The kernel-simple quasi-isomorphism (see Definition 2.37) associated to the short exact
sequence
0—CY(UUV,p) 5 C™(U,p)@C"(V,p) L C*(UNV,p) =0 (3.28)

with i(n) = (n,n), is the induced morphism
L:C(UUV,p) = C(X;Y, Z,p). (3.29)

Throughout this section we will assume that there are given three G-complexes C, C’,
C"” over X, and that e is a G-pairing between C and C’ to C”. Furthermore, let Y, Z be
closed subsets of X, and U = X \ Y, V = X \ Z, respectively. Since e is a pairing of
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sheaves, and therefore compatible with restrictions, it induces for all p, ¢ a morphism of
commutative diagrams

C(X,p)®@C'(V,q) ——=C(U,p) ®C'(V.q) C"(Vip+q) —=C"(UNV,p+q)
T =] T
C(X,p)®C/(X,Q)HC(U,p)®C/(X,q) C//(va+Q) CI/(U7p+Q)
(3.30)

Theorem 3.31. There exist well-defined pairings and a commutative diagram

HE v (X,p) ® HE 7(X,q) ——= Hl Vo 7(Xp + q)

cl®cll \Lcl

HE (X, p) @ HE 4(X,q) —— HE/*,%z(X,p +q)

Proof. By Proposition 2.47 and Proposition 2.66, we have with r = p + ¢, well-defined
pairings and a commutative diagram

HE (X,p) @ HE 4(X,q) ——= H™™(C"(X,r),C"(X;Y, Z,r))
cl®cll ld (332)
HE(X,p) @ HE (X, q) —= H"™™(C"(X,7),C"(X;Y, Z,7))

Using the kernel-simple quasi-isomorphism (3.28) and Corollary 2.63, we obtain the iso-
morphisms

HE! Pz (X,r) = HY M (C(X,r), € (X3 Y, Z,r), (3.33)
HEH g (X,r) = H™7(C(X,r),C7 (X3 Y, Z,1)). (3:34)
This completes the proof of the claim. O

Remark 3.35. Let (w,g) € flg,Y(X,p), and (w',q") EﬁlgﬁZ(X, q). A representative
of (w,g)* (w',g’) in the group ﬁ[”*m(C”(X, r),C"(X;Y,Z,r)) is then given by for-
mula (2.64). Observe that, in order to obtain an explicit representative for this class
in the group

Ay (X.p+q) = H™™(C"(X,p+9),C" (X \ (Y N 2),p+4q)),

we have to use an explicit quasi-inverse of the kernel-simple quasi-isomorphism. This will
be done in the examples (see, for example, §6.1).
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The x-product and the intersection product

The above pairing induced by e in cohomology with support is compatible with the
product defined in G-cohomology.

Theorem 3.36. There is a commutative diagram

H}(X,G(p)) ® HP(X,G(q)) — HELZ(X,G(p + q))

Cc®tc/l icc//

HE oy (X,p) @ HE 5(X,q) —— H}V (X, p+q)

Proof. The proof follows from standard arguments in sheaf theory (see [38, 6.2], [47,
11.10], [16, 2.5] and Example 2.52). O

Theorem 3.37. Lety € CHY.(X), » € CHY(X) with closed subsets Y, Z of X, respec-
tively. Let g, € Hc PA(X,p), 8 € H% (X, q) be weak Green objects for y, z, respectively,
andletw =1y -z € CHI;;]’]Z(X) Then the x-product g, * g is a weak Green object for w.
Moreover, if g, = (wy,gy), and g, = (w.,g.), then g, * g. is represented in the group
H¥»+20(C"(X,p+q),C"(X;Y, Z,p+q)) by the element

(wy @ wz, ((gy @ w2, wy ©32), —gy ®9:)"). (3.38)

Proof. We have to show that cl(g, * g.) = cle(w) € Hgﬁ+§gZ(X,p + ¢). But by Theo-
rem 3.31, we have

cl(gy * 8:) = cl(gy) @ cl(g:) = cle(y) o cle (2) = ce(clg(y)) o cer(clg(2))-

Now, by Theorem 3.36, cc(clg(y)) e ccr(clg(2)) = cer(clg(y) - clg(2)). Finally, by Proposi-
tion 1.54, clg(y) - clg(z) = clg(w). The claimed formula (3.37) follows from (2.64) taking
into account the degrees of w, and g,. O

Theorem 3.39. Let y be a p-codimensional, respectively z a q codimensional, cycle
of X, and Y = suppy, respectively Z = suppz. Let g, € Hc P (X, p), respectwe]y
9. € H 24 (X,q) be Green objects for the class of y, respectively z. Let g, € Hc P(X,p),

respectwely g, € H? , (X, q) be representatives of g,, respectively g.. If y and z intersect
properly, we have the following statements.

(i) The product gy, * g, is a Green object for the cycle y - 2.

(ii) The image of g, * g/, in H§€+§§+q (X,p+ q) does not depend on the choice of the
representatives g, and g’

Proof. The first statement is a direct consequence of Theorem 3.37. Observe that, if
the complexes C and C’ satisfy the weak purity condition, the second statement is auto-
matically fulfilled.
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To prove the second statement in the case in which the weak purity condition is not
satisfied, we let g ' be another choice for a lift of g,,. We then consider the commutative
diagram (3.13), i

HZP (X, p) —= =1 (X, p) — = HZR (X, p) — % HZ% (X, p) —= 0

| |

HZPZ) (X, p) —= Co=1(X, p) — > HE, (X.p) —5> HP 2, (X,p) —> 0

Since we are not assuming weak purity, the vertical map on the right of this diagram
need not be injective. But, by the definition of a Green object for a cycle, we know that
the images of gy and g " by the class map agree in Hcpy (X, p). Therefore, we have

g, — gy = a(@)

for some z € C*~1(X, p). Moreover, since g, and g; have the same image in Hc 20 (X, D),
we have a(Z) = 0 in the group Hc z» (X, p) which implies w(a(z)) = 0, and hence shows
dz = 0. Therefore, 7 € Hcp o (X,p) € C?2~1(X,p) which implies that Z arises as the
image of a class in HCpW (X,p) for a suitable closed subset W of X of codimension
greater or equal to p. Writing ¢, = (w,,d.), we obtain by Proposition 2.67 (iii), the
equality

—_~

a(3) * gl = a(7 o)

in the group HC,,erz,qm 7(X,p+ ¢q). By the moving lemma for cycles, there exists a cycle 2

linearly equivalent to z which intersects W properly. Since the class of 2’ in HC, (X,q)
can also be represented by w,, the class

rTew, € C~/’2p+2q*1(X7p +9q)

arises as the image of a class with support in the closed subset W N supp 2z’ which has
codimension greater or equal to p + ¢; this shows that this class also arises as the image
of a class in H, sziggﬂl (X,p+ q). By exactness, the element a(z e w,) therefore vanishes

HE%Z*ZzSH (X,p+ q). This proves the claim. O

Definition 3.40. Let y be a p-codimensional cycle on X, g, € Hc zp (X p) a Green
object for the class of y; let z be a g-codimensional cycle on X, g, € H ' Za (X,q) a
Green object for the class of z. Then, the product of gy with g., denoted by g, * g., is

H 2 (X,p+ ¢q), where g;, respectively

defined as the image of g; * g/ in the group ozt

g.,, is any lift of g, respectively g..
Note that, in the above definition, the image of g, * g, € Hﬁ%ﬁ*j}}w (X,p+q) is a well-
defined Green object for the class of y - z by Theorem 3.39.



70 J. I. Burgos Gil, J. Kramer and U. Kihn

3.4. Associativity and commutativity
Associativity

Let Cq, Co, C3, C12, Ca3, C123 be G-complexes and assume that there are G-pairings

C1 ®Cy = Cia,
Co ® C3 — Cos,
C12 ® C3 — Ci23,
C1 ® Ca3 — Ci23,

which we will denote collectively by e. Recall that the product e is called associative up
to homotopy, if there exist sheaf morphisms

ha : C?( >p) ®an('7q) ®C:l’>< 77") - C{L;ir%erlil(' 7p+Q+T)
satisfying
(aep)ey—ae(fey)=dh,(a®@ L)+ hdla® [ 7).

In order to have an associative product in the arithmetic Chow groups, we will need a
slightly stronger condition than associativity up to homotopy.

Definition 3.41. The product e is called pseudo-associative, if it is associative up to
homotopy and the equality
ha(a ®RB® 7) =0

holds for all o € ZC3P(X,p), 8 € ZC3(X, q), v € ZC3" (X, 7).

Theorem 3.42. Assume that the product e is associative up to homotopy. Further-
more, let Y, Z, W be closed subsets of X, and g1 € Hgf’Y(X,p), g € Hgg’Z(X, q),
g3 € Hg;W(X, r) with g; = (wj,g;) for j = 1,2,3. Then, we have the following state-
ments.

(i) In the group f[gf;?ﬂ:QZTmW(X,p + ¢+ ), there is an equality
(91 % g2) * 93 — g1 * (g2 * 93) = a(ha(w1 @ wr @ w3)). (3.43)
(ii) For g1, or ga, or g3 € Ker(w), the equality

(91 % 92) * 93 = g1 * (g2 * 93)
holds.
(iii) Moreover, if the product e is pseudo-associative, again the equality
(91 % 92) * 93 = g1 * (92 * 93)
holds.
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Proof. The statements (ii) and (iii) follow immediately from (i). To prove (i), let us
write t = p+ g+ r, and let

fi:Ci(X,p) = CG(X\Y,p),
f2 : CQ(va) %CQ(X\Zap)v
f3 : C3(X7p) 4>C3(X\Wap)

be the restriction morphisms. For simplicity, let us denote Ci23 by C. By means of the
identification (2.24) we now observe that the product e induces a morphism of 2-iterated
complexes between f; ® fo ® f3 and the 2-iterated complex

€= (C(X,t) 2 C(X\ Y, t) ®C(X \ Z,t) & C(X \ W, t)
2, 0(X\(YUZ), ) @C(X\ (YUW),t)&C(X\ (ZUW),1)
2 (X \ (Y UZUW),1)); (3.44)
here
01(a) = (a,a,a),
d2(a,b,¢) = (b—a,c—a,c—1b),
03(a,b,c) =a—b+ec.
Let us denote by C(X;Y, Z, W, t) the simple complex of the 2-iterated complex
CX\Y,t) & C(X \ Z,) & C(X \ W,1)
20X\ (YUZ),H)@C(X\ (YUW),t)@C(X\ (ZUW),1)
=% 0(X\ (YUZUW),1). (3.45)

Except for the signs of the morphisms this is the Cech complex associated to the open
covering {X \ 'Y, X \ Z, X \ W}. As in Proposition 2.16, there is a natural isomorphism

s(€) = s(C(X, 1) 25 C(X:Y, Z, W, 1))

which is given by the identity on the level of elements.
Let us consider the commutative diagram

CX\ (Y NZAW),t) —2=C(X;Y N Z,W,t)

z@i lkl (3.46)
CX;Y, ZNW,t) — 2~ C(X,Y, Z,W,1)
where
il(a) = ((CL, a)v O)a
iQ(a) = ((a’ﬂ a)v O)a
k1((a,b),c) = ((a,a,b),(0,¢,¢),0),
kQ((a‘v b)a C) = ((CL, bv b)7 (Cv & 0 ) 0)
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The Mayer—Vietoris principle of the sheaf C implies that all the arrows in the above
diagram are quasi-isomorphisms.
Recalling C(X;Y, Z,t) from Definition 3.27, we introduce the notation

H2Yy 5(X,t) = H*(C(X,1),C(X;Y, Z,1)),
H2Yy fw (X, 1) = HY(C(X,1),C(X;Y, Z,W, 1)),

and similar notation for the other closed subsets under consideration. We then obtain
from the commutative diagram (3.45) and Corollary 2.63 the commutative diagram

~ i ~
HEYy o gow (X t) ——= Hely g (X, 1)

~ ko ~
HEYy yaw (X, 1) ——= HZg'y , w (X, 1)

where all the arrows are isomorphisms. Therefore, in order to prove equation (3.42), it is
enough to compare explicit representatives of both elements in the group Hgty Z,W(X , ).
To obtain these representatives, we consider the commutative diagram

~o ~oq+2r x5

He (X, p) ® HC;Z:,_ZTOW(X’ q+r) = HE'y yow (X, 1)
ul ikz

~2 ~oqor x5

Hciy(Xa p)® Hcg:Z,W(X’ q+r) > HE?Y,Z,W(X7 t)

where the bottom arrow is induced from the morphism 3; given in Proposition 2.26. We
thus obtain

(a,b) * (c,(d,e), f) = (aec,(bec,aed,aee),(—bed,—bee,ae f) be f).

Analogously, there is another commutative diagram
772p+2 75 * =
H 'S, (Xop+q) @ HE w(X,7) = Hey 7w (X, 1)
ﬂl ikl
Z20p+2 = * 7y
Hci,Y?Z(Xyp +q)® Hg;,W(Xa r)——> Hgfy,z,w()@ t)

where the bottom arrow is induced from the morphism 35 given in Proposition 2.26. We
obtain

(a,(b,c),d) * (e, f) = (aee,(boe,coee,ae f) (dee,—be fi—ce f) de f).
Summarizing, we find the following identities in the group ﬁgty 2w (X, 1)

(g1 %g2) %93 = (w1 @ ws) ews, (((g1 ®w2) e w3, (w1 ®g2) ®ws, (W1 ®w>) ®g3),

(—(91092) w3, —(g1 ®wa) ® g3, — (w1 ® g2) ®g3), — (g1 ® g2) ® g3)~),
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and

g1 % (g2%93) = (w1 @ (W2 ew3),((g1 @ (w2 ews3),w (g2 0ws3),w e (w2 eg3)),
(—g1e0(g20w3),—gr1®(w2eg3),—wi®(g20g3)),—g1®(g2993))).
With the element y € C?*~2(X;Y, Z, W, t) given by
Y= ((ha(g1 @ wa @ ws3), he(wr @ g2 @ w3), he(wr @ we ® g3)),
(ha(91 ® g2 ® w3), ha(g91 @ wa @ g3), ha(w1 ® g2 ® g3)), —hal(g1 ® g2 @ g3)),

we derive the identity

(g1 % 92) x93 — g1 * (g2 * g3) — (0,dy) = a(he(w1 ® wa ® w3)), (3.47)
which proves (i). O
Commutativity

Let C; and C be G-complexes and let
o:Ci®CL—C

be a G-pairing. Recall that the pairing e is commutative up to homotopy, if there exist
sheaf morphisms
he :CH-,p) @CT(-,q) = C"T™ (- p+q)
satisfying
aeff—(—1)""Bea=dh.(a® )+ h.d(fa).

As in the case of the associativity, in order to have a commutative product on the
level of arithmetic groups, we need a slightly stronger condition than commutativity up
to homotopy.

Definition 3.48. The product e is called pseudo-commutative, if it is commutative up
to homotopy and if the equality
he(a®B) =0

holds for all a € ZCP(X,p) and § € ZCY(X,q).

Theorem 3.49. Let Y and Z be closed subsets of X, and g1 € ffgf’y(X,p), go €
Hgf’Z(X, q) with g; = (wj,g;) for j = 1,2. Then, we have the following statements.

(i) In the group ﬁgp;fqz (X,p+ q), there is an equality
g1 % g2 — g2 * g1 = a(he(w1 @ wa)).
(ii) For g or g2 € Ker(w), the equality
g1*@2=0g2%@
holds.
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(iii) Moreover, if the product e is pseudo-commutative, again the equality

g1 * g2 = g2 * g1
holds.

Proof. The statements (ii) and (iii) follow immediately from (i). To prove (i), let us
write s = p + q. We recall that g; * go is defined as an element of

HEy 7(X,5) = H*(C(X,5),C(X;Y, Z,5))
with C(X;Y, Z, s) given in Definition 3.27. By means of the inverse of the isomorphism
g,stZ(Xv 5) — Hg,SY,Z(Xa s),

which is induced by the kernel-simple quasi-isomorphism, the element g; * go is sent to
Hgfyﬁ (X, s). We now consider the commutative diagram of complexes

C(X;Y,Z,s)

C(X;2,Y,s)

where T'((«, 8),7) = ((8, @), —y). We note that the isomorphism 7" induces an isomor-
phism, also denoted by T,

T: ﬁg?Y,Z(XVS) = Ang,Y(XaS)-
We are left to compare the element
T((w1,G1) * (w2,92)) = T(w1 o w2, (91 ® w2, w1 ®g2), —g1 ® g2)~)
= (w1 o wa, (w1 ®92,91 ®w2),91 ®g2)")
with the element
(w2, G2) * (w1, 91) = (w2 o w1, ((g2 w1, w2 0 91), —g2 0 91)7)

in the group ﬁng’Y(X, s). To do this, let us consider the element y € C?*72(X; Z,Y, s)
given by

Y = ((he(w1 ® g2), he(g91 @ wa)), he(gr ® g2))-
With this element we derive
T(g1 % g2) — g2 * g1 — (0,dy) = a(he(wr @ w2)); (3.50)

here we have used the fact that the elements w; have even degree, and the elements g,
have odd degree. This completes the proof of (i). O
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G-algebras and G-modules

The above results can be applied to the case of G-algebras and G-modules.

Definition 3.51. A G-algebra over X is a G-complex C together with a G-pairing
e:CRC—C

making (C, ) into a graded differential algebra with unit element which is associative up
to homotopy and commutative up to homotopy. We call C pseudo-associative or pseudo-
commutative, if the product e is.

A direct consequence of Theorems 3.42 and 3.49 is the following theorem.
Theorem 3.52. Let C be a pseudo-associative and pseudo-commutative algebra over X.

Then, the direct sum

Y closed
p=20

is an associative and commutative algebra. O
Once we have the notion of G-algebra, we can define the concept of a G-module.

Definition 3.53. Let C be a G-algebra over X. A G-module over C is a G-complex C’
over X together with a G-pairing
Cel =,

which is associative up to homotopy. We call such a pairing a G-action. We call the
G-action pseudo-associative, if the pairing is pseudo-associative.

As a consequence of Theorem 3.42, we have the following theorem.

Theorem 3.54. Let C be a pseudo-associative G-algebra over X, and C' a G-complex
provided with a pseudo-associative G-action. Then, the direct sum

@ fIQ?,Y(va)

Y closed
p=0
5 J 1Q, 7 y &) i 7 A2p
is an associative module over the associative algebra EBy,p HC7Y(X,p). O

Multiple products

Proposition 3.55. Let y; be p;-codimensional cycles of X, Y; = suppy;, and g; Green
objects for the class of y; (j = 1,...,r) such that codim(Y1 N---NY;) =p1 +--- + p,.
Then, the r-fold x-product g1 * --- * g, is a well-defined Green object for the class of
Y1 - - Yr even though partial intersections of the Y; need not be proper.

Proof. The proof of the proposition is an immediate consequence of Theorems 3.37,
3.39 and 3.52. (]
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3.5. Functorial properties of Green objects

Throughout this section, k-scheme will mean regular separated scheme of finite type
over k.

Direct image of a G-complex

Let f : X — Y be a morphism of k-schemes, and Cx a G-complex over X. Since
Cx satisfies the Mayer—Vietoris principle, it is clear that f.Cx also satisfies the Mayer—
Vietoris principle. Since G is a sheaf in the big Zariski site over k, there is a morphism
of sheaves Gy — f.Gx on Y. Therefore, the composition

Gy — fiGx — fiCx

determines a structure of G-complex on f.Cx.

Pull-back of Green objects

Definition 3.56. Let f : X — Y be a morphism of k-schemes, and let Cx, Cy be
G-complexes over X, Y, respectively. A contravariant f-morphism (of G-complexes) is a
morphism of G-complexes over Y:

f# :CY_>f*CX~

If g: Y — Z is another morphism of k-schemes, and ¢# : C; — ¢.Cy a contravariant
g-morphism, then g.(f#) o g* is a contravariant (g o f)-morphism.

Let f# be as in Definition 3.56. Then, for any open subset U C Y, any closed subset
Z C U, and any integer p, we have a morphism

s(Cy (U,p),Cy (U \ Z,p)) = s(Cx (f~(U),p),Cx (f71(U\ Z),p))
given by the assignment
(w,9) = (ffw, f*g).
Therefore, we have induced morphisms, again denoted by f#,
7 He, 7(U.p) — ng,ffl(z)(f_l(U)ap)»
P* B, 7 (Up) = HE o2 (F71(U), ).

Theorem 3.57. Let f : X — Y be a morphism of k-schemes, let Cx, Cy be G-complexes
over X, Y, respectively, and let f# be a contravariant f-morphism. Then, we have the
following statements.

(i) There is a commutative diagram

HY(U.G(p) —L> H} (/). 6(p))

Ccy l lCcX

#
Hgy,Z(U’p) SN ng’ffl(z)(f_l(U%p)



Cohomological arithmetic Chow rings 77

(ii) Setting U’ = f~Y(U) and Z' = f~1(Z), we have the commutative diagram

a

n— A n— n cl n
HCY,IZ(U7p) Cy 1(Uap) HCy,Z(Uap) HCy,Z(Uap)

N | .| |

n— Sn— a_ ijn cl
HE Yy (U p) —= Co (U, p) — > HP 5 (U',p) —— H¢, 7(U',p)

O

Corollary 3.58. Let z € ZP(Y') be a p-codimensional cycle on'Y with Z = supp z, and
9. = (w2, 9-) a Green object for the cycle z. Then, we have the following.

(i) The element f#(g.) is a weak Green object for the class of f*(z) in the group
CHI},l(Z)(X).
(ii) If the cycle f~1(Z) has codimension p in X, the element f#(g.) is a Green object
for the cycle f*(z).
U

By a similar argument to the one used in the course of the proof of Theorem 3.39, we
derive the following proposition.

Proposition 3.59. Let z € ZP(Y) be a p-codimensional cycle on Y with Z = supp z
and codim f~1(Z) = p. Let g, be a Green object for the class of z, and g’, € flgz’z(Y, D)
be any representative of g,. Then, the image of f#(g.) in the group ﬁgfﬁzp (X,p) is
independent of the choice of g.. O

Definition 3.60. With the hypothesis of Proposition 3.59, we will denote the image of
f#(gt) in the group HE, 5, (X,p) by f#(g-).
Definition 3.61. Let Cx ® Cyx — C%, and Cy ® C}, —= CY- be G-pairings, and let
&y — f.Cx,
1E ¢y — 1Lk,
fEn -y = f.C%

be contravariant f-morphisms. We will call the f-morphisms fc# , fc?% , fg%, compatible
with the pairings ex and ey, if the equality

ff(y) oy fé%(y/) = fc?%/ (yoyy)
holds for all sections y, ' of Cy, C}-, respectively.

Proposition 3.62. Let fc# , fé%, and fzjf, be contravariant f-morphisms which are com-
patible with the pairings ex and ey as in Definition 3.61. Then, for any pair of Green
objects g1, go the equality

f# (g1 % g2) = [ (g1) = [#(a2)
holds. O
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Change of G-complex

Remark 3.63. We point out that all the results concerning inverse images are com-
patible with the change of G-complex, i.e. they apply to the case in which we have two
G-complexes C and C’ over X together with a morphism f# : C — C’ of G-complexes.

By Corollary 2.63, there is a case, when the change of G-complex does not change the
space of Green objects.

Proposition 3.64. Let X be a k-scheme, and C, C' two G-complexes over X. Let f# :
C — (' be a morphism of G-complexes such that the morphism

f*C(X,p) = C'(X,p)
is an isomorphism for any integer p, and such that the morphism
f*:cU,p) —C'(U,p)

is a quasi-isomorphism for any open subset U C X and any integer p. Then, the induced
morphism

f# : Hg,Z(X>p) — Hg’,Z(va)
is an isomorphism for any closed subset Z C X and any pair of integers n, p.

Proof. This follows immediately from Corollary 2.63. (]

Push-forward of Green objects

Definition 3.65. Given a graded complex A = (A*(x),d), the twisted complex A(d) is
given by A(d)"(p) = A™(p + d) with the same differential.

Definition 3.66. Let f : X — Y be a proper morphism of equidimensional k-schemes
of relative dimension d. Let Cx, Cy be G-complexes over X, Y, respectively. A covariant
f-morphism (of G-complexes) is a morphism of graded complexes of sheaves over Y’

f# : [x«Cx — Cy (—d)[—2d]
such that for any open subset U C Y, and any closed subset Z C f~!(U), the induced
diagram
fi n—
Hy(f~1(U),6(p)) —— H} ;" (U,G(p — )

n _ f e
HCX,Z(f I(U)vp) — Hcy,QfCéz)(Uap —d)

is commutative. In the above diagram, the arrow fx is given by the composition of
morphisms

ng,z(ffl(U)ap) - ng,f—l(f(z))(fil(U)vp) - Hg;chéz)(U,p —d);
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here the first map is the restriction morphism, and the second map is induced by the
morphism of complexes

S(CX(f_l(U)ap)7CX<f_1(U \ f(Z))>p)) - S(Cy(U,p - d)7CY(U \ f(Z)7p - d))[_2d]
(3.67)
which is given by the assignment

(wag) — (f#w7 f#g)'

With the notation and assumptions of Definition 3.66, a covariant f-morphism fx
induces a morphism by means of the restriction morphism followed by the morphism of
complexes (3.66); this morphism is again denoted fx,

fu - HE (F7HU)p) = HE %5 (U — d).

If g : Y — Z is another proper morphism of equidimensional k-schemes of relative
dimension e, and g4 : g.Cy — Cz(—e)[—2¢] is a covariant g-morphism, then g4 o g.(fx)
is a covariant (g o f)-morphism.

Theorem 3.68. Let f : X — Y be a proper morphism of equidimensional k-schemes
of relative dimension d, and let f4 be a covariant f-morphism. Given U, Z as in Defi-
nition 3.66, set U' = f~1(U), Z' = f(Z), respectively. Then, for every n, p, we have the
commutative diagram

HEL (U p) —— Co (U7, p) —> HE, (U, p) —= HE, ,(U",p)

A .|

Hg‘:’_vé’(U’ q) 5;/,}_1([]7 Q) . ﬁg)lz,Z’(U7 q) i> Hg:/,Z/(Ua Q)

where g = p —d and m = n — 2d. O

Given a proper morphism f : X — Y of equidimensional k-schemes of relative dimen-
sion d, and a closed subset Z C X, we have codim f(Z) > max(codim Z—d, 0). Therefore,
the following result is simpler to prove than the corresponding statement for the inverse
image of Green objects.

Proposition 3.69. Let f : X — Y be a proper morphism of equidimensional k-schemes
of relative dimension d, and let fu be a covariant f-morphism. Let z € ZP(X) be a
p-codimensional cycle on X with Z = supp z. Let g, be a Green object for the class of
z, and g, € ﬁ§Z7Z(X,p) be any representative of g,. Then, the image of fx(g’,) in the
group Hgij;g,d(}/,p — d) is independent of the choice of g/,; it is a Green object for the
class of the cycle f.(z). O

Definition 3.70. With the hypothesis of Proposition 3.69, we will denote the image of
F4(gl) in the group HZP 29 ,(Y,p — d) by fy(s-)-
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Covariant pseudo-morphisms

In some cases, the notion of covariant f-morphism is too restrictive. Moreover, it is not
strictly necessary in order to define direct images of Green objects. Hence, we introduce
the notion of covariant f-pseudo-morphisms.

Definition 3.71. With the hypothesis of Definition 3.66, a covariant f-pseudo-morphism
(of G-complezes) is a diagram of morphisms fx of graded complexes of sheaves over Y

folx <= F = Cy(—d)[-2d],
where F is an auxiliary G-complex satisfying the following conditions.
(1) The morphism wu is a quasi-isomorphism such that the morphism of global sections
u: (Y, F) =T, flx)=T(X,Cx)
is an isomorphism. Then, as in Definition 3.66, the pseudo-morphism f4 induces a
morphism
HE, (5 (U).p) 5 HEZ2, (U.p — d)

for any subset U C Y, and any closed subset Z C f~1(U).

(2) The diagram
Hy (1~ (U),6(p)) —"= H} 2 (U, 9(p - d))

C \LC
T

ng,Z(f_l(U)vp) I Hg;)zftiz)(U:p - d)

is commutative.

Observe that the definition of a covariant f-pseudo-morphism is stronger than the
notion of a morphism in the derived category, because we need a well-defined morphism
of groups on the level of global sections. Note also that a covariant f-morphism determines
a covariant f-pseudo-morphism by taking for u the identity map.

Since F and f.Cx satisfy the Mayer—Vietoris principle, they are totally acyclic. There-
fore, the fact that u is a quasi-isomorphism of sheaves implies that the induced morphism

f(va) — CX(f_l(U)vp)

is a quasi-isomorphism for every open subset U C Y, and every p € Z. Taking into
account that the induced morphism is an isomorphism on the level of global sections by
Corollary 2.63, we obtain the following lemma.

Lemma 3.72. Let f : X — Y be a proper morphism of equidimensional k-schemes
of relative dimension d, and let fu be a covariant f-pseudo-morphism. If Z is a closed
subset of X, the induced morphism

HY(F(Y,p), F(Y\ f(Z),p)) = H"(Cx(X,p),Cx (X \ fH(f(2)),p))

is an isomorphism. ([
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This result enables us to define direct images.

Definition 3.73. Let f: X — Y be a proper morphism of equidimensional k-schemes
of relative dimension d, and let fy be a covariant f-pseudo-morphism. If Z is a closed
subset of X, the induced morphism

fa o HE 2(X,p) = HE %, (Yop —d)

is defined by the composition

HE, 7(X.p) = H"(Cx(X,p),Cx (X \ Z,p))
— H"(Cx(X,p).Cx(X\ 71 (f(2)).p))
& H(F(Y,p), F(Y' \ f(2),p))
— H"24(Cy (Y,p — d),Cy (Y \ f(Z),p — d))

rrn—2d
= HCy,f(Z)(Y7p —d).
Remark 3.74. The analogues of Theorem 3.68 with U = Y, and of Proposition 3.69
then also hold for covariant f-pseudo-morphisms.

Composition of pseudo-morphisms

It is not clear from the definition whether we can always define the composition of
covariant pseudo-morphisms. Nevertheless, we can determine when a pseudo-morphism
should be considered as the composition of two pseudo-morphisms.

For this, let g : Y — Z be another proper morphism of equidimensional k-schemes of
relative dimension e, and let g4 : g.Cy +— F' — Cz(—e)[—2¢] be a covariant g-pseudo-
morphism. Furthermore, let

hy (9o f)xCx €= F" = Cz(~d — )[-2d — 2e].

Definition 3.75. We say that hx is the composition of fx and g4, if there is a com-
mutative diagram

(g © f)*CX
f
e
| g F 9+Cy (—=d)[—2d]
\]-‘” F'(—=d)[-2d] —— Cz(—d — e)[—2d — 2¢]

w
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Proposition 3.76. Let hy be a composition of the pseudo-morphisms fx and gx. If W
is a closed subset of X, the induced morphisms on the level of Green objects

o HE (X, p) = HE 30 (Vip = d),

Cy, f(
9# - Hgy_i‘%w) Y,p—d) — ng_jl(i;(%f/))(z’p —d—e),
h# : HgXW(va) — Hg;i‘faf)e(Z,p —d— 6)

satisfy ]’L# =g#° f#

Proof. We may assume that W satisfies W = h=Y(h(W)). Writing U = X \ W,
U =Y\fW),U" =Z\h(W), and n' =n—2d, n" = n— 2d — 2e, we obtain
the following commutative diagram (where we have omitted the corresponding twists for
ease of notation):

~

= H"(F(Y),F(U) — H"(Cy(Y),Cy (U"))

H™(F"(2), F'(U")) —= H" (F(2), F/(U")) —= H""(C2(2),C2(U"))
=

This proves the proposition. O

Projection formula

In order to have a projection formula for Green objects, we need that the complexes
under consideration also satisfy a projection formula.

Definition 3.77. Let f: X — Y be a proper morphism of equidimensional k-schemes
of relative dimension d. Let Cx, C, C% be G-complexes over X, and let Cy, Ci,, C{ be
G-complexes over Y. Let

f#:Cy — f.Cx
be a contravariant f-morphism, and let
fy  [Cx = Cy(=d)[-2d],  f: fuiCx — CY(—d)[—2d]
be covariant f-morphisms. Finally, let
Cx®Cx “5C%,  Cyoly 5CY
be G-pairings. We call (f#, f%“ f%’&, ex, ey ) a projection five-tuple, if the equality
Fa(f#(y) ex x) =y oy fu(x)

holds for all sections z, y of f.C%, Cy, respectively.
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Proposition 3.78. Let f : X — Y be a proper morphism of equidimensional k-schemes
of relative dimension d, and let (f#, f%é, f%’ﬁ, ex,ey) be a projection five-tuple. Then, for
any pair of Green objects g1, go the equality

Fa(f#(a1) *x 92) = g1 %y fiu(g2)
holds. O

Pseudo-morphism and the projection formula

Remark 3.79. Assume that f%& and f%i in Definition 3.77 are only covariant f-pseudo-
morphisms given by

£.Ch & F Y e (—d)[—2d],
£l & 2 et (—d)[—2d),

respectively. In order to have a projection formula on the level of Green objects in this
case, we need the following three G-pairings

Cx®Cx ~5C%, CyoF “5HF",  Craly 50
satisfying
u"(yerx)=fF(y)ex ' (z),  V'(yerz)=yey(z)

for all sections z, y of F’, Cy, respectively.

4. Abstract arithmetic Chow groups

The idea behind the definition of arithmetic Chow groups for a variety X over the ring of
integers of a number field is that the variety in question can be ‘compactified’ by adding
the complex variety X, = X x C, or more precisely, by adding a certain cohomology
theory on the complex variety X,. For instance, the cohomology theory involved in the
definition of arithmetic Chow groups by Gillet and Soulé is the real Deligne—Beilinson
cohomology (see [17]). However, the use of secondary characteristic invariants (Green
forms, Bott—Chern forms) implies that the arithmetic Chow groups depend not only
on the cohomology theory, but also on the particular complex used to compute the
cohomology. Therefore, the properties of this complex are reflected in the properties
of the arithmetic Chow groups. The objective of this section is to develop an abstract
version of the construction of arithmetic Chow rings given in [17] emphasizing how the
properties of the complexes under consideration are reflected by the properties of the
arithmetic Chow groups.

4.1. Arithmetic varieties

In this and the next subsection we will fix frequently used notation. Unless stated
otherwise, we will adhere to the notation of [36]. For more details we refer the reader to
that paper, and also to [17,71].
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Arithmetic rings

Definition 4.1. An arithmetic ring is a triple (A, X, F) consisting of an excellent
regular noetherian integral domain A, a finite non-empty set X of monomorphisms o :
A — C, and an antilinear involution F,, : C¥ — C¥ of C-algebras such that the diagram

commutes; here § is induced by the set of monomorphisms in /.

The main examples of arithmetic rings are subrings of a number field F' which have F’
as fraction field, subrings of R, and C itself (see [36, 3.2.1] for details).

Arithmetic varieties

Notation 4.2. Let (A, Y, F,) be an arithmetic ring with fraction field F', and let X be
a scheme over Spec(A). We will write X for the generic fibre of X. If 0 € X, we will
write X, = X ® C, and Xy = X ® C*. We denote by X, the analytic space

o A

Xoo = X5(C) = [ X,(C).

oceX

We observe that the antilinear involution F,, of C* induces an antilinear involution Fie
of X5. We denote the real variety (X5, Fs) by Xg.

Let us fix an arithmetic ring A, and a Gillet complex G for schemes over the field of
real numbers R.

Definition 4.3. An arithmetic variety X over A is a regular scheme X, which is flat
and quasi-projective over Spec(A). If X is equidimensional, we mean by the dimension
of X over A, the relative dimension of the scheme X over Spec(A). If A is fixed and clear
from the context, we call X simply an arithmetic variety.

Definition 4.4. A G-arithmetic variety over A is a pair

-~

X =(X,0)
consisting of an arithmetic variety X over A and a G-complex C on the real variety Xg.

Definition 4.5. Let X = (X,Cx) and ¥ = (Y,Cy) be G-arithmetic varieties over A. A
morphism

f:X—>Y
of G-arithmetic varieties over A is a pair f = (f, f#), where f : X — Y is a morphism
of A-schemes, and f# : Cy — f,Cx is a contravariant fr-morphism of G-complexes.
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The class of arithmetic varieties over A together with their morphisms forms a category.
We denote the category of G-arithmetic varieties over A by 24 g. If the cohomology theory
G is fixed, we will write simply 2 4 instead of 2 4 ¢, and we will call a G-arithmetic variety
simply an arithmetic variety.

Definition 4.6. A covariant morphism of G-arithmetic varieties
f:X=(X,Cx) =Y =(Y.Cy)

over A is a pair f = (f, f#), where f : X — Y is a proper morphism of equidimen-
sional A-schemes of relative dimension d, and fx : fulx — Cy(—d)[—2d] is a covariant
fr-morphism of G-complexes. We call f a covariant pseudo-morphism of G-arithmetic
varieties over A, if fu is a covariant fr-pseudo-morphism.

Remark 4.7. Let X be an arithmetic variety over A. If C, C' are two G-complexes on
Xg, and f : C — C' is a morphism of G-complexes, then f can be seen as a morphism of
G-arithmetic varieties (X,C’) — (X,C), as well as a covariant morphism of G-arithmetic
varieties (X,C) — (X,C’). Therefore, f will enjoy the properties of both kinds of mor-
phisms.

4.2. Arithmetic Chow groups

Throughout this section X = (X,C) will be a G-arithmetic variety over an arithmetic
ring A.

Arithmetic cycles

Notation 4.8. A cycle y € ZP(X) on X determines a cycle on X . Clearly, this cycle is
invariant under the action of Fl,. Therefore, it is a cycle on Xk, which will be denoted
by yr. Analogously, any Kj-chain f on X determines a K;-chain fg on Xg.

Since the G-complex C depends only on X, we will write as a shorthand

C*(X, p) = C* (Xz.p).
HE,ZP (va) = H&k,ZP (X]Rap)u
HE,ZP (va) = H&k,ZP (X]Rap)u
and similar notation for cohomology with supports.

For any cycle y € ZP(X), we write cl(y) for the class cle(ygr). For any Kj-chain f €
RP~1(X), we write cl(f) for the class cle(fr), and g(f) = g(fr) (see Definition 3.24).

Definition 4.9. We define the group of p-codimensional arithmetic cycles of)? =(X,C)
by

ZP(X,C) = {(y.9,) € Z"(X) ® HZ",(X,p) | cl(y) = cl(g,)}

with the obvious group structure.
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Rational equivalence

We now define rational equivalence in this set-up.

Definition 4.10. Let f € RE~'(X) be a K;-chain. We set
div(f) = (div(f), a(/))-
By Remark 3.25, we have (TR/(f) € ZP(X,C). We define
Rat”(X,C) = {div(f) | € Ry~ (X)} € Z°(X,C).
It is easy to see that P/{;cp(X,C) is a subgroup of zp(X, C).

Definition and basic properties

Definition 4.11. The pth arithmetic Chow group of)? = (X,C) is defined by
CH”(X,C) = Z°(X,C)/ Rat”(X, ).

The groups éﬁp(X,C) will also be called C-arithmetic Chow groups of X. The class of
the arithmetic cycle (y, g,) in CH?(X,C) will be denoted by [y, g,].

Notation 4.12. There are well-defined maps

¢:CHP(X,C) — CHP(X), Cly: 9] =[],

p: CHPP™H(X) — HEPH(X,p) CC* (X, p), plf] = cl(f),
a:C¥1(X,p) > CH?(X,0), a(a) = [0,a(a)],
w: CHP(X,C) = ZC% (X, p), wly, gy] = w(gy),
h:ZC%(X,p) — HZF(X,p), h(a) = [a].

We will also write
CH?(X,C)o = Ker(w : CH?(X,C) — ZC?(X, p)),
CHP(X)o = Ker(cl : CHP(X) — HP(X,p)).

Theorem 4.13. Using the notation following Definition 3.12, we have the following
exact sequences:

CHP~7(X) £ €%~ 1(X, p)Pe & CHP(X,C) < CHP(X) — 0, (4.14)
CHPMP(X) & HZ 7YX, p)Pe & CHP(X,C)
L= Cmr(X) @ 263 (X,p) S HE(X,p) 0, (4.15)

CHP™MP(X) £ HZP7H (X, p)Pe & CHP(X,C)o < CHP(X)g — 0. (4.16)
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Proof. Let us prove the exactness of the first sequence. By Proposition 3.23, for any
p-codimensional cycle y on X there exists a Green object g, for the class of y. Therefore,
( is surjective.

It is clear that { oa = 0. On the other hand, assume that {(a) = 0, and let (y, g,) be
any representative of a. Then, we have y = div(f) for some K;j-chain f, and we obtain
(y,8y) ~ (0,94 — g(f)). Since gy — g(f) is a Green object for the trivial cycle, we have
cl(gy — 9(f)) = 0. By the exact sequence (3.15), we find g, — g(f) € a(C?P~1(X, p)Pure),
i.e. a € Im(a).

Recalling g(f) = b(cl(f)) together with equation (2.55), we find g(f) = a(cl(f)),
which shows aop = 0. On the other hand, if a(a) = 0, we have (0,a(a)) = (Tl;/(f) for
some Kj-chain f. Therefore, we have div(f) =0, and g(f) = a(a). Since div(f) = 0, we
have cl(f) € Ho"~'(X,p), from which we derive as before g(f) = b(cl(f)) = a(cl(f)).
Therefore, @ — cl(f) lies in the kernel of a. By the exact sequence (3.15), this implies

a=cl(f) = plf].
The proof of the other two exact sequences follows the same lines, but uses the exact
sequence (3.16) instead. O

Note that at this abstract level, the above theorem is a formal consequence of the
definitions.

4.3. Arithmetic intersection pairing

The aim of this subsection is to define an arithmetic intersection pairing. We will follow
the strategy of [36]. Therefore, we divide out by finite rational equivalence before taking
Green objects into account.

Finite support
Definition 4.17. Let fin, respectively 7(p), be the following families of supports:

fin={Y C X |Y closed, Y N Xr = 0},
respectively

T(p) ={Y C X | Y closed, codim(Y N Xp) > p}.
With this notation, we have the exact sequences

B k@) T Z(X) —» Z°(XF) ® CHE,(X) — 0,

zex®-1

mﬁXF:(D
D klx) 5 27 (Xp) ® CHY, (X) — CHP(X) — 0,

xEX}pfl)

and a canonical isomorphism

CH?, (X) = Z"(Xp) ® CHE, (X).
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Moreover, if z € X~ with {2} N Xp =0, and f € k(z)*, we have div(f) N Xp = 0,
and g(f) = 0. Therefore, we find

div(f) = (div(f),0).

Thus, for any G-arithmetic variety, there is a short exact sequence

P k) Y, 99(Xp,C) @ CHE (X) — CHP(X,C) - 0
ZL’GXI(TP B

Observe that the notation Z” (X, C) makes sense, since (Xr,C) is a G-arithmetic variety
over the arithmetic ring F.

The intersection pairing

Let y be a p-codimensional, and z a g-codimensional cycle of X. Put Y = suppy, and
Z = supp z. Assume that yr and zp intersect properly; this shows Y NZ € 7(p+ ¢). By
Theorem 1.33, there is a well-defined class

[y] - [2] € CHYL, (X)q,
and hence a well-defined class

[y] - [e] € CHY Y

o (X)a = ZP7(Xp)g ® CHE ! (X)g-

Let (X,C), (X,C"), (X,C") be three G-arithmetic varieties with the same underlying
scheme X, and let @ : C®C" — C” be a G-pairing. Let g, be a Green object for the class
of y with values in C, and g, a Green object for the class of z with values in C’. Then,
the s-product g, * g, is a Green object for the class of yp - zp with values in C” (see
Definition 3.40), and we write

(yvgy) ! (Z’gz) = ((yF CZF, Gy ¥ gz)7 [y ’ Z]ﬁn) Z (XF;CH)Q @ CHqu( )Q' (418)

We will denote the image of the product (y,g,) - (2,9.) in 6ﬁp+q(X, C"Mq by [(y,9y) -
(2,82)]

Theorem 4.19. Let (X,C), (X,C), (X,C") be three G-arithmetic varieties with the
same underlying scheme X, and let @ : C ® C' — C” be a G-pairing. Then, we have the
following statements.

(i) There exists a pairing
CHP(X,C) ® CHY(X,C') - CHP*(X,C")qg,

which is determined by formula (4.17) for cycles intersecting properly in the generic
fibre.
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(ii) The following diagrams commute:

CH?(X,C) ® CHY(X,C') — CH”*(X,C")q

<®<l I

CH?(X) ® CHY(X) —— > CHP*(X)q

and

. e~

CH?(X,C)® CHY(X,C') CHP*(X,C")g

w@wi iw

ZC?(X,p) ® ZC™(X, q) ——= ZC"***21(X,p + q)g

Proof. Let a € Gﬁp(X,C), and (3 € Gﬁq(X, C’"). By the moving lemma for cycles on
a regular variety over a field, there are representatives (y, g,) of o, and (z, g.) of 3 such
that yz and zp intersect properly. By means of formula (4.17), we define

a - ﬂ = [(yvgy) : (zagZ)]

We have to show that this definition does not depend on the choice of representatives.
Let (v, g;,) be another representative of o such that y% and zp also intersect properly.
Then, there exists a K;-chain f such that

div(f) = (' gl) — (v, 8,)-

Therefore, it suffices to show that whenever f is a K;-chain whose divisor div(f)p inter-
sects zp properly, then there exists a K;-chain g such that

div(g) = div(f) - (z,8:) € 2" (X, C")q & CHE* (X)g.
Let S = suppdiv(f), U = X\ S, and Z = supp z. By Corollary 1.35 and Proposition 1.55,

there exists a Ki-chain g € RETY(X)q satisfying
(iv(g)] = [div(/)] - [2] € CHER, (X)q, (4.20)
cl(g) = cl(f) cl(=) € B2 (X \ (SN 2).p+ q)e. (421)
Since SN Z lies in 7(p + ¢), equation (4.19) is also valid in CH?E;quq) (X)g which shows

[div(g)] = [div(f)] - [2] = (div(f)F - zp, [div(f) - 2]an)-
Furthermore, we derive from equation (4.20) and Proposition 2.67
9(g9) = b(cl(g)) = b(cl(f) e cl(2)) = b(cl(f)) * g = a(f) * g--
Summing up, we find the equality
div(g) = (div(F)r - 27, 9(F) * 0., [div(f) - 2Jin) = diV(f) - (2,82)

in the group 2p+"(XF,c")@ @ CHEM(X)g, as desired.
The compatibility of the product with the morphisms ¢ and w follows directly from
the definitions. O
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Remark 4.22. It may be interesting to explain more clearly why we do not need the K-
chain moving lemma. A close look at the proof of the well-definedness of the arithmetic
intersection product in [36] shows that the Kj-chain moving lemma is used, first, to
define a K;-chain up to boundaries f - [z] (which is the g we are using in our proof) and
second, to prove two compatibility properties

div(f - [2]) = div(f) - [2],
log |f - [2][* = log | f|* A 6.

We observe that in the proof, the Kj-chain f - [z] and the first compatibility condition is
used on the whole arithmetic variety X where no K;j-chain moving lemma is available.
Therefore, a result similar to Corollary 1.35 is used implicitly. This means that the
essential use of the moving lemma for K;-chains is to prove the compatibility with Green
currents: it is the concrete nature of the Green currents that forces the use of the K;-chain
moving lemma.

In our case the compatibility that we need is equation (4.20), which follows directly
from the properties of a Gillet cohomology. Roughly speaking, since the map that sends
a Kj-chain to the associated Green object factors through a cohomology group, we are
able to avoid the K;j-chain moving lemma.

The fact that the product is defined only after tensoring with Q is due to the lack of
a satisfactory intersection theory on general regular schemes, and the use of K-theory.
In the cases in which an intersection product of cycles can be defined without using
K-theory, it is possible to work over the integers. For instance, this is the case when y

and z intersect properly on the whole of X, and not just on Xp; then, the product y - z

is a well-defined class in CHY"%, (X). Therefore, formula (4.17) gives rise to an element

of ZP+4(X,C") & CHP*9(X). In particular, by the same argument as in [36, 4.2.3.iii] one
can prove the following refinement of Theorem 4.19.

Theorem 4.23. Ifp =1, or ¢ = 1, there is a unique pairing
CH?(X,C)® CHY(X,C') = CHP(X,C")
given by formula (4.17) when the cycles intersect properly. Moreover, this pairing induces
the pairing of Theorem 4.19. O
G-algebras
Let us consider the case when (X, C) is a G-arithmetic variety with C being a G-algebra.

Theorem 4.24. Let (X,C) be a G-arithmetic variety, and assume that C is a pseudo-
associative and pseudo-commutative G-algebra. Then, we have the following statements.

i) D, 6ITIP(X, C)g is a commutative and associative Q-algebra with unit.
(ii) For o € Gﬁl(x, C), B e aﬁl(X,C), and y € 6ﬁp(X, C), we have
a-y=7v-«a€ éﬁp+l(X,C),
(a-B)-y=a-(5:7) € CH"*(X,0).
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(iii) @péﬁp(x, C)og = (Kerw)g is an ideal of @péﬁp(x, C)o.
(iv) (Ker()q is an ideal of P, éﬁp(x, C)oo-

Proof. Since the product of algebraic cycles is commutative and associative, the first
two statements of the theorem follow from the commutativity and associativity of the
x-product of Green objects (see Theorems 3.49 and 3.42). The last two statements are
immediate. O

Theorem 4.25. Let (X,C) be a G-arithmetic variety, and assume that C is a pseudo-
associative and pseudo-commutative G-algebra. The P, CHP (X, C)g-module structure
of P, CHP(X Co,q is then induced by a ¢, CH?(X)q —module structure, i.e. there is a

commutative diagram

CHP(X,C)o® CHY(X,C) —= CHP"(X,C)oq
id ®<l /
CHP(X,C)o ® CHY(X)

Proof. We have to show that Ker(¢) - Im(a) = 0. This follows from Proposition 2.67 (i).
(]

Corollary 4.26. With the assumptions of Theorem 4.25 there is a well-defined product
CH?(X)o @ CHY(X)o ~» CHP*1(X,C)o g

Proof. Let z € CH?(X)o and let y € CHY(X)o. We choose arithmetic cycles T €
CH”(X C)o, respectively y € CHq(X C)o such that ((Z) = x, respectively ((y) = v.
By Theorem 4.25, the product Z - 4 does not depend on the choice of T and 7. O

Remark 4.27. If C is only a G-algebra, then the product in éﬁ*(X, C)q does not need
to be associative or commutative. Nevertheless, Theorems 3.42 and 3.49 imply that the
product induced in @, CH"(X,C)o,q is associative and commutative.

4.4. Inverse images

Let f:(X,Cx) — (Y,Cy) be a morphism of G-arithmetic varieties. In this section we
will construct a pull-back morphism for arithmetic Chow groups.

Definition and basic properties of inverse images

Let (z,9.) € ZP(Y, Cy) be a p-codimensional arithmetic cycle such that f~!(supp 2r)
has codimension p in Xg. By Theorem 1.38, there is a well-defined cycle f*(z) €
CH’;(p)(X). Moreover, by Definition 3.60, there is a well-defined Green object f#(g.)
for the class of f*(zg). In this case we will write

Fr(z.82) = (F(2). [7(92))- (4.28)



92 J. I. Burgos Gil, J. Kramer and U. Kihn

Theorem 4.29. Let f : (X,Cx) — (Y,Cy) be a morphism of G-arithmetic varieties.
Then, the following statements hold.

(i) There is a well-defined morphism of graded groups
£*: CHP(Y,Cy) — CHP(X,Cx)

induced by equation (4.27) for arithmetic cycles (z,9.) € ZP(Y7 Cy) such that
f~1(supp 2r) has codimension p in Xg.

(i) If g : (Y,Cy) — (Z,Cz) is another morphism of G-arithmetic varieties, then the
equality (go f)* = f* o g* holds.

(iii) The pull-back of arithmetic cycles satisfies the following relations:

wo f* = fFouw,
Coff=fo(
froa=aof#.

Proof. Let a € éﬁp(Y, Cy) be an arithmetic cycle. By the moving lemma over R, there
is a representative (z,g,) of a such that f~!(suppzr) has codimension p in Xg. We
define f*(a) as the class of f*(z,g,). It remains to show that f*(a) does not depend
on the choice of the representative (z,g,). In order to do this, let (2’,g./) be another
representative, i.e.

(2.8:) — (2. gr) = div(h) (4.30)

for some Kj-chain h. Writing U = Y \ (supp z U supp z’), the K;i-chain h determines
an element [h] € CH??~1(U). By Theorem 1.39 and Proposition 1.56, there exists an
element f*[h] € CHPP~(f~1(U)) satisfying
div(f*[h]) = f*(div(h)) € CHE (X),
cl(f*[h]) = f#(cl(h)) € HEE (f7H(U),p).

These two equations then imply
f(z8:) = (2, g) = div(f*(h)),
which proves the first statement. The statements (ii), (iii) are now shown easily. O

Multiplicativity of inverse images

Since the pull-back of cycles is compatible with the intersection product of cycles by
Theorem 1.38, we obtain the following result using Proposition 3.62.

Theorem 4.31. Let (f, fF) : (X,Cx) = (Y.Cy), (. f5) : (X.Ck) = (Y.C}), (f. &) :
(X,C%) — (Y,Ci) be morphisms of G-arithmetic varieties, and let Cx ® Cly—3C%,
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Cy ®C4 '—Y>C§} be G-pairings which are compatible with the f-morphisms ff , fé% and
fé%,. Then, the diagram

CHP(Y,Cy) ® CHY(Y,C},) ——= CHP™(Y,C}f )q

/| -
CHP(X,Cx) ® CHY(X,Cl) —— CHP(X,C%)q

is commutative. If p =1, or ¢ = 1 the same result holds true without tensoring with Q.
O

Change of G-complex

The results for inverse images apply in particular to the case of a change of complexes
on X, i.e. when there is a morphism of G-arithmetic varieties

f=(d, f%): (X,C") = (X,0).
Moreover, a direct consequence of Proposition 3.64 is the following result.
Proposition 4.32. Let f = (id, f*) : (X,C") — (X,C) be a morphism of G-arithmetic
varieties such that the morphism
f* 1 C(X,p) = C'(X,p)
is an isomorphism for any integer p, and such that the morphism

f#:eU,p) = C'(U,p)

is a quasi-isomorphism for any open subset U C X and any integer p. Then, the induced
morphism
f*:CHP(X,C) — CHP(X,C")

is an isomorphism for any integer p. (]

4.5. Proper push-forward

Let f: (X,Cx) — (Y,Cy) be a covariant morphism or, more generally, a covariant
pseudo-morphism of G-arithmetic varieties of relative dimension d. In this section we will
construct a push-forward morphism for arithmetic Chow groups.

Push-forward

Let (2,9.) € 2P(X, Cx) be a p-codimensional arithmetic cycle. By Theorem 1.40, there
is a well-defined cycle f.(z) € ZP~%(Y). Moreover, there is a well-defined Green object
f(g.) for the class of f.(zr) (see Definition 3.66). We will write

fe(z,82) = (fe(2), f4(82))- (4.33)
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Theorem 4.34. Let f : (X,Cx) — (Y,Cy) be a covariant morphism or a covariant
pseudo-morphism of G-arithmetic varieties of relative dimension d. Then, the following
statements hold.

(i) There is a well-defined morphism of graded groups
fo: CHP(X,Cx) — CHP~4(Y,Cy)
induced by equation (4.32) for arithmetic cycles (z,9,) € 2P(X, Cx).

(ii) If g : (Y,Cy) — (Z,Cz) is another covariant morphism or covariant pseudo-
morphism of G-arithmetic varieties, then the equality (g o f).« = g« o fx holds.

(iii) The push-forward of arithmetic cycles satisfies the following relations:

wo fu = fyow,
Cofi=fsiol,
froa=aofy.

Proof. We will treat here only the case of a covariant morphism of G-arithmetic varieties;
the case of a covariant pseudo-morphism can be treated analogously.

The only thing that remains to be shown is the compatibility with rational equivalence.
For this purpose, let & € Rb=!(X) be a K;-chain. By Theorem 1.40 and Proposition 1.57,
there is a well-defined Kj-chain f.(h) € Rg:g_l(Y) satisfying

div(f.(h)) = f.(div(h)), (4.35)
lg(f-(h) = F4(clg(h)). (4.36)

By the definition of a covariant morphism of G-arithmetic varieties, equation (4.35)

implies that cle, (f«(h)) = fu(cley (R)). Therefore, we have g(f.(h)) = fu(g(h)), and
consequently

Ful(div(h)) = div(£.(h)).

Projection formula

The next result is a direct consequence of the projection formula for algebraic cycles
and Proposition 3.78.

Proposition 4.37. Let (f, f#) : (X,Cx) — (Y,Cy) be a morphism of G-arithmetic vari-
eties, and let

(f f3) + (X,Cx) = (Y.Cy),

(f, f) : (X.Cx) = (Y.Cy)
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be covariant morphisms of G-arithmetic varieties. Let
Cx @C 25C%, Cyocy 25y

be G-pairings such that (f#, fy f4®x,®y) is a projection five-tuple. Then, the projec-
tion formula

K (f (@) B)=a- fi(B)
holds for all o« € CHP(Y,Cy) and 8 € CHY(X,Cl). O

Remark 4.38. An analogous result also holds when f;# and f%’& are covariant pseudo-
morphisms. We leave it to the reader to make this result explicit.

5. Deligne—Beilinson cohomology as a Gillet cohomology

A particular example for a Gillet cohomology is Deligne—Beilinson cohomology for real
and complex algebraic varieties. In this section we recall the definition and some facts on
Deligne—Beilinson cohomology and homology which we will use in the sequel. The main
references for this section are [4], [27] and [48]. We start by recalling some properties
of general Deligne—Beilinson cohomology; later we will shift to real Deligne-Beilinson
cohomology. We will show that it satisfies most of the properties of a Gillet cohomology.
Moreover, we will construct an explicit Gillet complex for real Deligne—Beilinson cohom-
ology. Note that the results of this section are well known and we include them for the
convenience of the reader.

Notation 5.1. By a complex algebraic manifold we mean the analytic variety associated
to a smooth separated scheme of finite type over C.

5.1. Review of Deligne—Beilinson cohomology
The definition of Deligne—Beilinson cohomology

Let X be a complex algebraic manifold. Let A be a subring of R, and set A(p) =
(271)PA C C. We will denote the corresponding constant sheaves on X also by A, respec-
tively A(p).

Let us choose a smooth compactification X of X with D = X \ X a normal crossing
divisor, and denote by j : X — X the natural inclusion. Let 2% be the sheaf of holomor-
phic differential forms on X, and let Q%(log D) be the sheaf of holomorphic differential
forms on X with logarithmic poles along D (see [23]). Let F be the Hodge filtration of
2% (log D), i.e. )

FPQ%(log D) = P 2% (log D).
p'2p

Then, the Deligne-Beilinson complex of the pair (X, X) is given by the simple complex
Alp)p = s(RjAlp) ® FP 2% (log D) = j.2%),

where the morphism v is defined by u(a, f) = —a + f.
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Definition 5.2. The Deligne—Beilinson cohomology groups are the hypercohomology
groups of the sheaf A(p)p, i.e.

Hp (X, A(p)) = H"(X, A(p)p).

It can be shown that these groups are independent of the compactification X of X. The
Deligne—Beilinson cohomology groups can also be constructed as the hypercohomology
groups of a complex of sheaves of graded abelian groups in the Zariski topology (see
[27, §5] for details). We will denote the corresponding sheaf in the Zariski topology by
A(*)p,zar; we will not need the precise definition of this sheaf for general A. In contrast,
in Definition 5.32, we will give a concrete construction in the case A = R.

An ezxact sequence

The definition of Deligne—Beilinson cohomology as the cohomology of a simple complex
associated to a morphism of complexes implies the existence of some exact sequences. One
of these exact sequences relates Deligne—Beilinson cohomology to the usual cohomology
and shows that the integral Deligne-Beilinson cohomology is an extension of the group
of Hodge cycles by an intermediate Jacobian. We recall the construction of this exact
sequence. There is a natural map

A(p)p — Rj.A(p) (5.3)

given by (a, f,w) — a. The kernel of this morphism is the simple
s(FP (% (log D) — j.82%).

Since the differential is strict with respect to the Hodge filtration (see [23]), the cohom-
ology of this simple complex is given by H*(X,C)/FPH*(X,C). Therefore, there is a
long exact sequence

o= H"YX,C)/FPH" (X,C) — HA(X, Alp)) — H*(X, A(p)) = --- . (5.4)

The product in Deligne—Beilinson cohomology

Beilinson has introduced a product in this cohomology. More specifically, he has intro-
duced a family of pairings indexed by the interval [0, 1]. For 0 < « < 1, the pairing U, is
given by

(a" f’ w) Ua (a/’ f/’wl)
= (ad, fAfiawAhd +(-D)"fFAY)+ (1 —a)(wA f+(=1)"aAw)),

where (a, f,w) € A(p)} and (¢, f',w’) € A(q)y. All these pairings turn out to be homo-
topically equivalent. If @ = 0,1, the pairing is associative and, if a = 1/2, the pairing is
graded commutative. Therefore, we obtain a well-defined commutative and associative
pairing in Deligne—Beilinson cohomology.
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Deligne—Beilinson cohomology and the Picard group
The Axiom 1.2 (xi) of [34] states for Deligne-Beilinson cohomology that there is a
natural transformation of functors

Pic(-) — Ha (-, A(1)).

This natural transformation is realized by a morphism in the derived category of the
category of graded complexes of Zariski sheaves of abelian groups

Cy : ox [—1] — A(l)p’zar; (55)

alg

we refer to [27, § 5] for the precise construction. Here we only sketch a slightly different
version in the case A = Z; the other cases then follow by functoriality. Since, for p > 1 and
n < 0, we have H} (X, Z(p)) = 0, we can assume that the complex of sheaves Z(1)p zar
starts in degree 1. Therefore, c; is determined by a functorial isomorphism

e HO(X,0% ) = Hh(X,Z(1)), (5.6)

alg

which can be described as follows. Using the quasi-isomorphism
Z(1) = s(Ox =% O%[-1)),
one sees that Z(1)p is quasi-isomorphic to the complex
S(Rj.O% & F 2% (log D) > Rj.(2%/Ox)),
where u/(a, f) = —dloga + f. Hence, the group Hj(X,Z(1)) is isomorphic to
{(f.w) € H(X,0%) & H'(X, 2% (log D)) | dlog f = w}.

By the GAGA principle the morphism HY(X,0) ) — H%(X,Z(1)) given by w

alg
(w,dlogw) is an isomorphism.
5.2. Review of Deligne algebras

In this section we will recall some definitions and results from [17] about Dolbeault
algebras and their associated Deligne algebras. The interest in Deligne algebras is
explained by the fact that they are very simple objects which compute real Deligne—
Beilinson cohomology.

Dolbeault complexes

Definition 5.7. A Dolbeault compler A = (A%,da) is a graded complex of real vector
spaces, which is bounded from below and equipped with a bigrading on A¢c = Ag ®r C,

At = P ar,

p+g=n

i.e.

satisfying the following properties.
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(i) The differential d4 can be decomposed as the sum da = d + 0 of operators 9 of
type (1,0), respectively 0 of type (0,1).

(ii) It satisfies the symmetry property AP:9 = A?P  where the bar denotes complex
conjugation.

Notation 5.8. Given a Dolbeault complex A = (Af,d4a), we will use the following
notation. The Hodge filtration F' of A is the decreasing filtration of A¢ given by

FPA" = FPAR = (P AV 7
p'2p
The filtration F of A is the complex conjugate of F, i.e.
F'A" =F AR = FPAL.

For an element 2 € Ac, we write 27 for its component in A*J. For k, k' > 0, we define
an operator FFF : Ac — Ac by the rule

Fk’k/(:r) = Z b

ISk, U2k

We note that the operator F¥* is the projection of AE onto the subspace FkA* N A
We will write F* = Fk—o°,
We denote by AR (p) the subgroup (27i)? - AR C AZ, and we define the operator

Tp - A(c — AR(p)
by setting m,(z) == 1 (z + (—1)P2).

The Deligne complex

To any Dolbeault complex we can associate a Deligne complex.

Definition 5.9. Let A be a Dolbeault complex. We denote by A*(p)p the complex
s(Ar(p) ® FPA X Ac), where u(a, f) = —a + f.

Definition 5.10. The Deligne complex (D*(A, %), dp) associated to a Dolbeault complex
A is the graded complex given by
AR Y p— 1) N Fr PP AL i < 2p — 1,

>

D"(A,p) =
(4.7) {Aﬁ(p)ﬂFp’pAg, if n > 2p,

with differential given by (z € D™ (A4, p))

—Fnoptlnoptld g ifn < 2p—1,
dpr = { —200, ifn=2p—1,
daz, if n > 2p.
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AP L. 5 Amn
T T
: C @
T T

APP L. s A™P R

Abpr=1 .. 5 gp—Llp-l
T T
: : (p—1)
T T
A00 e AP—1,0

Figure 1. D(A, p).

For instance, if A is a Dolbeault complex satisfying AP¢ =0 for p < 0, ¢ < 0, p > n,
or ¢ > n, then the complex D(A,0) agrees with the real complex A%; for p > 0, we have
represented D(A, p) in Figure 1 below, where the lower left square is shifted by one; this
means in particular that A%° sits in degree 1 and AP~%P~1 sits in degree 2p — 1.

Remark 5.11. It is clear from the definition that the functor D(-,p) is exact for all p.

The main property of the Deligne complex is expressed by the following proposition;
for a proof see [17].

Proposition 5.12. The complexes A*(p)p and D*(A,p) are homotopically equiva-
lent. The homotopy equivalences ¢ : A™(p)p — D™ (A, p) and ¢ : D"(A,p) — A"(p)p are

given by
m(w), ifn<2p—1,
w(a7 f7 w) = —1 — +1 .
FPPg + 21, (Qwp~ 1Pty ifn>2p

)

where m(w) = m,_1 (F" """ Pw), i.e. 7 is the projection of Ac over the cokernel of u, and

(2) = (OxP=Ln=P — gan=PP=1 29gP—Ln=P ) jf
o= (z,z,0), if

Moreover, 1 o ¢ = id, and ¢ o1 — id = dh + hd, where h : A™(p)p — A" 1(p)p is given
by

(mp(FPw + F""w), —2FP(m,_1w),0), if

h( f ) P n "
a, |,w —n—
(27IP(F w)7—Fp’pw—2F p(7lp,1w)70), ifn
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Ezxample

Let X be a complex projective manifold, and €% the sheaf of smooth, complex differ-
ential forms on X. Then, the complex of global sections E% of £% has a natural structure
of Dolbeault complex. The cohomology of the complex D*(Ex, p) is naturally isomorphic
to the real Deligne—Beilinson cohomology H3 (X, R(p)) of X (see [25]).

The product in the Deligne complex

The multiplicative structure of a Dolbeault algebra induces a product in the Deligne
complex which is graded commutative and associative up to homotopy.

Definition 5.13. A Dolbeault algebra A = (A%, da, ) is a Dolbeault complex equipped
with an associative and graded commutative product

A Ag X Agp — Ap
such that the induced multiplication on A is compatible with the bigrading, i.e.
AP A AP C AP et

Definition 5.14. Let A be a Dolbeault algebra. The Deligne algebra associated to
A is the Deligne complex D*(A, x) together with the graded commutative product
e : D"(A,p) x D™(A,q) = D"*™(A,p+ q) given by

(1) rp(2) Ay + 2 Arg(y), ifn < 2p, m < 2q,

FZ—T,Z—T(x A y)7 ifn< 2]9, m = 2qa I < 27",
X e y = .

Frr(rp(x) Ay) + 2 Oz Ay) = 77), i n < 2p, m > 2, 1> 2r,

z Ay, if n > 2p, m > 2gq,

where we have written l =n+m, r = p+ ¢, and rp(z) = 27, (FPdaz).
For a proof of the next result we refer to [17].

Proposition 5.15. Let D*(A, x) be the Deligne algebra associated to a Dolbeault alge-
bra A. Then, we have the following statements.

(i) The product e is associative up to a natural homotopy h,.
(ii) For z € D*(A,p), y € D*(A,q), = € D*"(A,r), we have
ha(£®y®z) =0,

i.e. the product e is pseudo-associative in the sense of Definition 3.41; in particular,
the direct sum @D, ., D*"(A, n) is an associative subalgebra.

(iii) There is a natural morphism of graded complexes ), : D*(A,p) — A*(p) given by

() = {a(xp n=p) _ §(zn—PP-L)  if

n <
x, ifn >
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here x € D™(A,p). This morphism is multiplicative up to homotopy and induces a
morphism of graded algebras
H*(D(A,p)) — H"(A(p))-

O
Remark 5.16. In his thesis [32], Fulea has introduced a new product structure for

the Deligne algebra D*(A, x), which is graded commutative and associative. Using this
product structure one may simplify some of the constructions of the present paper; in
particular, one can avoid the use of pseudo-associativity.

Specific degrees

In the sequel we will be interested in some specific degrees where we can give simpler
formulae. Namely, we consider

D*(A,p) = A (p) N AP,
DA, p) = AP (p - AT
D24, p) = AT (p— 1) ) (4720 g AP0
The corresponding differentials are given by
dpz =daz, if z € D?P(A,p),
dpz = —200, if z € D*1(A, p),
dp(z,y) = —0z — dy, if (x,y) € D*P72(A,p).
Moreover, the product is given as follows: for * € D?P(A,p), y € D?1(A,q) or y €
D2171( A, q), we have
zey=zAy,
and for z € D*~1(A,p), y € D*71(4,q), we have
rey=—0xANy+0rAy+xzAdy—xA0dy.

Dolbeault modules

Once we have defined Dolbeault algebras we may introduce the concept of Dolbeault
modules. The main example is the space of currents over a variety as a module over the
space of differential forms.

Definition 5.17. Let A be a Dolbeault algebra and M a Dolbeault complex. We say
that M is a Dolbeault module over A, if M is a differential graded module satisfying
APappa C pptrhatd
The following proposition is straightforward.

Proposition 5.18. Let A be a Dolbeault algebra and M a Dolbeault module over A.
Then, D*(M, ) is a differential graded module over D*(A, x). Moreover, the action is
pseudo-associative. O
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Deligne complexes and Deligne—Beilinson cohomology

The main interest in Deligne complexes is expressed by the following theorem which
is proven in [17] in a particular case, although the proof is valid in general. It is a
consequence of Proposition 5.12.

Theorem 5.19. Let X be a complex algebraic manifold, X a smooth compactification
of X with D = X \ X a normal crossing divisor, and denote by j : X — X the natural
inclusion. Let A* be a sheaf of Dolbeault algebras over X* such that, for every n, p, the
sheaves A" and FPA™ are acyclic, A* is a multiplicative resolution of Rj.R, and (A{, F)
is a multiplicative filtered resolution of (£25-(log D), I). Putting A* = (X, A"), we have
a natural isomorphism of graded algebras

Hp(X,R(p)) = H*(D(A, p))-

Moreover, the morphism r, of Proposition 5.15 (iii) induces the natural morphism of
graded algebras

Hp(X,R(p)) = H* (X, R(p))-

5.3. A Gillet complex: the Deligne algebra Djgg
Smooth differential forms with logarithmic singularities

Let W be a complex algebraic manifold and D a normal crossing divisor in W. We put
X =W\ D, and denote by j : X — W the natural inclusion. We recall that £};, denotes
the sheaf of smooth, complex differential forms on W.

Definition 5.20. The complex of sheaves &}y, (log D) of differential forms with logarith-
mic singularities along D is the Ejy-subalgebra of j,.E%, which is locally generated by

the sections

dz; dz;

logziéi,ﬁ, ﬁ for i = 1,...,m,

Zi Z;
where z; -+ - 2, = 0 is a local equation for D (see [15]).
Notation 5.21. In the sequel we will adhere to the following convention. Sheaves in the
analytic topology will usually be denoted by script letters, whereas the group of global
sections will be denoted by the corresponding roman letters. For instance, we will write

By =T(W, &),
Eyy(log D) = I'(W, €3y (log D)),
E;V,R(logD) =W, E;V,]R(bg D)).

With this notation, the complex Eyy (log D) = (Eyy,z(log D), d) is a Dolbeault algebra.
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Suppose now that W is proper. Then, there are multiplicative isomorphisms in the
derived category of abelian sheaves over W:

Rj.R(p) = €y (log D)(p),
J«d2% = &y (log D),
FP(y, (log D) — FPEy,(log D).

We therefore obtain the following theorem from Theorem 5.19.

Theorem 5.22. There is a natural multiplicative isomorphism

Hp(X,R(p)) — H*(D(Ew (log D), p)).

Logarithmic singularities at infinity

We want to obtain a description of Deligne-Beilinson cohomology which is independent
of a given compactification. Given a complex algebraic manifold X, let I be the category
of all smooth compactifications of X with a normal crossing divisor as its complement.
This means that an element (X, jo) of I consists of a proper complex algebraic manifold
X, together with an immersion j, : X — X, such that D, = X, \ jo(X) is a normal
crossing divisor. The morphisms of I are the maps f : X, — X g satisfying f o j, = js.
It can be shown that the opposite category I° is directed (see [23]).

We put

Eiyy(X)° = lim B (log Da);
agcle
it is clear that the vector spaces Ly, (X)° form a complex of presheaves Ej,° in the
Zariski topology.*

The corresponding real subcomplex Ejog(X)° = (ELg r(X)°,d) is a presheaf of Dol-
beault algebras. Moreover, by the results of [15], if f : X, — X 5 is a morphism of I, the
induced morphism

A (E*Ys (log Dg), F) — (E*YW (log D,), F) (5.23)
is a real filtered quasi-isomorphism. Since I° is directed, all the induced morphisms
(E*Yu (log DO‘)’ F) - (El*og(X)O7 F)

are also real filtered quasi isomorphisms.
We will denote by Ey,, the complex of sheaves in the Zariski topology associated to
the complex of presheaves K Og

Definition 5.24. The complex of differential forms with logarithmic singularities along
infinity is defined by
Ejog(X) = I'(X, Efog);
it is a subalgebra of E% = I'(X, €% ). We denote the corresponding real subcomplex by
B w(X)-
* Added in proof: in fact, Ef,,° is a sheaf (see [19, Theorem 3.6]).
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Remark 5.25. The natural map Ey,,(X)° — Ej,, (X) is injective, but not surjective, in
general.

Pseudo-flasque complezes of presheaves

In order to understand the relationship between the cohomology of the complexes
B (X) and Ef,(X)°, we introduce pseudo-flasque complexes of presheaves.

Definition 5.26. Let X be a scheme and F* a complex of presheaves in the Zariski
topology of X. Then, F* is called pseudo-flasque, if F*()) = 0 and if, for every pair of
open subsets U, V, the natural map

FUUV) = s(FU)eF(V)—=FUNV))

is a quasi-isomorphism.

For instance, any complex of totally acyclic sheaves is a pseudo-flasque complex of
presheaves.

The basic property of pseudo-flasque complexes of presheaves is the analogue of Propo-
sition 1.12.

Proposition 5.27. Let F be a pseudo-flasque complex of presheaves, and let F' be the
associated complex of sheaves. Then, for any scheme X, we have

H"(X,F") = H"(I'(X,F)).
O

Remark 5.28. It is possible to generalize the notion of G-complexes using pseudo-flasque
complexes of presheaves. All the theory developed in §§3 and 4 can be generalized with
minor modifications.

Proposition 5.29. The natural morphism
(Blog (X)%, F) = (Ejog(X), F)
is a filtered quasi-isomorphism.

Proof. By the filtered quasi-isomorphism (5.22), the filtered complex (Ey,(X)°, F)
computes the cohomology of X with complex coefficients with its Hodge filtration. Since
the Mayer—Vietoris sequence for the cohomology of X with complex coefficients is an
exact sequence of mixed Hodge structures, it induces Mayer—Vietoris sequences for the
graded pieces with respect to the Hodge filtration. Therefore, the complexes of presheaves
Elpo’g (X)° are pseudo-flasque. By a partition of unity argument (see the discussion before
Lemma 6.11) it is easy to see that the sheaves Elpo’g(X ) are totally acyclic. Hence, the

result follows from Proposition 5.27. O
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A Deligne complex with logarithmic singularities

Definition 5.30. Let X be a complex algebraic manifold. For any integer p, we put
Dl*og(Xap) = D*(Elog(X)ap)'

By the exactness of the functor D(-, p), Theorem 5.22 and Proposition 5.29, we obtain
the following corollary.

Corollary 5.31. There is a natural multiplicative isomorphism

HL(X,R(p)) = H*(Diog (X, p)).

A Gillet complex for real Deligne—Beilinson cohomology

We denote by C the site of regular schemes in ZAR(Spec(C)). In particular, we recall
that all schemes in C' are separated and of finite type over Spec(C). For a scheme X in
C, the set of complex points X (C) is a complex algebraic manifold.

Definition 5.32. For any integers n, p, let D}, (p) denote the presheaf (in fact, a sheaf)
over C, which assigns to X the group

Diog (X, p) = Ditg (X(C), p) = D" (Eiog(X(C)), p).

For any scheme X in C, we will denote the induced presheaf of graded complexes of real
vector spaces on X by Digg x = Df‘og’X(*).

Proposition 5.33. For any integers n, p, the presheaf Djj,, x(p) is a totally acyclic sheaf
on X.

Proof. This follows from the facts that the functor D(-,p) is exact and that the sheaves
E ] are totally acyclic. O

Theorem 5.34. The graded complex of sheaves of abelian groups Diog is a Gillet com-
plex for regular schemes over C, which computes real Deligne—Beilinson cohomology.
Moreover, the pair (Diog, ®) is a graded commutative and pseudo-associative algebra for
real Deligne-Beilinson cohomology.

Proof. Since D, is a totally acyclic sheaf in the Zariski topology, the hypercohomol-
ogy agrees with the cohomology of the complex of global sections. By Theorem 5.19,
the complex of global sections computes real Deligne—Beilinson cohomology. Since [48]
shows that real Deligne—Beilinson cohomology satisfies the Gillet axioms, the complex
Diog is a Gillet complex. Finally, Proposition 5.15 and Theorem 5.19 imply the claimed
multiplicative properties. (]
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5.4. Deligne—Beilinson homology of proper smooth varieties

The homology theory associated to a Gillet cohomology determines direct images and
classes for algebraic cycles. For this reason we have to discuss the construction and
basic properties of Deligne—Beilinson homology. In general, Deligne-Beilinson homology
is defined by means of currents and smooth singular chains (for details, see [48]). But
since we are only interested in real Deligne-Beilinson homology, we do not need to use
singular chains. Apart from some minor changes, we will follow [48]. In particular, unless
stated otherwise, we will follow the conventions therein.

Currents

Let X be a complex algebraic manifold. The sheaf ‘€% of currents of degree n on X
is defined as follows. For any open subset U of X, the group ‘€% (U) is the topological
dual of the group of sections with compact support I,.(U, £5™). The differential

. /len ron+1
d:'e% = €

is defined by
dT'(¢) = (=1)"T(de);

here T is a current and ¢ a corresponding test form.
The real structure and the bigrading of €% induce a real structure and a bigrading of
'e% . Furthermore, there is a pairing

YRER ST weT = wAT,
where the current w A T is defined by
(WAT)(n) =T(nAw).

This pairing, the real structure and the bigrading equip ‘€% with the structure of a
Dolbeault module ‘€ x = (‘€% g, d) over the Dolbeault algebra €x = (€% g, d).

Deligne—Beilinson homology

Definition 5.35. Let X be a proper complex algebraic manifold. Then, the real Deligne—
Beilinson homology groups of X are defined by

'Hp (X, R(p)) = H*(D("Ex, p)),
where, as fixed in Notation 5.21, we have written 'E% = I'(X, '€%). We will also write
H,(X,R(p)) = "Hp" (X, R(-p)).

Remark 5.36. The proof that the above definition of the real Deligne—Beilinson homol-
ogy groups agrees with Beilinson’s definition as given in [4] or [48], is completely analo-
gous to the proof of Theorem 5.19 given in [17].
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FEquidimensional varieties

Definition 5.37. Let X be an equidimensional complex algebraic manifold of dimen-
sion d. Then, we put
Dx = '€x[-2d](-d),

and, according to Notation 5.21,
Dy =T'(X,D%).
In particular, we note
, —d,q—d
@1?(61 — /81)7( q ,
Dy r(p) = 2ri)P~¢ - € p;

therefor;(zj, the subcomplex of real currents D}L(R(M p) is the topological dual of
(U, EXR" (p — d)).
The current associated to a differential form

Let X be an equidimensional complex algebraic manifold of dimension d. Then, there
is a natural morphism of sheaves
x = Dx

given by w — [w], where the current |[w] is defined by

w](n) = ﬁ /X nAw, (5.38)

for a corresponding test form 7 with compact support. This morphism is compatible
with the structure of the Dolbeault module Dx = (D% g, d) over the Dolbeault algebra
Ex = (Exz:d).

We will use the same notation and normalization for any locally integrable differential
form w.

Poincaré duality

The local version of Poincaré duality is the following theorem. For a proof we refer,
for example, to [39, p. 384].

Theorem 5.39 (local Poincaré duality). Let X be an equidimensional complex alge-
braic manifold. Then, the morphism (€%, F) — (D%, F) is a filtered quasi-isomorphism,
which is compatible with the underlying real structures. O

From the local version of Poincaré duality, one derives the following corollary.

Corollary 5.40 (Poincaré duality). Let X be a proper equidimensional complex
algebraic manifold of dimension d. Then, there is a natural isomorphism

HE(X,R(p)) = 'Hp *(X,R(p — d)) = Hyy_,(X,R(d — p))-
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Direct images

Let f : X — Y be a proper morphism between complex algebraic manifolds. Then, we
define a morphism of sheaves
f[ : f* /8} — /8;(/
by setting (/iT)(n) = T(f*n) for a test form 7. When X and Y are proper, this morphism

induces a morphism
fre 'Hp(X, p) — "Hp(Y,p).

If furthermore X and Y are equidimensional, and f has relative dimension e, the mor-
phism fi sends D% p(p) to D;ﬂge(p — e). Therefore, by Poincaré duality, for each n, p,
we obtain an induced morphism

fr: HB(X,R(p)) = HE (Y, R(p — e)).

If f is smooth and w is a differential form on X, we will write

fzw—(%li)G/fw

for the integration of w along the fibre. It turns out that the definition of a current
associated to a differential form and of push-forwards are compatible, i.e.

filw] = [fiw].

The fundamental class

Let X be a proper equidimensional complex algebraic manifold of dimension d. Then,
the fundamental class of Axiom 1.2 (iv) of [34] in

Hp(X,R(0)) = H3(X,R(d)) = "Hp*' (X, R(~d))

is determined by the constant function 1. Therefore, the fundamental class can be rep-
resented by the current

dix =[1].
The class of a cycle

Definition 5.41. Let X be a complex algebraic manifold, and Y an e-dimensional
irreducible subvariety of X. Let Y be a resolution of singularities of Y, and +: Y — X
the induced map. Then, the current integration along Y, denoted by dy, is defined by

Sy =udy € D*('Ex,—e) = 'Exx(—e) N 'EX“"°.

Therefore, it satisfies

1 *
o) = G [

If X is equidimensional of dimension d and p = d — e, we obtain by the convention on the
real structure of D% that dy is an element of D*(Dx,p) = D35 (p) N D%P. By linearity,
we define §, for any algebraic cycle y.



Cohomological arithmetic Chow rings 109

Since the current dy is closed, the following definition makes sense.

Definition 5.42. Let X be a proper complex algebraic manifold, and y an e-dimensional
algebraic cycle of X. The homology class of y, denoted by clp(y) or simply by cl(y), is
the class in "H,**(X,R(—e)) represented by d,. If X is equidimensional of dimension d
and p = d — e, the (cohomology) class of y in H2¥(X,R(p)), also denoted by clp(y) or
cl(y), is defined by Poincaré duality.

5.5. Deligne—Beilinson homology of arbitrary varieties

Up to now, we have discussed Deligne—Beilinson homology only for proper complex
algebraic manifolds. Therefore, we still have to treat the case of non-proper complex
algebraic manifolds. Moreover, even if a Gillet cohomology is only defined for smooth
varieties, the homology should also be defined for singular varieties. In this section we
will discuss Deligne-Beilinson homology for general varieties. By abuse of notation, we
will denote in this section a complex variety and its associated analytic space by the
same letter. This will not cause confusion, since we consider only sheaves in the analytic
topology in this section.

Note that the complexes of currents which we will use are slightly different from the
complexes used in [48].

Currents on a subvariety

Let X be a complex algebraic manifold, Y a closed subvariety of X, and j: Y — X
the natural inclusion. We put

Yy ={we &% |jw=0}
Definition 5.43. The sheaf of currents on Y is defined by
ey ={Te'e% | T(w)=0Vwe XyE\}.

Furthermore, we put
: ;(/Y =€ /ey

The sheaf €3} was introduced by Bloom and Herrera in [8]. If Y is smooth, it agrees
with the usual definition. The sheaf ‘€%, Y is the sheaf of distributions for Xy €". We
point out that when Y is a normal crossing divisor, the complex of sheaves '€% /Y does
not agree with the complex denoted by 2% (Y) in [48] because this last complex is not
defined over R (see also [51]). Note, however, that, as a consequence of Theorem 5.44,
both complexes are filtered quasi-isomorphic.

If X is equidimensional of dimension d, we put as before

Yy = €y [2d)(~d),
Dy = '€y [-2d)(~d).
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We observe that the grading for the complex 5; is relative to the dimension of X and
not to the dimension of Y. Therefore, if Y is smooth, the complex 5; does not agree
with the complex D3, .

The complex €% Y defines a Dolbeault complex. If X is equidimensional of dimension
d, the complex D% Iy also defines a Dolbeault complex. In particular, both complexes
have a well-defined Hodge filtration.

Normal crossing divisors

Theorem 5.44. Let X be an equidimensional complex algebraic manifold of dimension
d, and Y a normal crossing divisor in X. Then, there is a well-defined morphism of
complexes

Ex(logY) = Dy )y, wr (W],

satisfying

M(n)=@/ﬁw,

where U is an open subset of X, w € I'(U, €% (logY)), and n € I (U, Xy E% ). Moreover,
this morphism is a quasi-isomorphism with respect to the Hodge filtration.

Proof. The fact that we have a well-defined morphism of complexes is proven in [16, 3.3].
All the ingredients for the proof that the morphism in question is a filtered quasi-
isomorphism are contained in [31]. We put

Ex(hollogY) = 2% (logY) ®ay €,
Q% (hollogY) = &% (hollogY)/E%.

Since these complexes are not defined over R, they do not define Dolbeault complexes.
Nevertheless, we can define the Hodge filtration in the usual way.
By [15], the natural inclusion

E% (hollogY) — £%(logY)

is a filtered quasi-isomorphism with respect to the Hodge filtration. Thus, it is enough
to show that the composition

&% (hollogY) — D}/Y

is a filtered quasi-isomorphism.
Following [31] and [43], we define a map PV : €% (hollogY) — D% by setting

PV(w)(n) = ﬁ /U nAw,

where U is an open subset of X, w € I'(U, €% (hollogY)), and n € I.(U, %). We note
that the map PV is not a morphism of complexes.
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Starting with the commutative diagram

0 &% &% (hollogY) —— Q% (hollogY) ——0
Lo
—x * 4 *
0 Dy D% Dy)yy ———— 0

we define a morphism of complexes
Res : Q% (hollog Y)[—1] — Dy,

by

Res(w) = dPV(w) — PV(dw),
where @ is any representative of w in €% (hollog Y')[—1]. It is easy to see that Res is well
defined and its image lies in 5;. By the local description of Res given in [31, 3.6], it

is a homogeneous morphism of bidegree (0,1). Thus, it is compatible with the Hodge
filtration, and we obtain a map of distinguished exact triangles

Gr?, Q% (hollog Y)[—1] —= Gr% &% — Gr%, &% (hollog V) ——

- O

G DY~ Gilh DY

Gr’} D*X/Y - -

From this we conclude that, if two of the above vertical maps are quasi-isomorphisms,
so is the third. By Theorem 5.39, the middle vertical arrow is a quasi-isomorphism. By
means of an auxiliary complex K% (Y) equipped with a Hodge filtration, the following
commutative triangle, where all the morphisms are filtered, is established in [31]:

K5 Y)
e
Q% (hollog Y)[—1] nx
Res
Dy

Now it is proven in [31] that all the morphisms in this diagram are quasi-isomorphisms
and that Hj is a filtered quasi-isomorphism with respect to the Hodge filtration. It is also
immediate from the proof in [31] that nx is a filtered quasi-isomorphism with respect
to the Hodge filtration. This proves that Res is also a filtered quasi-isomorphism with
respect to the Hodge filtration from which the claim follows. O
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Deligne—Beilinson homology of non-proper varieties

Definition 5.45. Let X be a complex algebraic manifold, and X a smooth compactifi-
cation of X with D = X \ X a normal crossing divisor. Then, the real Deligne-Beilinson
homology groups of X are defined by

'Hp (X, R(p)) = H*(D('Exp, p))-

We will also write
HY (X, R(p)) = 'Hp" (X, R(—p)).

Theorem 5.46. Real Deligne—Beilinson homology is well defined. That is, it does not
depend on the choice of a compactification. Moreover, it is covariant for proper morphisms
between smooth complex varieties.

Proof. The main ingredients of the proof of the first statement are, first, that given two
compactifications X; and X, as above, there is always a third compactification X3 that
dominates both; and, second, that given a diagram of compactifications

with normal crossing divisors D; and D, the morphism ¢ induces a filtered quasi-
isomorphism

. / 1o %
AP 8*71/D1 — 8Y2/D2'

The main ingredient to show the covariance is that, given a proper morphism f: X — Y
between smooth complex varieties, it is possible to construct a commutative diagram

X—X
Pl
Y —Y

where X and Y are smooth compactifications with normal crossing divisor Dx = X \ X
and Dy =Y \ Y. Then there is an induced morphism

O1 Qs IE*Y/DX — IE*Y/DY' (5.47)
For more details see [48, §1]. O

Poincaré duality for non-proper varieties

A direct consequence of Theorem 5.44 is the following corollary.
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Corollary 5.48 (Poincaré duality). Let X be an equidimensional complex algebraic
manifold of dimension d. Then, there is a natural isomorphism

HA(X,R(p)) — Hp (X, R(p — d)) = HE,_,(X,R(d — p)).
O

Corollary 5.49. The definition of Deligne—Beilinson homology given here agrees with
the definition given in [4] and [48]. O

Direct images

Let f : X — Y be a proper equidimensional morphism between complex algebraic
manifolds, of relative dimension e. Then, using Poincaré duality and the covariance of
Deligne—Beilinson homology, for each n, p, we obtain an induced morphism

fi HB(X,R(p) — Hp **(Y,R(p — ¢)).

Deligne—Beilinson homology of arbitrary varieties

In order to define Deligne—Beilinson homology for a possibly singular variety, we will
use simplicial resolutions. For details on simplicial resolutions and cohomological descent
the reader is referred to [24] or [2].

Let X be a variety over C. Then, there is a smooth simplicial scheme X. with an
augmentation 7 : X. — X, which is a proper hypercovering, and hence satisfies coho-
mological descent. Furthermore, there is a proper smooth simplicial scheme X . together
with an open immersion X. — X . such that the complement D. = X.\ X. is a normal
crossing divisor. By the covariance of currents, we obtain a simplicial graded complex
D*('"Ex /p.,p). Let 'N be the canonical normalization functor transforming a simplicial
group into a cochain complex, i.e. this functor transforms a simplicial group into a chain
complex and then reverses the signs of the grading.

Definition 5.50. The real Deligne—Beilinson homology groups of X are defined by
'Hp(X,R(p)) = H*(s('N'D('Ex p..p)))-
As usual, we will also write
H (X,R(p)) = "Hp" (X, R(-p)).

For a proof of the next result see [48]. It is based on the same principles as the proof
of Theorem 5.46.

Theorem 5.51. Real Deligne—Beilinson homology is well defined. That is, it does not
depend on the choice of a compactification of a proper hypercovering. Moreover, it is
covariant for proper morphisms between complex varieties.
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Remark 5.52. If Y is a normal crossing divisor of a proper smooth variety W, the proof
of Theorem 5.44 shows that we do not need to use a simplicial resolution of Y to compute
the Deligne-Beilinson homology of Y. Indeed, the complex €3} is quasi-isomorphic to
the one obtained by a simplicial resolution. Therefore, we have

"Hp(Y,R(p)) = H*(D('Ey, p))-

More generally, if Y is a normal crossing divisor of a smooth variety W, and W is a
smooth compactification of W such that Z =W \W and Y U Z are normal crossing
divisors, we write

1o _ Jox //8*
(vuz)/z = Cyuz/ ©z-
Then, we can use the graded complex D*('E(yyz),z,p) to compute the real Deligne-
Beilinson homology of Y.

Poincaré duality for general varieties

We will recall how to construct the long exact sequence in homology associated to a
closed subvariety, and the Poincaré duality isomorphism between homology and cohom-
ology with support. For details on the proof we refer to [48].

Let X be a variety over C, and Y a closed subvariety of X. Then, there is a smooth
simplicial scheme X. with an augmentation 7 : X. — X, which is a proper hypercov-
ering, and hence satisfies cohomological descent. Furthermore, there is a proper smooth
simplicial scheme X. together with an open immersion X. — X . such that D. = X .\ X_,
Y. =7 }Y), and Z = D.UY. are normal crossing divisors. We observe that Y. — Y
also satisfies cohomological descent. For p € Z, we now obtain a short exact sequence

0 s(ND*('Ez p.p) = sCND*('Ex p.p))
— s(ND*('Ex 5.p)) = 0. (5.53)

From this exact sequence we obtain a long exact sequence of homology groups
= 'Hp(Y,R(p)) = 'Hp(X,R(p)) = 'Hp(X \Y,R(p)) = -

Theorem 5.54 (Poincaré duality). Let X be an equidimensional complex algebraic
manifold of dimension d, and Y a closed subvariety of X. Then, there is a natural
isomorphism

Hy (Y, R(p)) — Hp'y" (X, R(d — p)).

Proof. Let X be a smooth compactification of X with D = X \ X a normal crossing
divisor. Then, we may assume that the simplicial resolution X . used to construct the exact
sequence (5.52) satisfies the conditions that X is a proper modification of X, which is an
isomorphism over the complement of the adherence of Y and furthermore that X. — X
is a proper hypercovering. We define D., Y., and Z. as before. Then X\ Zy can be
identified with X \ Y. Therefore, the cohomology group Hp y (X, R(p)) is computed as
the cohomology of the simple complex associated to the morphism of graded complexes

D*(Ex(log D), p) — D*(Fx, (log Zo),p).
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For any variety S occurring in the simplicial resolution X ., we put
Dy = '€5[~2d)(~d),

i.e. all the dimensions are considered relatively to X. The condition of X. — X being a
proper hypercovering implies the existence of a quasi-isomorphism

s(ND*(Dx ;p.,p)) = D*(Dx/p:Pp)-
Then, there is a commutative diagram

D*(Ex(log D), p) — D*(Ex%, (log Do), p) — D*(Ex, (log Zy), p)

| | |

D*(Dx)p:p) < D*(D, pyep) — = D* (D, 70:1) (5.55)

Iy |
S(OND* (D s, 1)) — sUND* (D7)

where the arrows marked with ‘~’ are quasi-isomorphisms. This shows that the cohom-
ology groups Hp (X, R(p)) can be computed as the cohomology of the simple complex
associated to the morphism of graded complexes

s(ND*(Dx /p.,p)) = s(ND*(Dx ;..p))-
The result now follows from the exact sequence (5.52) and Poincaré duality for smooth
varieties. 0

Direct images

We are finally able to define direct images for Deligne-Beilinson cohomology with
support. Let f : X — Y be a proper equidimensional morphism between smooth complex
varieties, of relative dimension e. Let Z C X and Z’ C Y be closed subsets such that
f(Z) C Z'. Then, for each n, p, there is a morphism

fi: Hp 7(X,R(p)) — Hp 27 (Y,R(p — ¢))

induced by Poincaré duality and the covariance of Deligne-Beilinson homology.
There are two special cases where the direct image can be easily described in terms of
differential forms with logarithmic singularities. The proof is left to the reader.

Proposition 5.56.

(i) Let X be a proper smooth complex variety and let Z C'Y be closed subsets. Let )?Z
be an embedded resolution of singularities of Z with normal crossing divisor Dz and
let X y be an embedded resolution of singularities of Y with normal crossing divisor
Dy that dominates Xy. Then the morphism HE 7(X,R(p)) = Hp v (X, R(p)) is
induced by the natural morphism l

s(D*(Ex,p) = D*(Ex, (log Dz),p)) = s(D*(Ex,p) = D*(Ex, (log Dy),p)).

z
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(ii) Let f : X — Y be a proper smooth morphism between proper varieties, of relative
dimension e. Let Z C'Y be a closed subset. Let Y be an embedded resolution of
singularities of Z with normal crossing divisor D. We write

X=XxY, B=XxD.
Y

X

Y

By the smoothness of f, X is an embedded resolution of singularities of f~1(Z) with

normal crossing divisor B. Then integration along the fibre induces a morphism
Ji: D*(Ex(log B),p) — D*(Ey (log D), p — ¢)|2¢]

and the morphism Hp, (5 (X,R(p)) — HgTZQS(Y,R(p—e)) is induced by the
morphism

fi:s(D*(Ex,p) = D*(Ex(log B),p))
— s(D*(Ey,p —e) = D*(Ey(log D),p — e))[—2e].

5.6. Classes of cycles and line bundles
The class of a cycle in cohomology with support

We are now in a position to describe the class of a cycle in real Deligne-Beilinson
cohomology with support. To do this, let X be an equidimensional complex algebraic
manifold of dimension d. Since the class of a cycle in a quasi-projective variety is the
restriction of the class of a cycle in any compactification, we may assume that X is
projective. Then, let y be a p-codimensional, i.e. (d—p)-dimensional cycle of X, and Y the
support of y. Letting Y = U Y; be the decomposition of ¥ into irreducible components,
we have y = E n;Y; with certain multiplicities n;. If Y. denotes a proper hypercovering
of Y such that Yy is a resolution of singularities of Y, then YO is a disjoint union of
irreducible components 370 =U j ?O,j with ?O,j a resolution of singularitiei of Y;. If n,
denotes the locally constant function with value n; on the component Yj ;, then n,
defines an element [n,] of

+ —2d+2 —d+p,—d+
D 2d 217( d p) - /E~O’]R p( d p) ,E~O p p
given by

1
) = G [, o

The element [n,] is a cycle of the complex s(D*('Ey, —d+p)), and hence defines a
cohomology class in

Hyy 0, (Y, R(d—p)) = "Hp (Y, R(~d + p))
= H 220 (3(D('Ey , —d + p))).

The image of this class under the Poincaré duality isomorphism

HE, 5, (Y,R(d — p)) = H (X, R(p))
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is merely the class of the cycle y in HDp v (X,R(p)). Observing that the real mixed
Hodge structure of Hy”(X,R) is pure of type (p,p) and that Hy* '(X,R) = 0, the
exact sequence (5.3) implies that the natural morphism

rp s Hiy (X, R(p)) — Hy? (X, R(p)) (5.57)

is an isomorphism. Therefore, the class of y in H%p v (X,R(p)) is determined by its image
in the Betti cohomology group Hy” (X, R(p)). Since the latter group is determined as the
cohomology of the simple complex

s(Dx(p) = Dx\y (),

the class of the cycle y can be represented by the pair (d,,0).

Differential forms representing the class of a cycle

By the above considerations we have a representative for the class of a cycle in terms of
currents. We now give a criterion, when a pair of differential forms represents this class.
For this let

(wag) S 52P(Dlog(Xap) — Dlog;(X \ YaP))?

by [16, 3.8.2] the form g is locally integrable on X. If U = X \ Y, we write [g]y for the
current associated to g as a smooth form on U; we write [g]x for the current associated
to g as a locally integrable form on X. As usual, we put d° = (47i)~*(d — 9).

Proposition 5.58. Let X be a complex algebraic manifold, and y a p-codimensional
cycle on X with support Y. Let (w, g) be a cycle in

5% (Diog(X,p) = Diog(X \ Y, p)).
Then, we have the following statements.
(i) The class of the cycle (w, g) in H%’iY(X,R(p)) is equal to the class of y, if and only
if
—200[g]x = [w] — Jy. (5.59)

(ii) Assume thaty =3 ; n;Y; with irreducible subvarieties Y; and certain multiplicities
n;. Then, the cycle (w, g) represents the class of y, if and only if the equality

. c (27i)P
—Ehg(l) ad®g an/ (5.60)

0B:(Y)

holds for any differential form «; here B.(Y') is an e-neighbourhood of Y such that
the orientation of 0B.(Y") is induced from the orientation of B.(Y).

Proof. (i) First, assume that the cycle (w,g) represents the class of y in the group
H%py (X,R(p)). Let X be a smooth compactification of X, and 7 a cycle extending y
with support Y. By [16, 4.8] there exists a pair (w},g]) representing the class of 7 in
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the simple complex $%(Djog(X,p) — Diog(X \ Y, p)) such that —200[g;]x = [wi] — 65
We denote by wi, respectively g; the restriction of wj, respectively g to X. By the
functoriality of the class of a cycle, the pairs (wy, g1) and (w, g) represent the same class.

Therefore, there are elements a € Dﬁifl(X ,p) and b € DIQ(ZQ(X \ 'Y, p) such that

(dpa,a — dpb) = (w, g) — (w1,91)-
This shows
dplg]lx = dp[g1]x + dpla] = [wi] — 6y + [w] — [w1] = [w] = .

Since dp = —200 in degree 2p — 1, we find that the pair (w, g) satisfies equation (5.58).

Conversely, assume that (w, g) satisfies equation (5.58). By [16, 3.8.3] we know that
mp([9]x) = [rp(9)]x, where 7, is as in Proposition 5.15 (iii). Since we have —299[g]x =
drp([g]x), equation (5.58) implies

dlrp(9)lx = [rp(w)] — dy. (5.61)
Hence, we obtain
d([rp(9)lx,0) = ([rp(w)], [rp(9)]v) — (8, 0).

Since the natural morphism (5.56) is an isomorphism, we therefore obtain that (w, g)
represents the class of y.

(ii) Let a be a differential form and put n = deg . Equation (5.60) is equivalent to the
equation

iy 1 1 1 .
(-1) +1(27ri)”/xda /\rp(g)w/xa/\wmm)n_p;n]/yj .

Using the fact that (w,g) is a cycle and that « has even degree, the above equation is

equivalent to
/ d(a A rp(g)) = (2m1)?P g nj/ a.
X ; Y;

The result now follows from Stokes’s theorem and the fact that

1

d g = Rrp(g)»

as shown in Proposition 5.15 (iii). O

The first Chern form of a line bundle

The morphism ¢; in (5.4) normalizes the first Chern class of a line bundle and therefore
of all Chern classes of vector bundles. We recall now the usual way of how to obtain
representatives for the first Chern class of a line bundle. Let X be a quasi-projective
complex algebraic manifold, X a smooth compactification of X, and L a line bundle
over X. Then, L can be extended to a line bundle L over X. Let h be a smooth hermitian
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metric on L, and h the restriction of h to L. If s is a non-vanishing, rational section of
L, we put ||s||? = h(s, s), y = div(s), Y =suppy, U = X \ Y, and

9s = —3 log(|ls[|*), (5.62)
ws = —2009s,. (5.63)

Moreover, we put § = div(s) with s viewed as a section on X, and Y = suppy. We call
c1(L, h) = we = —200g, = 90 log(||s|*)

the first Chern form of (L, h). We note that this definition of the first Chern form differs
by a factor (2mri)~! from the corresponding definition in cohomology with real coefficients
because of the 27wi-twist in Deligne-Beilinson cohomology.

Proposition 5.64. With the above assumptions the following statements hold. The
form w, belongs to Dlzog(X, 1), and the form g5 belongs to Dllog(U, 1). The pair (ws, gs)

is a cycle of the simple complex
5% (Diog(X, 1) = Diog (U, 1)).
Moreover, this pair represents the class of div(s) in the cohomology group H%’Y(X ,R(1)).

Proof. Let s’ be a non-vanishing, regular section of L in an open subset V of X. Then,
ws = 001og(||s’||?), which shows that w, is smooth on the whole of X. Furthermore, since
gs is a real function and —200 is an imaginary operator, we obtain

ws € B% (1) N Ex! = D*(Ex, 1) € D (X, 1),

Let X be an embedded resolution of singularities of Y, and E the pre-image of Y in X.If
FE is locally described by the equation z; - - - 2z, = 0, the section s can locally be written

as zy't -+ z8m - ¢, where ¢’ is a suitable non-vanishing, regular section on X. This shows

gs € Eloog,]R(U) = Dllog(U7 1)

The claim that (ws,gs) is a cycle follows from the definitions. The Poincaré-Lelong
formula

—285[93])( = [ws] — 5div(s)

together with Proposition 5.58 (i) finally proves that the pair (ws, gs) represents the class
of div(s). O

5.7. Real varieties
Real Deligne—Beilinson cohomology of real varieties

Recall that a real variety Xg is a pair (X¢, Foo) with X¢ a variety over C and Fi
an antilinear involution of X¢. Analogously, a real algebraic manifold is a pair (X¢, Fio)
with X¢ a complex algebraic manifold.
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Notation 5.65. Given a real variety Xg, and a sheaf V' of complex vector spaces with
a real structure, we will denote by ¢ the involution given by

w FE(w).

We will use the same notation for any subsheaf of abelian groups of V', which is invariant
under complex conjugation.

Let Wr now be a proper real algebraic manifold, and Dg a normal crossing divisor in
Wr defined over R. We put Xg = Wg \ Dg. The antilinear involution o of Ejy, (log Dc)
respects the real structure and the Hodge filtration. It thus induces an involution of
D*(Ew,(log D¢), p), which we denote again by o. The real Deligne—Beilinson cohom-
ology groups of Xg are defined as the cohomology of the complex of fixed elements
D*(Ew,(log D¢), p)?, i.e.

Hp(Xg,R(p)) = H*(D(Ewe(log Dc),p)?).

An analogous definition can be given for the real Deligne—Beilinson cohomology groups
with support. From the corresponding result for complex varieties, we obtain the following
theorem.

Theorem 5.66. Real Deligne-Beilinson cohomology is a Gillet cohomology for regular
real schemes. (]

A Gillet complex for real Deligne—Beilinson cohomology

Here we denote by C the site of regular schemes in ZAR(Spec(R)). A scheme X in C
defines a real algebraic manifold X = (X¢, Fo).

Definition 5.67. For any integers n, p, let D{gg(p) denote the presheaf (in fact, the
sheaf) over C, which assigns to X the group

Dlr(l)g(va) = Dn(Elog(XR((C))’p)o

with ¢ as in Notation 5.65. For any scheme X in C, we will denote the induced presheaf
of graded complexes of real vector spaces on X by Dige, x = Diog, < (%).

Proposition 5.68. Let X be a scheme in C'. For any integers n, p, the presheafD{fag,X (p)
is a totally acyclic sheaf.

Proof. Since we are working with complexes of vector spaces, the functor (-) is exact.
Therefore, the result follows from Proposition 5.33. ([

Theorem 5.69. The graded complex of sheaves of abelian groups Diog Is a Gillet com-
plex for regular schemes over R, which computes real Deligne-Beilinson cohomology.
Moreover, the pair (Diog, ®) is a graded commutative and pseudo-associative algebra for
real Deligne—Beilinson cohomology.

Proof. This is a consequence of Theorem 5.34 and the fact that all operations are
compatible with the involution o. ([
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6. Examples of Djgg-arithmetic Chow groups

In this section we will use the abstract theory of arithmetic Chow groups to define con-
travariant and covariant arithmetic Chow groups. The former were introduced in [17];
they have a ring structure after tensoring with Q and agree with the arithmetic Chow
groups defined by Gillet and Soulé in [36] for arithmetic varieties with projective generic
fibre. The latter were introduced in [14]; they are covariant for arbitrary proper mor-
phisms and have a module structure over the contravariant Chow groups.

In all the examples in this paper the complex Dj,, will play the role of the Gillet
complex, i.e. G = Digg.

6.1. Contravariant Dj,g-arithmetic Chow rings
Definition and exact sequences

Let A be an arithmetic ring. A natural example of a Djgg-complex is Dy, itself by the
identity morphism. Then, all the properties of Dy, as a Gillet complex (multiplicativity,
functoriality) imply the same properties for Diog as a Dipg-complex.

For any arithmetic variety X over A, we put G = Diog and C = Diog, x in Definition 4.4.
Thus the pair (X, Dlog) is a Dyog-arithmetic variety over A. By means of Definition 4.11,
we obtain the arithmetic Chow groups CHP? (X, Diog). We recover the properties of these
groups by applying the theory developed in § 4; these properties have already been stated
in [17]. We start by writing down the exact sequences of Theorem 4.13. For this we recall

~N2p—1 2p—1
Digg  (X,p) =Djg, " (X,p)/Im(dp)

={we Bl W 1 (Xo)(p—1) | Fi(w) =@}/(Imd + Im J).

Theorem 6.1. For an arithmetic variety X over A, there are exact sequences:

CHP™'7(X) £ D21 (X, p) % CHP (X, Diog) £ CHP(X) = 0, (6.2)
CHP™P(X) & HZ ™' (Xz,R(p)) % CHP(X, Diog)

&9 cmrix) @ ZDP(X,p) <% HY (Xz,R(p) = 0, (6.3)

CH'~12(X) £ HZ ™ (Xg,R(p)) % CHP (X, Diog)o > CHP(X)o — 0. (6.4)

O

Green forms for a cycle
We now translate the result of Proposition 5.58 into the language of Green objects.

Proposition 6.5. Let X be an arithmetic variety over A, and y a p-codimensional cycle
on X. A pairg = (w,q) € H%’Lg’zp (X, p) is a Green object for the class of y, if and only
if

—200lg)x = [] - 8, (6.6)

0
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To simplify notation, in the above proposition, we wrote [g]x instead of [g]x_ , and dy,
instead of d,,. We will call Green objects with values in Di,; Green forms.

The arithmetic cycle associated to a rational function

We make the Green object and the arithmetic cycle associated to a rational function
explicit.

Proposition 6.7. Let f € k*(X), y = div(f), Y = suppy, and U = X \ Y. Then, the
class clp(f) of f in the group H%)10 (U,1) = H},(Ur,R(1)) is represented by the function

3108(ff) € Diog (U, 1);

we note that in order to ease notation, we have written clp(f) instead of clp,,,(f).
Furthermore, we have

div(f) = (div(f), (0, — % log(f])))-

Proof. Since we are interested in the cohomology of U, we may assume that Y is a
normal crossing divisor; we denote the inclusion by j : U — X. Then, f is a global
section of O}, over U.
To prove the first assertion, we have to show that the morphism
HY(U,0%,) — Hp(Ur,R(1)),

alg
given by mapping f to %log(ff), is compatible with the map ¢y of (5.5). The key ingre-
dient for this compatibility is provided by the commutative diagram of sheaves on U

S(Z(1) = Ouig) ——= O3, [-1] (6.8)

alg

| |
S(E(I)J,]R(l) - 8([)]) — ng,n{[*l]
where e(a,b) = exp(b), I(f) = %log(ff), and m(a,b) = 3(b+b). Denoting by G the
complex of sheaves on U given by

x dlog 51 2
O, — 25 = 025 — -+,

alg

the commutative diagram (6.7) induces a commutative diagram of sheaves on X

s(F 2% (logY) = Rj.s(Z(1) — 2f)) —— s(F' 2% (logY) — Rj.G)

| }

s(F'e€%(logY) = Rjus(Epp(l) = &) — = s(F'€%(logY) = Rj.Ep)

This commutative diagram shows that the class clp(f) = ¢1(f) is represented by the
pair (dlog f,%log(ff)) in the complex s(F'&%(logY) — Rj*E%,R). This implies that
the class clp(f) is represented by 3log(ff) in the complex Dy (U, 1).

The second assertion follows from the first and the fact that the map b is given by

b(b) = (0, —b) (see Definition 3.24). O
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Multiplicative properties

By Theorem 5.69, the complex Do, satisfies all the properties required to apply The-
orem 4.24. In particular, we obtain the following theorem.

Theorem 6.9. The direct sum

CH* (X, Diog)g = €D CHP (X, Diog)g
p

has the structure of a commutative and associative Q-algebra with unit. This structure
is compatible with the maps w, cl and (; furthermore, it is compatible with the algebra
structures of the Deligne complex, the Deligne—Beilinson cohomology and the Chow
ring. O

Moreover, we observe that Theorem 4.25 and Corollary 4.26 also apply to the present
situation. We leave it to the reader to write down the corresponding statements.

Formulae for the x-product

Using partitions of unity we will give alternative formulae for the *-product of Green
objects. These intermediate formulae will be useful for the explicit computations carried
out in our applications.

Let y be a p-codimensional, respectively z a g-codimensional, cycle of X, and Y =
supp yr, respectively Z = supp zr. Let g, = (wy,gy) € ﬁ%i,g,Y(X’p)’ respectively g, =
(w2, g:) € H%?OQZ(X, q), be Green objects for y, respectively z.

Proposition 6.10.

(i) If gy = a(x) for some = € 1512;;1(X,p), we have the equality

gy * 9. =alz Aw,)
. Sop+2
in the group HDT;,)qmz(va +q).

(ii) If Y = Z, we have the equality
gy * 9. = (wy ANwz, Gy /\wz)
in the group f[%if{l/ (X,p+9q).

Proof. The first claim is an immediate consequence of Proposition 2.67 (iii) and the
explicit formulae for the product in Deligne algebras given after Remark 5.16. The second
claim is covered by the explicit formula for the *-product given in Proposition 2.68,
again taking into account the formulae for the product in Deligne algebras given after
Remark 5.16. O

The cases Y C Z and Z C Y can be treated similarly. But the most interesting case
is when neither Y nor Z are contained in Y N Z. In this case, we put U = X \ 'Y and
V = X\ Z. Then, the Mayer—Vietoris sequence

0 = DI, (UUV,p) 5 Dp (U, p) ® Dy (V,p) L DRL(UNV,p) — 0,
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where i(n) = (n,n7) and j(w,n) = —w + 7, gives rise to the kernel-simple quasi-
isomorphism
L Diog (U UV, p) = s(—j),

which was an essential tool in the proof of Theorem 3.31. We will now construct a
section of j. Adapting the argument given in [16], we can find a resolution of singularities
X — Xg of Y U Z, which factors through embedded resolutions of Y, Z, Y N Z. In
particular, we can assume that

7 YY), 7Y 2), 7 (Y N Z)

are also normal crossing divisors. We denote by Y the normal crossing divisor formed
by the components of 7~ L(Y) which are not contained in 7=1(Y N Z); analogously we
denote by 7 the normal crossing d1v1sor formed by the components of 7=!(Z) which
are not contained in 7=1(Y N Z). Then, Y and Z are closed subsets of X which do not
meet. Therefore, there exist two smooth, F-invariant functions oy Z and ozy satisfying
0<oyz, 02y <1, Oyz+ozy = 1, oy z = 1 in a neighbourhood on and ozy =1in a
neighbourhood of Z. Let now w € Elog(U N V). Since oy z is zero in a neighbourhood of
Z7 we find that oy zw € Elog(U)7 similarly, we get ozyw € Eﬁ,g(V). Moreover, one easily
checks that j(—oyzw,ozyw) = w. Therefore, the assignment w — (—oy zw, ozyw) gives
rise to a section of j. Consequently, the map D, (UNV,p) — fo)g(U p) ® Dl (Vip)
given by ¢ — (—oyzc,0zyc) determines a section of j. We are now in a position to
apply Proposition 2.41 (ii).

Lemma 6.11. The map s(—j) — Diog(U UV, p) given by
((a7 b), C) — ozya+ oyzb+ oyzdpe — dp(ayzc)

is a morphism of complexes. It is a left inverse of the kernel-simple quasi-isomorphism
L. ]

Theorem 6.12. Let g, = (wy,gy), 8- = (w2, 92), and oy z, ozy be as above. In the
group HDI::; vnz(X,p+q), we then have the identity

Oy * 9. = (Wy Aw., (—20zygy A 00g, — 285(0yzgy) ANgz)™).
Proof. By Theorem 3.37, we obtain
Gy * 9> = (wy ® Wy, ((gy oWy, Wy @ gz)» —Ggy ® gz)w)

in the group H2P+24(Dy,,(X), s(—j), p + ). By means of Lemma 6.11, the latter element
corresponds to

(wy w2, (0zygy ®dpg. +dp(oyzgy) @ g.)~) € H%’ff?%z(X,p +q).

The stated formula follows now from the explicit description of e and dp in these degrees.
O
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Inverse images

Let f: X — Y be a morphism of arithmetic varieties over A. Since Dj,g is a sheaf in
the big Zariski site of smooth schemes over R, there exists a contravariant f-morphism

f# : Dlog,Y — f*Dlog,X~

Thus, the complex Dj,, satisfies all the properties required to apply Theorems 4.29
and 4.31. In particular, we obtain the following theorem.

Theorem 6.13. Let f : X — Y be a morphism of arithmetic varieties over A. Then,
there is a pull-back morphism

f* s CHP(Y, Diog) — CHP(X, Diog),

which is compatible with the pull-back of differential forms via the morphism w, and
with the pull-back of algebraic cycles via the morphism (.
If g:Y — Z is another such morphism, then the equality (g o f)* = f* o g* holds.
Moreover, the induced map

o Gﬁp(Ya Diog)g — Gﬁp(){, Diog)o

is an algebra morphism. O

Direct images of differential forms with logarithmic singularities

Differential forms with logarithmic singularities at infinity are not well suited to define
covariant morphisms for Dj.e-complexes, as the following example shows.

Example 6.14. Let f : C — C’ be a morphism of smooth complex projective curves,
and let X' be the pre-image of the singular values of the map f. Assume that there is a
point P € X such that the morphism f is given by the local expression w = f(z) = 22
in an analytic neighbourhood of P. While the differential form dz A dZz is smooth in a
neighbourhood of P, its push-forward f,(dz A dz) is locally of the form dw A dw/(ww)'/?,
which is not smooth and does not have logarithmic singularities. This shows that, even
if the restriction
[:O\NZ 5O\ ()
is smooth, it does not induce a morphism between £y (C'\ X) and Ej,(C"\ f(X)).

Nevertheless, if f : X — Y is a smooth proper equidimensional morphism of projective
varieties over R of relative dimension e, we can define a covariant f-pseudo-morphism as
follows. For every open subset U of Y we define

F*"(U,p) = lim D™ (Ey .5 (log X x D), p),
(U.p) ?QD (Ex éY( g " ),p)
where the limit is taken over all compactifications Y of U with D =Y \ U a normal

crossing divisor such that ¥ dominates Y. Since f is smooth, we note that X x D is a
normal crossing divisor of the smooth variety X x Y. Let Y
Y

u:F — f*Dlog,X
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be the natural morphism, and let
v : F = Diog,y (—€)[—2¢]

be the morphism induced by integration along the fibre, i.e.

vw) = fuo = oo [

By Proposition 5.56 the morphisms u and v determine a covariant f-pseudo-morphism.
Using Definition 3.73 together with Remarks 3.74 and 3.79 and Proposition 3.76 we
obtain the following theorem.

Theorem 6.15. Let f: X — Y be a smooth proper morphism of proper varieties over
R of relative dimension e. Then, there is a push-forward morphism

772 732p—2
f# : HDI:Og’ZP(Xap) - HDZI)OQZ?pfe(va - 6)7

which is compatible with the push-forward of differential forms via the morphism w, and

with the direct image into relative Deligne—Beilinson cohomology via the morphism cl.
If g: Y — Z is another such morphism, then the equality (g o f)x = g4 o fx holds.
Moreover, if a € ﬁ%’l’og,zp (Y,p) and 8 € ﬁ%‘i}g,zq (X, q), we have the formula

Fo(1# (@) - B) = - f4(8) € HE 4% (Yip+q—e).
O

Remark 6.16. In order to obtain more general push-forward morphisms one has to
use different complexes. For instance, using a real Deligne—Beilinson complex made with
differential forms satisfying logarithmic growth conditions instead of logarithmic singu-
larities at infinity, we expect that one can avoid the projectivity condition for the varieties
under consideration. Another option is the use of the real Deligne—Beilinson complex with
currents as carried out in the next section; then, one obtains direct images for arbitrary
proper morphisms, at the price of losing some multiplicativity properties.

Direct images of contravariant arithmetic Chow rings

Using the technique of covariant pseudo-morphisms as before, we can define a push-
forward morphism associated to a morphism between arithmetic varieties, which are
generically projective and smooth. As we will see below, this suffices to define arithmetic
degrees. The following result is a consequence of Theorem 6.15 and Theorem 4.34.

Theorem 6.17. Let f : X — Y be a proper morphism of arithmetic varieties over A of
relative dimension e. Assume that fg : Xg — YR is a smooth proper morphism of proper
varieties. Then, there is a push-forward morphism

fo : CHP(X, Diog) — CHP (Y, Dioy),

which is compatible with the push-forward of differential forms via the morphism w, and
with the push-forward of algebraic cycles via the morphism (.
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Ifg:Y = Zis another such morphism, then the equality (go f)« = g« 0 f« holds.
Moreover, if « € CH?(Y, Diog) and f € CHY(X, Do), we have the formula

Fo(f* (@) - B) = a- f.(8) € CHPYI™(Y, Diog) g

Homotopy invariance

The fact that the definition of contravariant arithmetic Chow groups for non-proper
varieties has good Hodge theoretical properties is reflected in the homotopy invariance
of the groups CH? (X, Diog)o.

Proposition 6.18. Let X be an arithmetic variety over A, and w : M — X a geometric
vector bundle. Then, the induced morphism

7 : CHP(X, Diog)o — CHP(M, Diog)o
is an isomorphism.
Proof. For a proof we refer to [17, 7.5]. O

This theorem has the following variant used by Hu in his PhD thesis to construct an
arithmetic intersection pairing based on the deformation to the normal cone technique.
With the hypothesis of the above theorem, we write

Dikog(M’p)Vert = W*(Dl*og(Xﬂp)) g Dl*og(M7p)7

and put
CH p(Ma Dlog)vert = wil (Dlzopg(Mv p)vert)~

Then, we have the following proposition.

Proposition 6.19. Let X be an arithmetic variety over A, and m : M — X a geometric
vector bundle. Then, the induced morphism

7 : CHP(X, Diog) — CHP (M, Diog )vert
is an isomorphism. U

Comparison with the arithmetic Chow groups defined by Gillet and Soulé

Let X be a d-dimensional arithmetic variety over A. We denote by CH” (X) the arith-
metic Chow groups defined by Gillet and Soulé. Let y be a p-codimensional cycle of X,
Y =suppyr, U = Xg \ Y, and

Oy = (Wyvgy) € H2p(Dlog(X]R7p)7Dlog(Uap))

a Green object for the cycle y.
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Lemma 6.20. The current 2(2mi)¢~P*1[g, ]y is a Green current in the sense of [36] for
the cycle y. a

Proof. Since the definitions of the current associated to a differential form and the
current associated to a cycle used in this paper differ from those in [36] by a normalization
factor, we will write the proof explicitly in terms of integrals.

We may assume that the arithmetic ring A is R and that y is a prime cycle, hence Y
is irreducible. We denote by Y a resolution of singularities of Y., and by 2 : Y — Xoo
the induced map.

A current g € DP~1P~1(X,,) is a Green current for the cycle y, if the equality

Fi(g)=(-1)"""g

holds, and if there exists a smooth differential form w satisfying

g(d°n) = / nAw— /~ ¥y (6.21)
Xeo Y
for any test form 7.

We put g = 2(27i)%"P*+1[g,] x, and fix a test form 7. Then, the definition of the current
associated to a differential form and the relation (47i)d® = —299 leads to

g(dn) = @/x (—200m) A gy

Since o(g,) = F (gy) = g, and gy = (—1)?"'g,, we conclude that FZ (g) = (—1)P!g.
Therefore, the first condition for a Green current is satisfied. Writing out explicitly all
normalization factors in Proposition 6.5, we find

1 = 1 1
— —200M) NGy = ——— A - n. 6.22
2000 M= G [ = g [ 02
Equation (6.21) is now easily seen to imply that g satisfies equation (6.20) with w =
(2mi) "Pw,, which concludes the proof of the lemma. O

Theorem 6.23. The assignment [y, (wy, gy)] = [y,2(2m1)4PH[g,]x] induces a well-
defined map

W : CHP(X, Diog) — CHP(X),

which is compatible with products and pull-backs. Moreover, if Xy is projective, then it
is an isomorphism, which is compatible with push-forwards.

Proof. In the projective case, the proof is given in [16] and [17]. On the other hand,
we note that the well-definedness of the map and its compatibility with products and
pull-backs carries over to the quasi-projective case. (I
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Arithmetic Picard group

Let X be a projective arithmetic variety over A, and L a line bundle on X equipped
with a smooth hermitian metric h on the induced line bundle L., over X.,, which is
invariant under Fl,. As usual, we write L = (L, - ||), and refer to it as a hermitian
line bundle. Given a rational section s of L, we write ||s||?> = h(s, s) for the point-wise
norm of the induced section of L.,. We say that two hermitian line bundles L; and Lo
are isometric, if Ly ® L, = (Ox, |- |), where | - | is the standard absolute value. The
arithmetic Picard group 151\(J(X ) is the group of isometry classes of hermitian line bundles
with group structure given by the tensor product. One easily proves that there is an
isomorphism

) : Pic(X) = CHY(X, Diy),

given by sending the class of L to the class [div(s), (ws, s)], where s, ws, and g, are as
in Proposition 5.64. We call the element
¢(L) € CH' (X, Diog)

the first arithmetic Chern class of L.

Arithmetic degree map

Let K be a number field, and O its ring of integers. According to [36], Ok can be
viewed as an arithmetic ring in a canonical way. Putting S = Spec(Of), Theorem 6.23
provides an isomorphism

W : CH'(S, Dyog) — CH(S).

In particular, the computations of [36, 3.4.3] carry over to this case with some minor
changes. Since S, consists of a finite number of points, we have

+
5,250 = (L RO)) =R,

ceX

where the superscript ‘+’ denotes invariants under complex conjugation acting on the
set of the 7y real, respectively 2ry, complex immersions of K. The exact sequence (6.1)
therefore specializes to the exact sequence

1= p(K) = O L R+ 2 CHL(S, Diog) — Cl(Ok) — 0;

here p(K) is the group of roots of unity of K, p the Dirichlet regulator map, and Cl(Ok)
the ideal class group of K. We observe that, with the normalizations used in this paper,
the map p equals the Dirichlet regulator map and there is no factor of (—2) as in [36].
The discrepancy by the factor 2 is explained by Theorem 6.23; the discrepancy about
the sign is due to the fact that our map a is minus the corresponding map in [36].

Due to the product formula for the valuations of K, we have as in [36] a well-defined
arithmetic degree map

deg : CH' (S, Diog) — R, (6.24)
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induced by the assignment

(X o X 030) > X wyolOw /il + X ar

p;€ES ceXy p;ES oeX

In particular, this is a group homomorphism, which is an isomorphism in the case K = Q;
it is common to identify CH (Spec(Z), Diog) with R. We note that in spite of the many
different normalizations used in this paper, the arithmetic degree map defined above is
compatible with the arithmetic degree map defined in [36] under the isomorphism ¥ of
Theorem 6.23.

6.2. Covariant Djgg-arithmetic Chow groups

In this section we will use currents to define arithmetic Chow groups which are covari-
ant for arbitrary proper morphisms. These groups do not have a ring structure, but they
are modules over the contravariant arithmetic Chow ring defined in the previous sec-
tion. We will grade the cycles by their codimension, and hence we will use the cieties X.
Note however that we could also define covariant arithmetic Chow groups indexed by the
dimension as in [14] avoiding this restriction.

Currents with good Hodge properties

We start by noting that, if Y is a normal crossing divisor on a proper equidimensional
complex algebraic manifold X, then the complex D% /Y has the same cohomological
properties as the complex €% (logY). Nevertheless, we cannot use this complex of cur-
rents, since it does not form a presheaf. For instance, if Y is a closed subvariety of X,
and 7 : X — X an embedded resolution of singularities of Y with exceptional divisor D,
there does not exist a natural morphism D% — in)? . in general. For this reason the
theory of covariant arithmetic Chow groups is not fu(ly satisfactory.

Currents with support on a subvariety

Instead, we will use another complex of currents for quasi-projective subvarieties, which
forms a presheaf, but has worse Hodge theoretical properties. To do this, let X be a proper
equidimensional complex algebraic manifold, and D% the complex of currents on X as
in §5.4.

Definition 6.25. Let Y C X be a closed subvariety. Then, the group of currents of
degree n. on X with support on Y is defined by

Dy, ={T € DX [suppT C Y};

we write
n _ n n
X/Yoo — 'DX/DYOQ~

We note that D3, and D}/Ym are complexes, since suppdT C supp 7.
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Invariance under birational morphisms

The main reason for using the complex D% N is explained by the following result
obtained by Poly (for a proof, see [66]).

Theorem 6.26. Let f : X' — X be a proper morphism of equidimensional complex
algebraic manifolds, and Y C X a closed subvariety satisfying Y’ = f=1(Y). If

f|X’\Y’ :X/\Y/ —)X\Y
is an isomorphism, then the induced morphism

Fo i Dxoyyr = Dy,

is an isomorphism. O

Cohomological properties

Let X be a proper equidimensional complex algebraic manifold, ¥ C X a closed
subvariety, and U = X \ Y. Since the complex 5; of currents on Y is a subcomplex of
D3, _, there is an induced morphism D y D% /v, 3 we note that these two complexes
do not agree. As usual, we put

;(/Yoo = F(X7 D}/Ym)a

and observe that the complex Dy, y. = (D% /Yoo R d) is a Dolbeault complex.

Proposition 6.27. For any integers p, q, the assignment which sends an open subset U

of X to D?;Ym (where Y = X \ U), is a totally acyclic sheaf.

Proof. Let U and V be open subsets of X. We put Y = X \ U and Z = X \ V. Since
the complexes of currents depend only on U UV and not on X, we may assume that
Y =YoUW, Z = ZyUW such that Yo N Zy = @) with closed subsets Yy, Zy, and W. We
have to show that the sequence

0— fomz)m — DY @ DY — fouz)m -0

is exact. By definition, one obviously has

P,q _ p,q Pp,q
Dy, =Dy NDz .

Letting {oy, 0z} be a partition of unity subordinate to the open covering { X\ Zy, X\ Y5},

and writing any current T € D%’/quz)oo as T = oyT +o0,T, we see on the other hand that
.4 _ ppa p,q
D'y =Dy, + D7

This proves the proposition. O
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Let now 7 : X — X be an embedded resolution of singularities of Y with D = 7=1(Y)
a normal crossing divisor, i.e. X can be viewed as a smooth compactification U of U with
D = U \ U anormal crossing divisor. By means of Theorem 5.44, we obtain a morphism
of complexes

Ez(log D) — D%/D — D}(/Doo’

which leads, by Theorem 6.26, to a morphism of presheaves of Dolbeault complexes
Eiog(U)° = (Eiog g (U)°,d) = (Dx/y, »d) = Dx/v..,
which, in turn, induces a morphism of sheaves of Dolbeault complexes
Eiog(U) = (Biog r(U),d) = (Dx/y., > d) = Dx/vi - (6.28)

By another result of Poly (see [66]) this morphism is a quasi-isomorphism. Nevertheless,
it is not a filtered quasi-isomorphism with respect to the Hodge filtration. The Hodge
filtration of the Dolbeault complex Dy,y._ is related to the formal Hodge filtration
studied by Ogus in [65].

Remark 6.29. We have now obtained a complex of currents on a quasi-projective variety
which does not depend on the choice of a compactification. The price we have to pay
is that the Hodge filtration of this complex is not the desired one. It would be useful
to have a complex of currents on quasi-projective varieties which is independent on the
compactification and compatible with the right Hodge filtration.

A Diog-complex constructed by means of currents

Let C denote the site of regular schemes in ZAR(Spec(R)). A scheme X in C defines
a real algebraic manifold Xg = (X¢, Fro)-

Definition 6.30. Let X be an equidimensional scheme in C, U an open subset of X,
Y =X\U,and 7 : X — X an embedded resolution of singularities of Y with D = 7= 1(Y)
a normal crossing divisor. For any integers n, p, let D, (p) = Dy, x (-, p) denote the
presheaf in the Zariski topology of X, which assigns to U the group

Dgur,X(U’ p) = Dn(D)?C/DCOO,p)U,
with o as in Notation 5.65.

Proposition 6.31. Let X be an equidimensional scheme in C. For any integers n, p,
the presheaf D, < (p) is a totally acyclic sheaf. Moreover, it has a natural structure of
a Diog-complex.

Proof. The first statement is consequence of Proposition 6.27 and the exactness of the
functors D" (-, p). The structure as a Diog-complex is given by the morphism (6.27). O
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Multiplicative properties

Proposition 6.32. Let X be an equidimensional scheme in C' of dimension d. Then,
the sheaf Doy, x = D:ur,X(*) is & Diog-module over Digg x = Dl*og,x(*)'

Proof. Let U be an open subset of X, ¥ = X \ U, and 7 : X — X an embedded
resolution of singularities of Y with D = 77 !(Y) a normal crossing divisor. The space
of currents D% is the topological dual of the space of differential forms of degree
2d —n on X, Whlcﬁ are flat along D¢ (for a proof in the case n = 2d, see [62]). Since
the product of a form with logarithmic singularities along D¢ with a form which is flat
along Dc, is again flat along D¢ according to [73, IV.4.2] there is a product

m—+n
Eiog(Ue) ® DF, /e, = D3 e

given by ¢ A T(w) = T(w A ¢). This pairing turns

D~

%e/pew = D ,d)

Xc/Dcoo R
into a Dolbeault module over the Dolbeault algebra Eiog(U) = (Ef,, g(U),d). An appli-
cation of Proposition 5.18 now shows that Dcy,, x becomes a Diog-module over Diog x. [

Functorial properties

The following result is a direct consequence of the fact that the pull-back of a flat
differential form is again flat.

Proposition 6.33. Let f : X — Y be a proper morphism of equidimensional schemes
in C of relative dimension e. Then, the push-forward of currents induces a covariant
f-morphism of Diyg-complexes

J# : fiDeur,x — Dcur,Y(*e)[72e]'

Moreover, if f# denotes the pull-back of differential forms, and ex (respectively
oy ) is the pairing between Diog x and Deur,x (respectively Diogy and Deury ), then
(f#, fu, fu,0x,0y) is a projection five-tuple.

Covariant Diog-arithmetic Chow groups

Let A be an arithmetic ring, and X an arithmetic variety over A such that Xg is
equidimensional. Then, the pair (X, Deur) is a Digg-arithmetic variety. Therefore, we
can apply the results of §4; in particular, we can define the arithmetic Chow groups
CH*(X,Deur)-

The main properties of these groups are summarized in the subsequent theorem, which
is a consequence of §4 and the properties of currents discussed above.

Remark 6.34. Note that, when X (C) is not compact, the cohomology groups of the
complex Dcyr,x are not the Deligne-Beilinson cohomology groups of X. Nevertheless, it
is possible to prove that the complex D, x satisfies the weak purity property. This fact
is reflected by the exact sequences given in the next theorem.
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Theorem 6.35. With the above notation, we have the following statements.

(i) There is an exact sequence

CHP ™7 (X) £ D27(X, p) % CHP (X, Dew) =+ CHP(X) — 0.

cur

Moreover, if X (C) is projective, then there is an exact sequence

CHY'7(X) & HZ ™' (X, R(p)) % CHP(X, Dew)

(¢;—w

L9, omr(X) @ 2D, (X, p) P H2P (X, R(p)) — 0. (6.36)

(ii) For any arithmetic variety X over A such that Xg is equidimensional, there is a
covariant morphism of Diyg-arithmetic varieties

(X, DIOgyX) — (X, Dcur,X)a
which induces a morphism of arithmetic Chow groups
CH?”(X, Diog) — CH”(X, Deus)-

When X (C) is compact this morphism is injective. Moreover, if X (C) has dimension
zero, this morphism is an isomorphism.

(iii) For any proper morphism f : X — Y of arithmetic varieties over A of relative
dimension e, there is a covariant morphism of Di,g-arithmetic varieties of relative
dimension e

(X7 DCur,X) — (Y7 DcurA,Y)a

which induces a morphism of arithmetic Chow groups
fo: CH?(X, Deyr) = CHP (Y, Do)

If g : Y — Z is another such morphism, the equality (g o f)« = g« o f. holds.
Moreover, if fg : Xrp — Ygr is a smooth proper morphism of proper varieties, then
f+ is compatible with the direct image of contravariant arithmetic Chow groups.

(iv) The group CH *(X, Deur) Is a module over CH *(X, Diog) With an associative action.

Moreover, this action satisfies the projection formula for proper morphisms.

O

Canonical class of a cycle

An interesting property of covariant arithmetic Chow groups is that any algebraic cycle
has its canonical class. One may think of the contravariant arithmetic Chow groups as
the operational Chow groups where the characteristic classes of vector bundles live, and
the covariant arithmetic Chow groups as the groups where the algebraic cycles live.
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If y is a p-codimensional cycle with ¥ = suppy, and U = X \ Y, the pair (§,,0)
represents the class of the cycle y in the group

H%iur,y(xvp) = HZP(DCur(Xa p)7 Dcur(va))-
Therefore, it is a Green object for y.

Definition 6.37. Let X be an equidimensional arithmetic variety over A, and y a
p-codimensional cycle on X. Then, we denote by § € CHP(X, De,,) the class of the
arithmetic cycle (y, (&y,0)), i.e.

7= [y, (8,,0)] € CHP(X, Deuy).

6.3. Height of a cycle

Let K be a number field, O its ring of integers, and S = Spec(Ok). Let X be a d-
dimensional projective arithmetic variety over O with structural morphism 7 : X — S.
Since S, consists of a finite number of points, we have EfZgR(S(C) = Dg_ g Therefore,
we have

CH *(8, Dewr) = CH* (S, Do) = CH*(9),

where the isomorphism is provided by the map ¥ given in Theorem 6.23.
The key ingredient in the construction of the height of a cycle in [10] is a biadditive
pairing, the so-called height pairing,

(-]-): CH?(X) ® 29(X) — CHP*1=4(8)q. (6.38)
We refer the reader to [10] for more details about this pairing. Here, we want to interpret

the height pairing (6.37) in terms of the contravariant and covariant arithmetic Chow
groups developed in this section.

Definition 6.39. With the above notation and conventions, we define for a €
CH?(X,Diog) and z € Z9(X)

(a]2) =m(a-2) € CHP (S, Dy )g. (6.40)
If p+q=d+ 1, we call the real number
hta(2) = deg(a | 2)
the height of z with respect to a.

Proposition 6.41. There is a commutative diagram

— 1)

CH? (X, Do) ® ZY(X) — 6ﬁ”+q‘d(5, Diog)0

Wi i‘”

— G
CH”(X) ® Z9(X) CHPT7%(8)q

where the map ¥ is given by Theorem 6.23, and the horizontal maps are provided by the
pairings (6.39) and (6.37), respectively.
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Proof. We have to show that the height pairing given in Definition 6.39 translates into
the height pairing of [10] using the isomorphism ¥; in particular, we will see that our
formula (6.39) translates into the formulae (2.3.1) and (2.3.2) therein.

If p+ ¢ < d, we have m.(a - Z) = 0, since X has dimension d over S. This trivially
proves the claimed commutativity.

In order to treat the case p + ¢ = d, we choose a representative (y, g,) of a such that
Yy intersects zx properly and such that g, is a Green object for the cycle y. By the
éﬁ*(X, Diog )-module structure of CH *(X, Deur), we now compute

(:8) - (2 (0:,0)) = (yic - 216 8% (62, 0)), [y - 2Jin) € 27" (X, Dewr ) @ CHE (X,
which has class o - Z in Gﬁpﬂ(X, Deur)g- Therefore, we obtain in this case
(@] 2) = (@ 2) = [ (yx - 2K),(0,0)] € CH (S, Dewr)g = CH(S)q.
Taking into account formula (2.3.1) of [10], this immediately implies
(o] ) = [y - 210),0] = (F() | 2),

which is the claimed commutativity.

In order to treat the case p + ¢ = d + 1, we let g, = (wy, gy). Since yx N zx = 0, we
find that g, A J, is a well-defined closed current in D241 (X, d + 1). Using the explicit
description of the x-product, we obtain

gy * (02,0) = (wy A 0,9y NO2),
which implies

(] 2) = ma(e- 2) = [y - 2in), (0,74 (g, A 82))] € CH(S, Dewr)g = CH' (S, Diog )

By our normalization of the current associated to a cycle, we observe

Ty (gy NO2) = W /zm 9y
this shows
wmm=h@mmw$qL4.

On the other hand, since ¥(«a) = [y, 2(2mi)?"P*[g,]x], using formula (2.3.2) of [10] and
respecting our definition of the current [g,]x, we compute

/ ) 2(2m)dp+1gy]
|2

which proves the claimed commutativity in the case p+q =d + 1. (Il

@) 1) = |y o), o
2
= [melly o). s
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We recall that there is an alternative formula for the height pairing in [10] given in
terms of a choice of a Green object for the cycle z. Since this formula is useful for explicit
computations, we describe it with the notation and normalizations used in this paper.

Lemma 6.42. Let « € @p(X, Diog) and z € Z9(X). Then, the height pairing (« | z)
is given by the formula

(] 2) = me(er- [z, 8:]) + a([g:] x (w(@))),

where g, = (w,§2) € ﬁl%(fogﬁzq (X, q) is an arbitrarily chosen Green object for the class
of z and, by abuse of notation, the quantity [g.]x (w(«)) is the real number given by

_ Jle:lx(w(a)), ifp+g=d+1,
[9:]x (w(a)) = .
0, ifp+q#d+1.
Proof. Using Theorem 6.35 (i), we note that the element
[2.8:] = [z, (ws, 62)] € CH(X, Diog)

maps to the element
[Zv ([o.}z], [QZ}X)] € CHq(X, Dcur)-

By means of the Gﬁ*(X , Diog)-module structure of Gﬁ*(X , Deur), we now compute

mola [2,9:]) + allg:]x (@(@)) = mla - [z, (ws), [g=]x)]) + almp(w(@) A g:]x)
=m0 [z, ([w:], [9:]x)]) + ma(w(@) A g:]x))
=m0 [z, ([w:], [g:]x)]) + 7 - alfg=]x)
= m(a- ([2 ([ws]. [9:1)] + allg:]x)))

Putting v = [g.] x and observing

—

a(lg:]x) = a(7) = [0, (=dp7, —7)]

we find
T [2,82]) +a([g:]x (w(a))) = Tu(a - 2) = (a | 2).

7. Arithmetic Chow rings with pre-log-log forms

7.1. Pre-log-log forms
Notation

Let X be a complex algebraic manifold of dimension d and D a normal crossing divisor
of X. Write U = X \ D, and let j : U — X be the inclusion.



138 J. I. Burgos Gil, J. Kramer and U. Kihn

Let V be an open coordinate subset of X with coordinates z1, ..., z4; we put r; = |z;].
We say that V is adapted to D, if the divisor D is locally given by the equation z; - - -z =
0. We assume that the coordinate neighbourhood V' is small enough; more precisely, we
will assume that all the coordinates satisfy r; < 1/e°, which implies that log1/r; > e
and log(log1/r;) > 1.

If f and g are two functions with non-negative real values, we will write f < g, if there
exists a constant C' > 0 such that f(z) < C - g(x) for all z in the domain of definition
under consideration.

Log-log growth forms

Definition 7.1. We say that a smooth complex function f on X \ D has log-log growth
along D, if we have
k

(21, 2a)] < [ [ log(log(1/r))™ (7:2)
i=1
for any coordinate subset V' adapted to D and some positive integer M. The sheaf of
differential forms on X with log-log growth along D is the subalgebra of j.&}; generated,
in each coordinate neighbourhood V' adapted to D, by the functions with log-log growth
along D and the differentials

dZi dZi
zilog(1/rs)" Zilog(1/rs)’
dz;,dz;, fori=k+1,...,d.

fori=1,...,k,

A differential form with log-log growth along D will be called a log-log growth form.

Dolbeault algebra of pre-log-log forms

Definition 7.3. A log-log growth form w such that dw, dw and ddw are also log-log
growth forms is called a pre-log-log form. The sheaf of pre-log-log forms is the subalgebra
of 7, &} generated by the pre-log-log forms. We will denote this complex by €% ((D))pre-

The sheaf £%((D))pre, together with its real structure, its bigrading, and the usual
differential operators 0, 0 is easily shown to be a sheaf of Dolbeault algebras. Moreover,
it is the maximal subsheaf of Dolbeault algebras of the sheaf of differential forms with
log-log growth.

Comparison with good forms
We start by recalling the notion of good forms from [64].
Definition 7.4. Let X, D, U, and j be as above. A smooth function on X \ D has

Poincaré growth along D, if it is bounded in a neighbourhood of each point of D. The sheaf
of differential forms with Poincaré growth along D is the subalgebra of j.E}; generated
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by the functions with Poincaré growth along D and the differentials

dz; dz;
d ‘ fori=1,....k
Zlog(1/r) zilog(1/ry)’ 0T o
dZi,dzi, fOri:k+17...,d,

for any coordinate subset V' adapted to D. A differential form 7 is said to be good, if n
and dn have Poincaré growth.

From the definition, it is clear that a form with Poincaré growth has log-log growth,
but a log-log growth form, in general, does not have Poincaré growth. In contrast, a good
form does not need to be a pre-log-log form. Note however that a differential form which
is good, of pure bidegree and d0-closed, is a pre-log-log form. In particular, a closed form
of pure bidegree and Poincaré growth is also a pre-log-log form.

Inverse images

The pre-log-log forms are functorial with respect to inverse images. More precisely, we
have the following result.

Proposition 7.5. Let f : X — Y be a morphism of complex algebraic manifolds, let
Dx, Dy be normal crossing divisors on X, Y respectively, satisfying f~'(Dy) C Dx. If
n is a section of E3-((Dy))pre, then f*n is a section of €% ((Dx))pre-

Proof. Let P be a point of X and @ = f(P). Let Vx (respectively Vy) be a coordinate
neighbourhood of P (respectively @) adapted to Dx (respectively Dy ) with coordinates
21,...,24 (respectively wy, ..., w,) such that f(Vx) C Vi . Assume that Dx has equation
z1 -+ 2z = 0 and Dy has equation wy - --w; = 0. In these coordinate neighbourhoods we
can write f = (f1,..., fn). The condition f~1(Dy) C Dx means that the divisor of f; is

contained in Dy for i =1,...,1l. Therefore, we can write
k
_ @i j
fi=ui H Zi
Jj=1

where the o; ; are non-negative integers and the u; are units.

We start by showing that the pre-image of a log-log growth form has log-log growth.
If h is a log-log growth function on Y \ Dy, then in order to show that h o f has also
log-log growth on X \ Dx, one uses the inequality

log(a +b) < 2(log(a) + log(b)) < 4log(a) log(b)

for a,b > e. Next we consider f*(dw;/(w;log(1/|w;|))); we have

f*( dwi ) _ dfz
wilog(1/w;]) ) filog(1/|fi])
Z?:l O[i’dej/Zj =+ d’U,Z/UZ
> iy log(1/r;) + log(1/|ui])
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Since, for any jo, the functions
log(1/7j,) log(1/us)
k =y
2 jm1 @iglog(1/ry) +log(1/ui) 375, cijlog(l/r;) +log(1/us)
have log-log growth, we obtain that f*(dw;/(w;log(1/|w;|))) is a log-log growth form.
The analogous result holds true for the complex conjugate form.

Finally, in order to show that the pre-image of a pre-log-log form is a pre-log-log form
one uses the compatibility between inverse images and the operators 0 and 0. O

Integrability

Despite the fact that pre-log-log forms and good forms are not exactly the same, they
share many properties. For instance the following result is the analogue of Propositions 1.1
and 1.2 in [64)].

Proposition 7.6.
(i) Any log-log growth form is locally integrable.
(ii) Ifn is a pre-log-log form, and [n]x is the associated current, then
[dn]x = d[n]x.
The same holds true for the differential operators 9, 0 and 90.

Proof. Recall that d is the dimension of X. For the first statement it is enough to
show that, if 7 is a (d,d)-form on X with log-log growth along D and V is an open
neighbourhood adapted to D, then we have

‘/n’<oo.
v

Let us denote by A}, Jeo & V the punctured disc of radius 1/e°. We now have the estimates

JER

1/e® dr;
< CQ H/ log log 1/7’1)) W

1/ d?"i
<G ]':[/ rilog(1/r;)'+e =

for some positive real constants C7, Cy, C3 and ¢, and a positive integer M. The proof
of the second statement is analogous to the proof of Proposition 1.2. in [64]. O

log(log(1/7;)) 2z log(1/r;)?

7.2. Pre-log forms

We will now define a complex which contains pre-log-log forms as well as the differential
forms with logarithmic singularities introduced in §5.3.
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Log growth forms
Let X, D, U and j be as in the previous section.

Definition 7.7. We say that a smooth complex function f on U has log growth along
D, if we have

k
[f(z1,- - za)| < [[log(1/r)™ (7.8)
=1

for any coordinate subset V' adapted to D and some positive integer M. The sheaf of
differential forms on X with log growth along D is the subalgebra of j.E}, generated, in
each coordinate neighbourhood V' adapted to D, by the functions with log growth along
D and the differentials

R
Zi Zi

dz;,dz;, fori=k+1,...,d.

A differential form with log growth along D will be called a log growth form.

Dolbeault algebra of pre-log forms

Definition 7.9. A log growth form w such that dw, dw and d0w are also log growth
forms is called a pre-log form. The sheaf of pre-log forms is the subalgebra of j.Ej;
generated by the pre-log forms. We will denote this complex by €% (D)pre.

The sheaf €% (D)pre, together with its real structure, its bigrading and the usual dif-
ferential operators 0, J is easily shown to be a sheaf of Dolbeault algebras. Moreover, it
is the maximal subsheaf of Dolbeault algebras of the sheaf of differential forms with log
growth.

7.3. Mixed forms

For the general situation which interests us, we need a combination of the concepts of
pre-log-log and pre-log forms.

Mized growth forms

Let X, D, U and j be as in the previous section. Let D; and Dy be normal crossing
divisors, which may have common components, and such that D = D; U Ds. We denote
by D), the union of the components of Dy which are not contained in D;. We will say that
the open coordinate subset V is adapted to Dy and Do, if D; has equation z1 - - -z = 0,
D), has equation zgy1---2; =0 and that r; = |z;| < 1/e® for i =1,...,d.

Definition 7.10. We define the sheaf of forms with log growth along D1 and log-log
growth along D3 to be the subalgebra of j,.Ef; generated by differential forms with log
growth along D; and log-log growth along Ds.

A differential form with log growth along D, and log-log growth along Dy will be called
a mized growth form, if the divisors Dy and D are clear from the context.
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Dolbeault algebra of mized forms

Definition 7.11. Let X, D = Dy U D5, U and j be as before. A mixed growth form w
such that dw, dw and 0w are also mixed growth forms is called a mized form. The sheaf
of mixed forms is the subalgebra of j.&}; generated by the mixed forms. We will denote
this complex by €% (D1(D2))pre-

The sheaf €% (D1 (D2))pre together with its real structure, its bigrading and the usual

differential operators 0, 0 is easily checked to be a sheaf of Dolbeault algebras. Observe
that we have by definition

Ex (D1 <D2>>pre =Ex (D1 <D/2>>pre~

Inverse images

We can generalize Proposition 7.5 as follows. The proof is similar to the proof of
Proposition 7.5, and is therefore left to the reader.

Proposition 7.12. Let f : X — Y be a morphism of complex algebraic manifolds. Let
D1, Dy and E1, E5 be normal crossing divisors on X, Y, respectively, such that D1 U Do
and E; U Ey are also normal crossing divisors. Furthermore, assume that f _1(E1) C D,
and f~1(FEy) C D1 UDy. If 1) is a section of €% (E1(E2))pre, then f*n is a section of
83(<D1<D2>>pre~ 0

Integrability

Let y be a p-codimensional cycle of X, Y = suppy, and U = X \Y. Let 7 : X — X be
an embedded resolution of singularities of Y with normal crossing divisors Dy = 7 1Y)
and D = 7= 1(D).

Lemma 7.13. Assume that g € I'(X, 8%<Dy<ﬁ>>pre). Then, the following statements
hold.

(i) If n < 2p, then g is locally integrable on the whole of X. We denote by [g]x the
current associated to g.

(ii) If n < 2p — 1, then d[g]x = [dg]x-

Proof. Recall again that d is the dimension of X . To prove the first statement, we have
to show that for any differential form « of degree 2d — n > 2d — 2p and any compact set

K C X, the integral
/ alNg
K

is convergent. The restriction of 7*a to Dy vanishes, since the map Dy — X factors
through Y. Therefore, if 27 - - - 2z, = 0 is a local equation for Dy, 7*«a can be decomposed
as a sum of terms, each of which contains a factor dz;, dz;, z;, or Z; for : = 1,..., k. The
result now follows from the local expression describing logarithmic growth. The second
statement is proven analogously. O
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Good Metrics

We recall Mumford’s notion of a good metric (see [64]) in the case of line bundles.

Definition 7.14. Let X be a complex algebraic manifold, D a normal crossing divisor,
and put U = X \ D. Let L be a line bundle on X, and L)y the restriction of L to U. A
smooth hermitian metric h on Ly is said to be good along D, if we have for all x € D, all
neighbourhoods V' of x adapted to D (with coordinates z1, . .., z4), and all non-vanishing,
rational sections s of L (writing ||s||? = h(s, s)):

G s, lIsll~t < C] Hle log(r;)|"¥ for some C' > 0 and some N € N;
(ii) the 1-form Jlog||s| is good on V.

A line bundle L equipped with a good hermitian metric will be called a good hermitian
line bundle. The pair (L, h) will be denoted by L.

Let X, D, U be as in the preceding definition, and let L be a good hermitian line
bundle on X. For a non-vanishing, rational section s of L, let Y denote the support of
div(s), and put V.= X \ Y. Let 7 : X — X be an embedded resolution of singularities
of Y with the property that

Dy =7"%Y), D=xn"'D) and 7 (Y UD)
are normal crossing divisors.

Proposition 7.15. With the above notation we have
log [ls]| € (X, €Dy (D))pre), 9010 [ls]| € (X, € (D)) pre)-

Proof. First we show that w, = ddlog||s|| is a pre-log-log form. If s’ is another non-
vanishing, rational section of L in an open subset V of X, we note that ws|y = wy|v.
This shows that 90 1og ||s|| gives rise to a differential form w on X, which is independent
of the choice of s. By the very definition of a good metric, w has Poincaré growth along
D N V. Since this is true for any open covering of X, w has Poincaré growth along D.
Therefore, it is a log-log growth form. Since w is closed, dw, Ow, and Jdw have also log-log
growth. This proves that w is a pre-log-log form along D.

We now show that log ||s|| is a pre-log form along Dy and a pre-log-log form along D. In
a neighbourhood of a point of Dy \ 5, the function log ||s|| has logarithmic singularities
along Dy, as shown in Proposition 5.64. Therefore, log ||s|| is a pre-log form. On the
other hand, in a neighbourhood of a point of D\ Dy, the function |s| has log growth
along D, since h is a good metric; hence, log ||s|| has log-log growth. Moreover, the forms
dlog||s||, Olog||s|, and ddlog|s|| have Poincaré growth. This shows that log ||s| is a
pre-log-log form along D \ Dy . Finally, in a neighbourhood of a point of Dy N D, we can
write log ||s|| as the sum of a form with logarithmic singularities and a pre-log-log form.
Therefore, log ||s|| is a pre-log form there. O
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7.4. A Djgg-complex with pre-log-log forms

In this section we will construct a Dj,s-complex using pre-log-log forms along a fixed
normal crossing divisor.

Varieties with a fived normal crossing divisor

Let X be a complex algebraic manifold of dimension d, and D a normal crossing
divisor. We will denote the pair (X, D) by X. If V C X is an open subset, we will write
V=(V,DnV).

In the sequel all operations have to be adapted with respect to the pair X. For instance,
if Y C X is a closed algebraic subset and V' = X\ Y, we mean by an embedded resolution
of singularities of Y adapted to D an embedded resolution of singularities 7 : X - X of
Y with the property that

Dy =7%Y), D=n"YD) and 7 '(YUD)

are normal crossing divisors. Using Hironaka’s theorem on the resolution of singularities
[44], one can show that such an embedded resolution of singularities exists; for a more
detailed description of this fact we refer to Theorem 7.29, below.

Analogously, a normal crossing compactification of X will be a smooth compactification
X such that the adherence D of D and the subsets Bx = X \ X and B U D are normal
crossing divisors.

Pre-log along infinity

Given a diagram of normal crossing compactifications of X

/ Sa
X —X
X
with divisors By and Bx at infinity, respectively, Proposition 7.12 gives rise to an

induced morphism
/

" 8%<BY<E>>pre - 8%’ (Bx (D ))pre-
In order to have a complex which is independent of the choice of a particular compactifi-
cation, as in §5.3, we take the limit over all possible compactifications. For X = (X, D)
as before, we then denote

E;re(z)o = h_I}lF(y7 8*?<BY<3>>pre)7
where the limit is taken over all normal crossing compactifications X of X.
The assignment which sends an open subset U of X to E},.(U)° is a presheaf in the
Zariski topology; we denote by E7 .  its associated sheat.

ES
pre,
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Definition 7.16. Let X = (X, D) be as above. Then, we define the complez E} .(X) of
differential forms on X, pre-log along infinity and pre-log-log along D as the complex of
global sections of E v, ie.

Efe(X) = I'(X, Ee x)-

pre

Remark 7.17. Since in the definition of the presheaf E* . (X)° we are using growth

pre

conditions it might be possible that this presheaf is already a sheaf.

A Digg-complex

Let X be a smooth real variety and D a normal crossing divisor defined over R; as
before, we write X = (X, D). For any U C X, the complex E},(U) is a Dolbeault algebra
with respect to the wedge product.

Definition 7.18. For any Zariski open subset U C X, we put

D;re7£(Ua p) = (D;re,K(Uv p)a dD) = (D* (EPYG(Q(C)7P)U7 dD)?
where o is as in Notation 5.65.

Theorem 7.19. The complex Dpe x is a Diog-complex on X. Moreover, it is a pseudo-
associative and commutative Di,g-algebra.

Proof. As in Proposition 5.33, we obtain that the presheaf D{)’m,g(' ,p) satisfies the
Mayer—Vietoris principle for any pair of integers p, n. Therefore, it is a totally acyclic
sheaf. Clearly, there are morphisms of sheaves of algebras

* *
Diog,x = Ppre,x-

The claim now follows. O

Remark 7.20. Because of technical reasons we are not able to prove or disprove a
filtered Poincaré lemma for the complex EJ . Therefore, we do not know the exact
cohomology of the complex D
composition

*

rex - Nevertheless, if X is projective, we note that the

D*(EX7p) - D*(EX<<D>>Prevp) - D*(DX7p)

is a quasi-isomorphism. Therefore, the least we can say is that the cohomology of
D*(Ex{{D))pre,p) has the usual real Deligne-Beilinson cohomology as a direct sum-
mand. As has been mentioned before, this problem can be solved by imposing growth
conditions on all derivatives of the differential forms under consideration.

7.5. Properties of Green objects with values in Dg,

We start by noting that Theorem 7.19 together with § 3.2 provides us with a theory of
Green objects with values in Dpe.
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Mixed forms representing the class of a cycle

In the case of pre-log-log forms the analogue of Proposition 5.58 is less precise, since
we do not know the cohomology of the complex of pre-log-log forms.

Proposition 7.21. Let X be a smooth real variety, and y a p-codimensional cycle on
X with support Y. Let (w, g) be a cycle in

5" (Dpre,x (X, p) = Dpre x (X \ Y, p)).

Then, we have the following statements.
(i) If the class of the cycle (w,g) in HY Do,
—200[g]x = [w] — d,. (7.22)

v (X,p) is equal to the class of y, then

ii) Assume thaty = > . n,;Y; with irreducible subvarieties Y; and certain multiplicities
Y FALRS J P

n;. If the cycle (w, g) represents the class of y, then the equality

27r1
— lim adg E n; / 7.23
e—0 OB.(Y) J ( )

holds for any differential form «; here B.(Y') is an 5—ne1ghbourbood of Y such that
the orientation of 0B.(Y") is induced from the orientation of B.(Y').

(iii) Let g, be a differential form on X \ (Y'UD) such that there exists an embedded res-
olution of singularities 7 : X — X of Y in X with Dy = 7=Y(Y) and D = =~ }(D),
such that in any coordinate neighbourhood adapted to Dy, we have

k
y) = Zai log(1/ri) + 3, (7.24)

i=1
where «; are smooth forms on X and 0 is the pull-back of a pre-log-log form on
X. If the pair (wy, gy) = (—200gy, g,) is a cycle in

SQP(Dpre,&(Xa p) — Dpre,&(X \Y,p))

and g, satisfies one of the equations (7.21) or (7.22), then the pair (wy,gy) is a
pre-log-log Green object for the cycle y.

Proof. (i) Let (v, ¢') be a cycle representing the class of y in H%’?Y (X,R(p)). By Propo-
sition 5.58, we then have
~200lg/)x = /] ~ 6.

By our assumption, the pair (w,g) and the image of (w’, g’) represent the same class in
H%I;e,Y(X’p)' Therefore, there are elements a € ’Dif;i(X, p) and b € Df)’;;i(X \'Y,p)
such that

(dpa,a — dpb) = (w,9) — (W', ).
The result now follows as in Proposition 5.58 (i) using Proposition 7.6 and Lemma 7.13.
(ii) The second statement follows as in Proposition 5.58 (ii).

(iii) Since pre-log-log forms have no residues we may deduce this statement from Propo-
sition 5.58. (]
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The first Chern form of a line bundle

Let X be a quasi-projective smooth real variety, D a normal crossing divisor defined
over R, and L = (L, h) a hermitian line bundle over X, where the hermitian metric h on
L ® C is good along D and satisfies F_h = h. If s is a non-vanishing, rational section of
L, we put ||s||? = h(s, s), y = div(s), Y =suppy, U = X \ Y, and (see §5.6)

gs = —3 log(||s]1*),
B 726595.

Moreover, we put X = (X, D), and U = (U,U N D). We call
c1(L) = ws = —200g, = 00 1log(||s||*)

the first Chern form of L.

Proposition 7.25. With the above assumptions the following statements hold. The
form w, belongs to Dgreé(X, 1), the form g, belongs to Drl)reé(U, 1). The pair (ws, gs)

is a cycle of the simple complex
Sz(DPrCVK(Xv 1) - DPFC,K(Uv 1))
Moreover, this pair represents the class of div(s) in the cohomology group H%pre,Y (X,1).

Proof. We first show that the form w, belongs to D]?HG’X(X7 1). By Proposition 7.15,
the form wy is a pre-log-log form. The invariance of i with respect to Fi, now shows that
ws belongs to Dgre’ X (X, 1). Analogously, again using Proposition 7.15, we obtain that

gs € Dérel(U7 1).

Let now A’ be a hermitian metric on L, which is invariant under F,, and smooth on
the whole of X. Let us write

g = —3 log(|ls]|),
Wl = —200¢..

By Proposition 5.64, the class of div(s) in H%log7Y (X, 1) is represented by the pair (w’, g.).
On the other hand, we have

9s — gle € Dfl)re,X(Xa 1)’
and therefore
dD(99 - gfgvo) = (ws7gs) - (W;»g;)

Thus both pairs represent the same cohomology class. O

Formulae for the x-product

The formulae of Proposition 6.10 still hold true in this more general context. More-
over, if we consider embedded resolutions adapted to X, it is not difficult to show that
Theorem 6.12 also remains true.
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Inverse images

Proposition 7.26. Let f : X — Y be a morphism of smooth real varieties, let Dy,
Dy be normal crossing divisors on X, Y respectively, satisfying f~'(Dy) C Dx. Put
X =(X,Dx) and Y = (Y, Dy). Then, there exists a contravariant f-morphism

S Dpre,y = f«Dpre,x-

Proof. By Proposition 7.12, the pull-back of differential forms induces a morphism of
the corresponding Dolbeault algebras of mixed forms. This morphism is compatible with
the involution o. Thus, this morphism gives rise to an induced morphism between the
corresponding Deligne algebras. O

Push-forward

We will only state the most basic property concerning direct images, which is necessary
to define arithmetic degrees. Note however that we expect log-log forms to be useful in
the study of non smooth, proper, surjective morphisms. By Proposition 7.6, we have the
following proposition.

Proposition 7.27. Let X = (X, D) be a proper, smooth real variety with fixed normal
crossing divisor D. Let f : X — Spec(R) denote the structural morphism. Then, there
exists a covariant f-morphism

f# : f*Dprc,K — Dlog,Spec(]R)-

In particular, if X has dimension d, we obtain a well-defined morphism
o ~
fu: H%pjjzdﬂ(x, d) — Hp, i (Spec(R),1) = R.
Note that, by dimension reasons, we have Z%t1 = §), and

H%ij;%zd+1 (X, d) = sz‘*‘l(IDpre,&(X, d+ 1))

Thus, every element of ﬁ%d’LQZd +1(X, d) is represented by a pair g = (0, g). The morphism
pres

f# mentioned above, is then given by

0= 0.0 (0o [ ).

Notation 7.28. For g = (0,9) € ﬁ%d“ZHl(X, d), we will write
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7.6. Push-forward of a x-product
Embedded resolution of singularities

We now come to a more detailed description of embedded resolutions of singularities
of closed algebraic subsets adapted to a fixed normal crossing divisor, which has been
announced in §7.4. This description is a consequence of the following precise version of
Hironaka’s theorem on the resolution of singularities, which is contained in [44]. These
considerations provide an important tool for explicit computations of *-products.

Theorem 7.29 (Hironaka). Let X be a smooth variety over a field of characteristic
zero. Let D be a normal crossing divisor of X, and Y an irreducible reduced subscheme
of X. Then, there is a finite sequence of smooth varieties )?k and subschemes Dy, Y,
Wi (k=0,...,N) satisfying

(i) Xo=X,Dy=D,Yy=Y;

(ii) for k = 0,..., N, the subscheme Wy, is contained in Y}, the subscheme Y}, is nor-
mally flat along Wy, the subscheme Dy, is a normal crossing divisor, and the pair
(Dy, Wy) has only normal crossings;

(iii) )?k+1 is the blow-up of X along Wy, Dy41 is the pre-image of Dy, U W}, by this
blow-up, and Yy1 is the strict transform of Yy;

(iV) Wk#Y}C fOI‘k:O,...,N—l, WN,1 :YNfl, and WNZ[Z)

These conditions imply that Yy_1 is smooth and that X ~ is an embedded resolution of
singularities of Y. Moreover, the class of embedded resolutions of singularities of Y, which
can be obtained by this method is cofinal among the class of all embedded resolutions of
singularities of Y. O

We apply Theorem 7.29 to the case when X is a smooth real variety of dimension
d, D a fixed normal crossing divisor of X, and Y an irreducible reduced subscheme of
codimension p in X intersecting D properly. Theorem 7.29 now provides an embedded
resolution of singularities 7 : )?N — X of Y adapted to D. We note that Dy = 7~ 1(Y U
D), and that 7=*(Y") and 7=!(D) have either no component or at least one component
FE in common. In the latter case, the component E appears in some intermediate step of
the resolution of singularities, so we may assume that E arises as the exceptional divisor
from Wy, by the map 7y, : X N — X r obtained by composing the corresponding blow-ups.
Since Y is not contained in D, we have codim W}, > codim Y. For later purposes, we
denote by py : X — X the map obtained by composing the corresponding remaining
blow-ups, i.e. m = pj, o m.

We now describe the above situation in terms of local coordinates. We let U denote a
coordinate neighbourhood of = € )N(N with local coordinates z1,...,zs adapted to Dy.
This means in particular that there are subsets S, respectively T, of {1,...,d} such
that the normal crossing divisors 7~ 1(Y"), respectively 7=1(D), are locally given by the
equations

H z; =0, respectively H z; = 0.
icS i€T
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The case when 7~1(Y)) and 7~ (D) have no component in common is then characterized
by SNT = @, whereas in the other case we have S N'T # (; in the latter case, we
assume that ¢ € SN T, i.e. the common component F is given by the equation z; = 0.
Furthermore, we denote by V a coordinate neighbourhood of 7 (z) € X, with local
coordinates t1,...,tq adapted to the pair (Dy, Wy); this means that Dy NV is a union
of coordinate hyperplanes and that W}, is contained in the intersection of at least p 4 1
coordinate hyperplanes. For simplicity, we will assume that W}, is contained in the subset
defined by t; =--- =tp41 = 0. After shrinking U, if necessary, we may assume that
7, (U) C V; furthermore, we may assume that (21, ..., 24) = (t1,...,tq). The condition
7 (E) € W}, implies that these local coordinates satisfy

(t1y.o o ta) = (g, ooy 20 P Uy, %y %), (7.30)

where ny,...,np41 are positive integers and uq,...,up41 are holomorphic functions,
whose divisor of zeros does not contain E.

Basic pre-log-log Green forms

In many cases, we can derive a formula for the push-forward of a *-product of top
degree, which is similar to the push-forward of the x-product defined by Gillet and Soulé.
A basic ingredient to derive such formula is the concept of basic pre-log-log Green forms,
which we define below. These forms are the analogues of the basic Green forms introduced
in [15].

Definition 7.31. Let X be a smooth real variety with fixed normal crossing divisor D
as above, y a p-codimensional cycle of X, and Y = suppy. A basic pre-log-log Green form
for y is a differential form g, on X satisfying:

(i) (—200g,,gy) is a Green object with values in Dy, for the cycle y;

(ii) there exists an embedded resolution of singularities 7 : X XofY adapted to D
such that in any coordinate neighbourhood with coordinates 21, ..., 24 adapted to
7Y the equality

gy = D ilog(1/ri) + 6 (7.32)

holds, where «; are smooth differential forms on X and 08 is a pre-log-log form
on X.

We note that in equation (7.31), the quantity g, should be replaced by 7*(g,). We
permit ourselves this slight abuse of notation here and in the subsequent considerations
in order to make our notation less heavy. Note also that in view of Proposition 7.21, if
condition (ii) is satisfied then condition (i) holds if any of the of the equations (7.21)
or (7.22) is satisfied.

By the cofinality property in the stated above version of Hironaka’s theorem, we may
assume that the embedded resolution of singularities appearing in the preceding definition
of a basic pre-log-log Green form is obtained by means of Theorem 7.29, i.e. we may
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assume X = X ~ and choose the local coordinates according to the discussion following
Theorem 7.29. In particular, we can then rewrite equation (7.31) as follows:

Gy = Z a;log(1/r;) + .
ies

We note that g, is a basic Green form in the sense of [15], if § is a smooth differential
form. We observe that the function —log ||s|| is a basic pre-log-log Green form for div(s),

if L =(L,| -] is a good hermitian line bundle and s a non-vanishing, rational section
of L.

Push-forward of a x-product

Theorem 7.33. Let X = (X, D) be a proper, smooth real variety of dimension d with
fixed normal crossing divisor D. Let y be an irreducible p-codimensional cycle of X,
Y = suppy, and g, a basic pre-log-log Green form for y. Let z be a gq-codimensional
cycle of X, Z = suppz, and g, = (ws,g-) a Green object with values in Dy, for the
cycle z. Assume that p+q = d+ 1, that Y and Z intersect properly, i.e. Y N Z = (), and
that Y intersects D properly. Then, the following formula holds

1 1 1
G 9o = s 0t G e

Proof. Let 0y and 07y be as in Lemma 6.11. Recalling —200 = (47i)d® in conjunction
with Theorem 6.12, which is also valid for pre-log-log forms, we obtain

Oy * 9. = (wy Aw;, 4mi(d(ovzgy) A 9= + 0zv gy ANdg:)7).

We have to investigate the integral

/ gy * 9z = 47Ti/ (dC(UYZgy) NG, + 0zyY Gy A dcgz)~
X X
In order to perform these calculations, we put

X=X \ (BE(‘D) U BE(Y) U BE(Z))7

where B.(-) denotes an e-neighbourhood of the quantity in question. We observe that on
X, we can split up the integral

/ (d(oy zgy) N gz + 02y gy A d°gy)
XE
into two summands. For the first summand we obtain

/ d°(oyz9y) N gz = / (d°gy A g —d(ozvgy) A g2)
X

= =

= / (dgy N g. —d(d°(ozyvgy) N g.) +d°(ozvgy) Adg.).

Xe
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For the second summand we find

/ 0zy 3y A dcgz = / (gy A dcgz — 0y z3y A dcgz)
X

= €

= / (gy A dcgz - d(UYZgy A dcgz) + d(UYZgy) A dcgz)

XE

= / (gy A dcgz - d(UYZgy A dcgz) + dC(UYZgy) A dgz)

€

Summing up all the terms in question now yields

/ (d°(oyzgy) N gz + 02y gy Adg:)

€

= / (gy Nd°g. +dgy A g, +dy Adg.) — / d(d“(czygy) N g. + oy zgy Nd°g.)
X, Xe

-J,

The claim of Theorem 7.33 will now follow as a consequence of the subsequent two

gy A+ [ A (ov20,) A g. - ovag, ndg.). (7.34)
Xe

€

lemmas. O

Lemma 7.35. With the notation and assumptions of Theorem 7.33, the differential form
gy Nd°g. is locally integrable on X.

Proof. In order to show that the differential form g, A d°g. is locally integrable on X,
it suffices to show that it is locally integrable on an embedded resolution of singularities
T )?N — X of Y U Z adapted to D as described in Theorem 7.29. We let U be a
coordinate neighbourhood of = € X ~ with local coordinates z1, ..., zg adapted to Dy as
described in the discussion following Theorem 7.29. Then, we have

Gy = Zai log(1/ri) + 3,

i€S

where a; and 8 are as in Definition 7.31. Since the differential form § A d°g, has log-log
growth along 7=1(D), it is locally integrable on Xu.

In order to study the local integrability of the forms «;log(1/r;) Ad®g, (i € S), we
have to distinguish the following two cases.

Case 1: i ¢ T. This is the easy case. Namely, if we write
a;log(1/r;) Ndg, = f(21,...,2q4)dz1 A+ AdZg,

then f satisfies the estimate

) T lostlog(1/ry) ™
e1seeesl < dost1/r) [ Sig s

for some positive integer M. Therefore, «; log(1/7;) A d°g. is locally integrable on X N-
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Case 2: 1 € T. Let E be the divisor given by the equation z; = 0; then E is a common
component of 771(Y) and 7~ (D). Letting X}, with the local coordinates t, ..., tq be as
in the discussion following Theorem 7.29, the component E is mapped to the subset W,
which is contained in the subset defined by ¢; = --- = t,11 = 0. In these coordinates, we
now write
ng) = Z kK’,L’(tla .. ,td)dt[{/ A dt_L/,

K',L'
where K', L' C {1,...,d} are strictly ordered subsets of cardinality q. We fix K', L', and
put n = kg r/(t1,...,tq)dtx Adtr. Since ¢ = d—p+ 1, the subset K’ contains at least
two elements

a,be{l,....,p+1}, (7.36)

which implies that 7 contains the differentials dt, and dt;.
We are left to show that a; log(1/r;) A} (n) is locally integrable. To this end, we write

a;log(1/r;) = Zgjj 21,.-.,2q4)dzr ANdZzg,
17) = ZhKvL(Zl’ .. .,Zd)dZK A dZL,

where I,J C {1,...,d} are strictly ordered subsets of cardinality p — 1, and K,L C
{1,...,d} are strictly ordered subsets of cardinality ¢. In this way, we obtain the (d, d)-
form

a;log(1/r;) Ami(n Z froxrn(zi,...,za)dzs A - AdZg

Wit}LfI’J’K’L = g1, - hk, .. We now show that each function f; ;s x r is locally integrable
on Xy. If i € I'NJ, the local integrability of fr jx r follows as in Case 1. If i € IN L or
i € J N K, the local integrability of f; ; k1 follows from the estimate

_ log(log(1/r:))™ I log(log(1/r;))™
i or ’I“JQ- log(1/r;)?
Jj#i

|fr.om0(z1,. .., 24)]

We are left to investigate the last sub-case ¢ € K N L. Letting a, b be as in (7.35), and
recalling the relation ¢, = 2] u, from (7.29), we first observe

« (log(log(1/[ta]))™ (log(na log(1/7) + log(1/ ua )™ ¢
Wk( talog(1/|tal) dta> Uq(nalog(1/r;) + log(1/[ual)) z;

na(log(na log(1/r:) + log(1/|ual)))™
zi(nalog(1/r) +log(1/[ual))
and a similar formula for the index b. If j # ¢ in the above sum, we obtain the estimate

(log(ng log(1/7) + log(1/|ua])))™ du, erTlog(log(l/rk))M
Uq(nq log(1/r;) +1og(1/lual)) 0z | 75(log(1/r;) +log(1/r;))

dz;, (7.37)
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with some positive integer M’. Since the divisor of zeros of u, does not contain the
component E, we obtain for j = ¢ the estimate

erT 10g(10g(1/74k))M
log(1/r;) +1log(1/r;) -

‘ (log(na log(1/7:) + log(1/]ual))™ du,
ta(nalog(L/rs) + 1og(1/Tua])) 92

Moreover, for the last summand, we note the estimate

na(log(nq log(1/rs) +10g(1/|ua)))M‘ ~ [1j.er log(log(1/ri))™
zi(nalog(1/r:) +1og(1/|ual)) rilog(1/ri)

Now, we note that the differential form fr jx r(21,...,24)dz1 A - A dZzg is built up
in particular by the differential forms 7} (---d¢,) and 7} (---dtp) ( (7.36)). We then
observe that the summand of the differential 7} (- - - d¢,) containing dz; is multiplied with
the corresponding summands of 7} (---dt;) containing the differentials dz; for j # .
Hence, the function fr sk, can be decomposed as a sum of functions F; (j # i), each
of which satisfy the estimate

log(1/r) (log(log(1/r)) log(log(1/r;)))™"
rilog(1/ri)?  rj(log(1/ri) +log(1/r5))
1
(

log(log(1/r))™
m log(1/r;) H rilog(1/ry)?

k;éz 7

Finally, using the inequality between the arithmetic and the geometric mean, we obtain

1 log(log(1/rx))™
Fi(z1,...,2q)] <
|Fj(z1 )l rir3(log(1/r;) log(1/r;))t+e kl;[T rilog(1/r4)?
ki,

for some € > 0. Adding up, this proves the local integrability of fr jk 1, and thus
concludes the proof of the local integrability of the differential form «; log(1/7;) Adg.
on Xy. O

Lemma 7.38. With the notation and assumptions of Theorem 7.33, the equality

2mi)P~1
lim d(d*(oyzgy) A g — oy zgy Ndg,) = i/ g
e—0 X, 9 .

holds true.
Proof. For any €, p > 0, we put

Xep =X\ (B(D) U B,(Y) U B:(2)),
Ys =Y \ (BE(D) U BE(Z))’
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Since oy z vanishes in a neighbourhood of Z, we obtain by means of Stokes’s theorem

/ d(d“(oyzgy) Ng. — oy zgy ANd°g.)
X

e.p

= / (dC(UYZgy) NGz — Oy zGy N dCQZ)'
9(B:(D)UB,(Y))

Since we derive from equation (7.33) in conjunction with Lemma 7.35 that the limit
lim (dC(UYZgy) NGz — 0y z9y A dcgz)
S0 Jo(B.(D)UB,(Y))
exists, we can compute it as an iterated limit by taking first the limit as p tends to zero,

and then the limit as € goes to zero. Since g, is a basic Green form in the sense of [15]
for the cycle y on X \ (B:(D) U B:(Z)), Proposition 5.58 (ii) shows

lim (dC(UYZgy) NG, — Oy z9y A dcgz)
P=0.Jo(B.(D)UB,(Y))

2mi)P—1
= [ @lovas) Ao —ovag nace) + E— [ .
0B (D) Y.

=

By the functoriality and local integrability of the pre-log-log forms, we have

hm/ gz:/ 9z-
e—0 Y. v

Therefore, we are left to show that

lim (d(oyzgy) N g —ovzgy ANdg.) = 0.

e—0 9B, (D)
To perform this calculation, we will again work on an embedded resolution of singularities
T Xn—>XofYUZ adapted to D together with a coordinate neighbourhood U of
reX ~ with local coordinates z1, ..., zy adapted to Dy. Following the discussion after
Theorem 7.29, we may assume without loss of generality that the situation is local, i.e.

= (D)= E;,
ieT
where E; is given by the equation z; = 0 (¢ € T'); the choice of local coordinates deter-
mines differentiable maps

pi: OB:(E;) = E; (ie€T).

From this we obtain (recalling our abuse of notation)

lim (dC(UYZgy) NGy — Oy z39y A dcgz)
e—0 8BE(D)
= lim / (dC(UYZgy) NGz — 0y z9y A dcgz)
eV JoB. (k)

= lim/ / (d(oyzgy) N g2 — oy zgy N d°gs).
ieT Ei Jpi
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We will now fix ig € T, and show that

/ ‘dc(()'yzgy) NG, — 0y z3y A dcgz| =< hl(E)hQ, (739)
Pig

where lim._,o h1(¢) = 0 and hy is locally integrable on E;,; we emphasize that equality
(7.38) is an inequality between forms meaning that the inequality holds true for the
absolute values of all the components involved. To do this, we observe that the differential
form

dC(UYZgy) NGz —0yzGy N dg.

is the sum of two forms, one of which is of type (d,d—1), and the other of type (d—1,d).
We will prove the lemma for the term of type (d,d — 1) noting that the argument for the
term of type (d — 1,d) is analogous.

Since g, is a basic pre-log-log Green form, we have (as in the proof of Lemma 7.35)

9y = Zai log(1/r;) + 3.

€S

Therefore, we have to establish the bound (7.38) for each summand of g, in the above
decomposition. For the summand 3 the bound (7.38) follows easily, since 3 is a pre-log-log
form. In order to treat the remaining summands, we write

d
0y zGy N 892 = f(Zl, . ,zd)dzio N H de A\ dfj + e,
j=1
Jgfio
d
0oy zgy) Ng. = g(21, ..., 24)dziy A H dz; Adzj+--- .
=1
Jgiio
As in the previous lemma, we have to distinguish two cases.

Case 1: i ¢ T. Then, we easily find the estimates

log(log(1/r3,))™ 11 log(log(1/7;))™

Tio log(1/7iy) or r2log(1/r;)?
J#io

1 log(log(1/ri,))" I log(log(1/7;))™

nraloa(U/r,) | L rPlog(1/r, 7

J#io

|f(z1,...,2a)| < log(1/r;)

lg(z1,. .., 2a)] <

from which the bound (7.38) follows.

Case 2: ¢ € T'. In this case, the functions f and g will satisfy the same type of estimates;
thus, we will discuss here only the estimate for the function f. If ¢ = i¢, by arguing as in
the second part of the discussion of Case 2 in the proof of Lemma 7.35, we find that f can
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be decomposed as a sum of functions F} (j # ), each of which satisfying the estimate

log(1/rs,) (log(log(1/rs,)) log(log(1/r;))™"
riglog(1/ri,)  7;(log(1/ri;) +log(1/7;))
| log(log(1/ri))
% r;log(1/r;) kl_[ r2log(1/r%)?
k#io,j
1 log(log(1/r)™"
< g ioar e Ll gz
k#io,j

\Fj(zl, .. .,Zd)| <

here M’ and ¢ are as in the proof of Lemma 7.35. If 7 # iy, the function f can be
decomposed as a sum of functions F; (j # ¢), which are seen to satisfy for j = ip the
estimate

1 log(log(1/ry)) ™M’
Fio (o1, 20)| = e A e Tog (L) kell r21og(1/rk)?
ktio,i

and for j # iy the estimate

1 log(log(1/r)) ™M’
5z 2l < o Y Tog (1 /) T Tog (1) % 11 12 log(1/r1,)?
k#io,i,j
All in all, this leads to the desired estimate (7.38) and concludes the proof of the lemma.

O

Remark 7.40. Clearly, the theorem also holds when D = {), and in particular for Green
objects with values in Dj,. In this case we recover the classical formula for the *-product
of Green currents used in [36] and [71] (see also [16,17]). If X is a Riemann surface, then
formula (7.33) implies the formulae for the generalized arithmetic intersection numbers
given in [58].

7.7. Arithmetic Chow rings with pre-log-log forms
Definition of arithmetic Chow groups with pre-log-log forms

Let (A, X, Fy) be an arithmetic ring and X an arithmetic variety over A. Let D
be a fixed normal crossing divisor of Xy, which is stable under F,,. Following the
notation of the previous section we will denote the pair (Xg,D) by X. The natural
inclusion Diog — Dpre induces a Djgg-complex structure in Dpye. Then, (X, Dpre) is a
Diog-arithmetic variety. Here, we use the convention that whenever X is clear from the
context, we write Dy, instead of Dpre, x Therefore, applying the theory developed in §4,
we can define the arithmetic Chow groups CcH “(X, Dpre)-

The rest of this section will be devoted to studying the basic properties of the arithmetic
Chow groups cH *(X, Dpre). In particular, we will see that they satisfy properties similar
to ones of the classical arithmetic Chow groups stated in [36] and most of the properties
stated in [61].
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Ezact sequences
We will use the notation of §6.1 applied to the sheaf Dy,.. We start by writing the
exact sequences given in Theorem 4.13.

Theorem 7.41. Let X be an arithmetic variety over A, and X = (Xg, D) as above.
Then, we have the following exact sequences:

CHP17(X) 25 DAL (X, p)P™e & CHP (X, Dyue) < CHP(X) — 0,

pre
CHP™1P(X) 25 Hy! (X, )P % CHP (X, Dyre)

1+h
=7

1879, CHP(X) @ Z D2, (X, p) HZ (X,p) =0,

pre
CHP™12(X) 2 HZ2 1 (X, p)P"™® 2 CHP (X, Dyre)o <> CHP(X)o — 0.
Proof. This is a direct consequence of Theorem 4.13. (Il

Since Dpyc is a Digg-complex, there is a morphism
H}(Xg,p) — H{)W(X, D).
Thus, from Theorem 7.41 we obtain the following corollary.

Corollary 7.42. There is a complex of abelian groups

H2Y(Xg, p) & CH? (X, Dypre) <=2 CHP(X) @ 2D, (X, p).
Remark 7.43. Since we have not computed the cohomology of the complex D, these
exact sequences do not give all the possible information. We do not even know whether
the corresponding cohomology groups satisfy the weak purity condition.

As we have already pointed out, by imposing bounds on all derivatives of the functions,
one can define a smaller complex, the complex of log-log forms, for which we can prove the
Poincaré Lemma. Using this complex one obtains arithmetic Chow groups that satisfy
the exact sequences of Theorem 7.41, but with real Deligne-Beilinson cohomology (see
Remark 7.20). This will be developed in a forthcoming paper [19].

Green forms for a cycle

We now translate the result of Proposition 7.21 into the language of Green objects.

Proposition 7.44. Let X be an arithmetic variety over A, and y a p-codimensional
cycleon X. If a pair g = (w,g) € H%;re’z,, (X, p) is a Green object for the class of y, then

—200[g]x = [w] — dy. (7.45)
]

We recall that in the above proposition [g]x stands for [g]x_, and J, for dy,.
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Multiplicative properties

By Theorem 7.19, the complex Dy, satisfies all the properties required to apply The-
orem 4.24.

Theorem 7.46. The abelian group
CH* (X, Dpre)g = @) CHP (X, Dpre) ® Q
p=0

is a commutative and associative Q-algebra with unit. O

Inverse images

Let f: X — Y be a morphism of arithmetic varieties over A. By Proposition 7.12, the
complex Dy, satisfies all the properties required to apply Theorem 4.29.

Theorem 7.47. Let f : X — Y be a morphism of arithmetic varieties over A, let Dx,
Dy be a normal crossing divisor on Xg, Yg, respectively, satisfying f~*(Dy) C Dx. Put
X = (Xg,Dx) and Y = (Yg, Dy). Then, there is an inverse image morphism

J* : CH (Y, Dyrey) — CH (X, Dyre,x)-
Moreover, this morphism is a morphism of rings after tensoring with Q. O

Push-forward

We will state only the consequence of Proposition 7.27.

Theorem 7.48. Let X be a d-dimensional projective arithmetic variety over A,
X = (Xg,D) as above, and m : X — Spec(A) the structural morphism. Then, there
is a direct image morphism

m. : CHH (X, Dpre) — CH ' (Spec(A)).

Proof. Since Spec(A)g is a finite collection of points, the complex Diog gpec(a) is con-
stant. By Proposition 7.27, there is a covariant morphism of arithmetic varieties

7 (X, Dpre) = (Spec(A), Digg).
The claim now follows from Theorem 4.34. O

Relationship with other arithmetic Chow groups

Let X be an arithmetic variety over A, and X = (Xg, D) as above. The structural
morphism
Dlog — Dpre

induces a morphism of arithmetic Chow groups

CH*(X, Diog) — CH*(X, Dpre),
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which is compatible with inverse images, intersection products and arithmetic degrees. If
X is projective, the isomorphism between Ct CH " (X, Diog) and the arithmetic Chow groups
defined by Gillet and Soulé (denoted by CH* (X)) induces a morphism

CH*(X) — CH*(X, Dpre), (7.49)

which is also compatible with inverse images, intersection products and arithmetic
degrees. Since we have not proven the purity of the cohomology of Dy, we cannot
state that the above morphism is an isomorphism, when D is trivial, except when the
dimension of X is zero (see Remarks 7.20 and 7.43).

Arithmetic Picard group

The theory of line bundles equipped with smooth hermitian metrics developed in §6.1
can be generalized to the case of good metrics. For this let X be a projective arithmetic
variety over A, X = (Xg, D) as above, and L a line bundle on X equipped with a her-
mitian metric A on the induced line bundle L., over X, which is good along D and
invariant under F,,. As usual, we write L = (L, || - ||), and refer to it as a good hermitian
line bundle. Given a rational section s of L, we write ||s||? = h(s, s) for the point-wise
norm of the induced section of L. We say that two good hermitian line bundles L; and
Ly are isometric, if L1 ® L2 >~ (Ox,|-|), where | -| is the standard absolute value. The
arithmetic Picard group PIC(X ) is the group of isometry classes of good hermitian line
bundles with group structure given by the tensor product.

Proposition 7.50. Let X be a projective arithmetic variety over A, X = (Xg, D) as
above, and L = (L, || - ||) a good hermitian line bundle on X. Then, there is a map

Plc( ) — CH! (X, Dpre)s

given by sending the class of L to the class [div(s), (ws, gs)] € aﬁl(X, Dpre), Where s,
ws, and gs are as in Proposition 7.25.

Proof. We have to show that the map ¢; is well defined. By Proposition 7.25, the pair
(ws, gs) represents a Green object for the class of div(s). If ¢’ is another non-vanishing,
rational section, then s’ = f - s with a rational function f, and we have

(div(s'), (o, Gor)) = (div(s), (s, §)) + div(f).

Hence, (div(s), (w S gs)) and (div(s’), (ws, gs')) represent the same class in the arithmetic
Chow group cH! (X, Dpre). Therefore, the map ¢ is well defined. O

Definition 7.51. Let X be a projective arithmetic variety over A, X = (Xg, D) as
above, and L a good hermitian line bundle on X. Then ¢;(L) € CH' (X, Dpye) is called
the first arithmetic Chern class of L.
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Arithmetic degree

Let K be a number field, Ok its ring of integers, and S = Spec(Ok). From §6.1, we
recall the arithmetic degree map

deg : CH'(S, Diog) — R.

Definition 7.52. Let X be a d-dimensional projective arithmetic variety over Ok with
structural morphism 7 : X — S, X = (Xg, D) as above, and L a good hermitian line
bundle on X. The real number

T _ deg(m. &1 (D))

is called the arithmetic degree of L, or the arithmetic self-intersection number of L.

Remark 7.53. Logarithmically singular line bundles on arithmetic surfaces as defined
in [58] are good hermitian line bundles. It is straightforward to show that the intersection
number at the infinite places given in [58] (see [58, Lemma 3.9]), agrees with the explicit
formula for the #-product given in Theorem 7.33. We also note that by [58, Proposi-
tion 7.4] the arithmetic self-intersection number of a good hermitian line bundle calcu-
lated by either of the formulae in [9], [63], [58], or Theorem 7.33 agree.

Height pairings

Let K be a number field, O its ring of integers, and S = Spec(Ok). Let X be a d-
dimensional projective arithmetic variety over Og with structural morphism 7 : X — S.
Furthermore, fix a normal crossing divisor D of Xg.

We want to generalize the height pairing given in Definition 6.39 to the arithmetic Chow
groups with values in Dp.. This generalization will in particular include the logarithmic
heights for points considered by Faltings in [28,30]. Since the height of a cycle, whose
generic part is supported in D, might be infinite, one cannot expect that the height
pairing (6.39) unconditionally generalizes to a height pairing between the arithmetic
Chow groups CH? (X, Dpre) and the whole group of cycles Z7(X). Therefore, we restrict
ourselves to considering a subgroup of cycles, for which a height pairing with respect to
CHP (X, Dpre) can always be defined.

Putting U = Xg \ D, we write Z{,(X) for the group of the g-codimensional cycles z
of X such that zg intersects D properly. A case of particular interest is given when the
normal crossing divisor D is defined over K; we then introduce Ux = Xk \ Dk, and
observe that there is a natural injective map

29(Uk) — Z},(X).
Definition 7.54. We want to define a bilinear pairing
(-]-) : CHP(X, Dpre) @ Z(X) — CHPHI74(S Doy ). (7.55)

Let z € Z{,(X) be an irreducible, reduced cycle and « € éﬁp(X, Dypre). We represent o
by the class of an arithmetic cycle (y, g,), where y is a p-codimensional cycle such that
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YK intersects zx properly and where g, = (wy, gy) is a pre-log-log Green object for y. If
p+q<d,weput (a|2)=0.If p+ g =d, we define
(o] 2) = [y - 210),(0,0)] € CH(S, Diog)g = CH(S)g
Finally, if p+ g = d + 1, we define

(] 2) = [mu(ly - 2Jin), (0,74 (gy A 6.))] € CH (S, Diog)a-

—_~—

Here, the quantity mx(gy A 6;) has to be understood as follows: Let Z = supp zz and
v Z — Z be a resolution of singularities of Z adapted to D. Since yx N zx = 0, the
functoriality of pre-log-log forms shows that ¢*(g,) is a pre-log-log form on Z , hence it is
locally integrable on A , and we have

1 *
wmAm=@@:ézm>

The pairing (7.54) is now obtained by linearly extending the above definitions.

Note that this definition a priori depends on the choice of the representative (y, g,)
of a.

Proposition 7.56. With the above notation and assumptions, let o € Gﬁp(X, Dore),
z € 2{,(X), Z = supp zg, andp+q=d+1. If we choose a basic pre-log-log Green form
g. for z and put g, = (—200g., g.), the height pairing (7.54) satisfies the equality

(a]z) =m(a- [z 0:]) +almg(w(a) A g:]x)) (7.57)
in CHY(S, Diog) -
Proof. By Lemma 7.35, the pre-log form w(a) A g, is integrable. Therefore, the right-
hand side of the claimed formula is well defined. We now represent a by the arithmetic
cycle (y,9,), where y is a p-codimensional cycle such that yx intersects zx properly

and where g, = (w(a), gy) is a pre-log-log Green object for the cycle y. Then, the first
summand of the right-hand side of equation (7.56) equals

me(a-[z,0:]) = [W*([y - 2]fin) (0’ ﬁ /x Bu gzﬂ'

Using Theorem 7.33 (with the roles of y and z interchanged), i.e. the equality

1 1 1
TN zZ = T o~ 1 N A z
(2 /ng*g @iy /Zgy+ @iy Jy (1

we find

—_~—

(- [2,8:]) + almg ([w(@) A ga]x))

—_~— —_~— —_~—

= [m(ly - 2lain), (0, w49y A 02) + T4 ([w(@) A g2]x))] + almy ([wla) A g:]x))

= [ru(ly - 2lan), (0, w4 gy A62))]
:(a|z)’

which proves the claim. [l
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In the following theorem, we will show that the pairing (7.54) is well defined.

Theorem 7.58. The bilinear pairing (7.54) is well defined. Furthermore, there is a
commutative diagram

— 1)

CHP?(X, Diog) ® Z,(X) —— CHP*74(S Dy )

i |

_ 1) —

CHP(X, Dpre) ® Z&(X) —— CHPT74(S, Dipe )

where horizontal maps are given by the pairings (6.39) and (7.54), respectively.

Proof. We have to show that the height pairing (« | z) does not depend on the choice
of a representative (y, g,) for a. Since the height pairing (7.54) coincides with the height
pairing (6.39) for p, ¢ satisfying p + ¢ < d, it suffices to treat the case p+¢q=d+ 1. In
order to prove the well-definedness in the latter case, we recall that the height pairing
satisfies formula (7.56). By the well-definedness of the arithmetic intersection product and
the map w, the right-hand side of (7.56) turns out to be independent of the representative
(y, gy),which proves the well-definedness of (« | 2).
The commutativity of the diagram follows from Lemma 6.42 observing the formula

a([g:]x (w(a))) = a(my([w(a) A g:]x))-

Faltings heights

We keep the notation of the previous section. In particular, we let X, D, U be as before
and p, ¢ integers satisfying p + ¢ = d + 1. The height pairing given by Definition 7.54 is
of particular interest, when o = ¢;(L)P for some good hermitian line bundle L on X. If
z € Z{;(X), we call the real number

htz(z) = deg(€1 (L) | 2)

the Faltings height of z (with respect to L). This name is justified by the following result
due to Faltings.

Proposition 7.59. In addition to the data fixed above, assume that L is an ample line
bundle. Then, for any c € R, the cardinality of the set

{z € Z{(X) | htp(2) < ¢}
is finite.

Proof. Since the metric of a good hermitian line bundle is logarithmically singular as
defined by Faltings, the proof is standard (see, for example, [69]). O
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7.8. Application to products of modular curves

As an example, we show in this final section how the arithmetic intersection theory
with pre-log-log forms developed in this section can be applied to compute the arithmetic
self-intersection number of the line bundle of modular forms equipped with the natural
invariant metric on the product of two modular curves. We point out that because of the
singularities of the Petersson metric, these numbers are only well defined in the setting of
our newly developed extended arithmetic intersection theory. Related but more elaborate
results for the case of Hilbert modular surfaces have recently been obtained in [13].
Further calculations of other naturally metrized automorphic line bundles have been
carried out in [12]. The general theory of arithmetic characteristic classes of automorphic
vector bundles of arbitrary rank is developed in [19].

Modular curves

Let H denote the upper half-plane with complex coordinate z = x + iy, and
X(1) = SLa(Z)\H U { S }

the modular curve with the cusp S.. For more details on the subsequent facts we refer
to [58].

Let X (1) = P} be the regular model for the modular curve X(1). With s denoting
the Zariski closure of (the normal crossing divisor) Soc C X (1) and k a positive integer
satisfying 12 | k, we define the line bundle of modular forms of weight k by My =
O(500)®*/12, The line bundle My, is equipped with the Petersson metric || - ||, which is
a good hermitian metric along Su; hence, My = (My, | - ||) is a good hermitian line
bundle, and we have

¢ (My) € CHY(X(1), Dpro)-

For the first Chern form c;(M}) of My, we recall the formulae

— dz ANdz k dx Ady — wk
SR et s S TSRS
Fixing a (1, 1)-form w satisfying fX(l) w = —2mi, the main result of [58] shows

o -2 —
&1 (My)? = [0, M, - a(w)] € CH*(X(1), Dpre)o, (7.60)
where the arithmetic self-intersection number is given by

2

M =2 5a-1) + ()

with the Riemann zeta function (g(s).
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Products of modular curves

In this example we consider the arithmetic threefold H = X (1) xz X(1); we let py,
respectively po, denote the projection onto the first, respectively second, factor. The
divisor

D =piX(1) X p3Sco + DI Soo X 3 X (1)

induces a normal crossing divisor Dg on Hg. For k,1 € N, 12 | k, 12 | I, we define the
hermitian line bundle

L(k,1) = piMi @ psM;.
It can be easily checked that the hermitian metric of £(k,1) is good along Dg.

Theorem 7.61. Let H and L(k,l) be as above. Then, the arithmetic self-intersection
number of L(k, 1) is well defined, and given by the formula

- 1 1
£lb1)* = 020+ 20 360(-1) + (-1 )
Proof. By Theorem 7.47, we have
Ej\1(Z(kv l)) € éﬁl(Hvare)§

this can also be checked directly. Letting m : H — Spec(Z) denote the structural mor-
phism, the arithmetic self-intersection number of £(k,[) is given by

L(k,1)* = deg(m. & (L(k,1))%),

which is well defined by Theorem 7.48. Using the properties of arithmetic Chow groups,
we derive the following identities in CH*(, Dpre)o:

By means of formula (7.59), we find

S(E0)° = (3) OFE - alpo] - 32 (V) + 7 (¥80) 0. - a5

Applying Proposition 6.10, we obtain

ULk, 1))? = 3([0, My, - a(pfw A pier (M0))] + [0, M) - a(pfed (My) A piw)]).
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Taking the push-forward of the latter quantity by « and applying the arithmetic degree
map, we finally obtain

Foeyp— 5 (Lo =
X <k2/ (—w)/ c1 (M) + l2/ cl(ﬂk)/ (—w)),
X(1) X(1) X(1) X(1)
from which the claimed formula follows. O

Faltings heights of Hecke correspondences

Let N be a positive integer, and My the set of integral (2 x 2)-matrices of determi-
nant N. Recall that the group SLo(Z) acts form the right on the set My and that a
complete set of representatives for this action is given by the set

el

The cardinality o(N) of Ry is given by

N)=> 4,

d|N

@ade%ad:de>&O<b<d}

where the sum is taken over all positive divisors d of V. Furthermore, we put
Ty = {(21,22) eHxH | H’y € My : 2 :722}.

This defines a divisor on X (1) x X (1), whose normalization is a finite sum of modular
curves Xo(m) associated to the congruence subgroups I'y(m) for m dividing N. These
curves are also referred to as the graphs of the Hecke correspondences. Denoting the
discriminant by A(z) and the j-function by j(z), the Hilbert modular form

sn(z1,22) = A(Zl)U(N)A U(N) H i(yz1) = j(22))
YERN

has divisor Ty . Since the Fourier coefficients of sy (21, 22) are integral, it defines a section
of L(120(N),120(N)); we put

Tn = div(sy) C H.

Theorem 7.62. The Faltings height of the Hecke correspondence Ty with respect to
L(k, k) is given by the formula

g0 (T) = @8 (o) (3ol + (-1 ) + 32 21080 _ 2D osH))

d|N
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Proof. Using Rohrlich’s modular Jensen’s formula, we obtain for any fixed zo € H
dz Ady
log ||sn (2, 20) || ——==
[N =
1 1 ARl
= —120(N) << (-1)+ ¢ (1)) + = log< .
2% ¢ 12 2; IAG)]

Since we have

we obtain for the sum on the right-hand side

[AG)] ) 1
— lo — log
Z (IIA (a)ll) 12

'yeR

HA(

v€RN
—Zdlog —70 N)log(N).
d|N
Writing z1 = z1 + iy1, 22 = x2 + iyo, and observing
kjdxl A dyq A dzo A dys

Cl(z(ka k))Q = - 9 yQ yQ y
1 2

we find by means of Rohrlich’s formula

1 / _ )
0 log ||sn (21, 22)| - c1(L(k, k
5 oy iy B I (22 ea (B )

= 12— 2000 (361 + (-] + § X dog(d) ~ 150N log()).

d|N

Since sy defines a section of £(120(N),120(N)) and log ||sn (21, 22)|| is a basic pre-log-log
form, we obtain by Proposition 7.56 and the previous considerations

Btz (Ti) = deg (@1 (Z(k, k)2 | Tov)
deg(m. (@1(Z(k, k))2 - [T, (c1 (L(120(N), 120(N))), — log [ (21, ) )])
T ([~ log |sn (21, 22)|| A c1 (L(k, k)] x(1)x x(1))))
— deg(m. (& (L(k, k))? - & (£(120(N), 120(N)))))
1

(2mi)? X(1)xX(1)

= 6820() (36a(-1) + ch(-1) )
+/€2<—20(N)<;§Q( 1)+ ¢y~ ) Zdlog —a(N)log(N)).

d\N

+

log ||sn (21, 22)|| - 1 (L(k, k))?

0
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Remark 7.63. We point out that the same formula has been obtained independently
by Autissier [3]. His calculations, which are based on results of Kiithn [58] and use Bost’s
theory of L3-singular metrics on arithmetic surfaces [9], are compatible with definition
(7.54). We also note that the arithmetic intersection numbers obtained via Bost’s L3-
theory applied to logarithmically singular metrics equal those in [58] and coincide with
those obtained by applying the theory developed here in the two-dimensional setting.

Arithmetic generating series

We put

— (o, if N <0,
[TN7gN]7 1fN>07

where B o
on(2) = (2001og ||sn (21, 22|, — log [|sn (21, z2)|))-

With the divisor D C ‘H, we additionally put

1 .. = 1 —
T(O) = _ﬂ Cl(‘C(le 12)) + %[DagD(Z)] € CHl(vapre)]Ra

where

—_~—

gp(2) = (2001og | A(z1)A(z2)|], — log | A(21) A(22) )
With these ingredients we define the following generating series of arithmetic cycles
Pean(q) = > T(N)g™ € CH(H, Dyre)r @ C((q));
NeZ
here g = 272,

Theorem 7.64. The generating series Qgcan is a non-holomorphic modular form with
values in CH*(H, Dpre)r of weight 2 for SLa(Z).

Proof. We observe that

Recall now that there is the non-holomorphic Eisenstein series Fs(z) of weight 2 obtained
by means of Hecke’s convergence trick from the non-holomorphic Eisenstein series Ea(z, s)
at s = 1; it has Fourier expansion
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Therefore, we obtain
ean(q) = €1(£(12,12)) @ Ey(2) € CH (M, Dpre)z ® Az(SLa(Z)),

where A2(SL2(Z)) denotes the space of non-holomorphic modular forms of weight 2 with
respect to SLa(Z). O

By Theorem 7.64 any linear functional on CH YA, Dpre)r applied to (Ewn gives rise to
a modular form of weight 2. As possible applications we present an integral version of
Borcherds’s generating series

((bean) = —icl(c(lz, 12)) + %D + Y Tvg" € CH(H)r © Ax(SL2(Z)),

N>0

or the Hirzebruch—Zagier formula, which states that for any (1, 1)-form 7, we have

i (@A€Ga)) = 3 (5 [ ) 1) € ASLa(2)

w50 2mi
In particular, we emphasize that choosing 7 = ¢;(£(12,12)) yields a multiple of the Eisen-
stein series Fy(z,1).
We conclude by noting that according to Kudla’s conjectures there should also exist a
generating series related to the derivative of Es(z,s) at s = 1.
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