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1 Some important processes

1.1 The Poisson process

1.1 Definition. Let (Sk)k>1 be random variables on (Ω,F ,P) with 0 6
S1(ω) 6 S2(ω) 6 · · · for all k > 1, ω ∈ Ω. Then N = (Nt, t > 0) with

Nt :=
∑
k>1

1{Sk6t}, t > 0,

is called counting process (Zählprozess) with jump times (Sprungzeiten) (Sk).

1.2 Definition. A counting process N is called Poisson process of intensity
λ > 0 if

(i) P(Nt+h −Nt = 1) = λh+ o(h) for h ↓ 0;

(ii) P(Nt+h −Nt = 0) = 1− λh+ o(h) for h ↓ 0;

(iii) (independent increments) (Nti−Nti−1)16i6n are independent for 0 = t0 <
t1 < · · · < tn;

(iv) (stationary increments) Nt −Ns
d
= Nt−s for all t > s > 0.

1.3 Theorem. For a counting process N with jump times (Sk) the following
are equivalent:

(a) N is a Poisson process;

(b) N satisfies conditions (iii),(iv) of a Poisson process and Nt ∼ Poiss(λt)
holds for all t > 0;

(c) T1 := S1, Tk := Sk − Sk−1, k > 2, are i.i.d. Exp(λ)-distributed random
variables;

(d) Nt ∼ Poiss(λt) holds for all t > 0 and the law of (S1, . . . , Sn) given
{Nt = n} has the density

f(x1, . . . , xn) = n!
tn1{06x16···6xn6t}. (1.1)

(e) N satisfies condition (iii) of a Poisson process, E[N1] = λ and (1.1) is
the density of (S1, . . . , Sn) given {Nt = n}.

1.4 Remark. Let U1, . . . Un ∼ U([0, t]) i.i.d. and consider their order statistics
U(1), . . . , U(n), i.e. U(1) = mini Ui, U(2) = min({U1, . . . , Un} \ {U(1)}) etc. Then
(U(1), . . . , U(n)) has exactly density (1.1).

The characterisations give rise to three simple methods to simulate a Poisson
process: the definition gives an approximation for small h (forgetting the o(h)-
term), part (c) just uses exponentially distributed inter-arrival times Tk and
part (d) uses the value at a specified right-end point and then uses the uniform
order statistics as jump times in-between (write down the details!).
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Proof. We prove the equivalence by a circle argument.

(a)⇒(b) Put pn(t) = P(Nt = n). By (i), (ii), (iii) we infer

p0(t+ h) = P(Nt = 0, Nt+h −Nt = 0) = p0(t)(1− λh+ o(h)),

which implies

p′0(t) = lim
h↓0

p0(t+ h)− p0(t)

h
= −λp0(t), t > 0.

In view of p0(0) = 1 we obtain p0(t) = e−λt.

Similarly, we have for n > 1:

pn(t+ h) = P({Nt+h = n} ∩ ({Nt 6 n− 2} ∪ {Nt = n− 1} ∪ {Nt = n}))
= P(Nt 6 n− 2)o(h) + P(Nt = n− 1)(λh+ o(h))

+ P(Nt = n)(1− λh+ o(h))

= pn−1(t)λh+ pn(t)(1− λh) + o(h).

This implies p′n(t) = −λpn(t)+λpn−1(t). Using pn(0) = 0 we infer pn(t) =
(λt)n

n! e−λt.

(b)⇒(c) Let 0 = b0 6 a1 < b1 6 · · · 6 an < bn and calculate

P
( n⋂
k=1

{ak 6 Sk 6 bk}
)

= P
( n−1⋂
k=1

{Nak −Nbk−1
= 0, Nbk −Nak = 1} ∩ {Nan −Nbn−1 = 0, Nbn −Nan > 1}

)
(iii),(iv)

=
( n−1∏
k=1

P(Nak−bk−1
= 0)P(Nbk−ak)

)
P(Nan−bn−1 = 0)P(Nbn−an > 1)

=
( n−1∏
k=1

λ(bk − ak)e−λ(bk−ak)−λ(ak−bk−1)
)
e−λ(an−bn−1)(1− e−λ(bn−an))

= (e−λan − e−λbn)λn−1
n−1∏
k=1

(bk − ak)

=

∫ b1

a1

∫ b2−x1

a2−x1
· · ·
∫ bn−x1−···−xn−1

an−x1−···−xn−1

λne−λ(x1+···+xn)dxn · · · dx2dx1.

Consequently, (T1, T2, . . . , Tn) = (S1, S2 − S1, . . . , Sn − Sn−1) has den-
sity λne−λ(x1+···+xn) for xi > 0. The product density form implies that
T1, . . . , Tn are independent and each Ti is Exp(λ)-distributed.

(c)⇒(d) We find P(Nt = 0) = P(S1 > t) = e−λt and

P(Nt = n) = P(Nt > n)− P(Nt > n+ 1) = P(Sn 6 t)− P(Sn+1 6 t).
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Since Sn = T1 + · · ·+ Tn is Γ(λ, n)-distributed, we obtain

P(Nt = n) =

∫ t

0

( λnxn−1

(n− 1)!
− λn+1xn

n!

)
e−λxdx =

(λt)n

n!
e−λt

and we conclude Nt ∼ Poiss(λt). By density transformation the joint
density of (S1, . . . , Sn+1) is for sn+1 > sn > · · · > s1 > s0 = 0

fS1,...,Sn+1(s1, . . . , sn+1) =

n+1∏
k=1

λe−λ(sk−sk−1) = λn+1e−λsn+1 .

Noting {Nt = n} = {Sn 6 t, Sn+1 > t} we consider 0 6 a1 < b1 6 · · · 6
an < bn 6 t and obtain the conditional law via

P(S1 ∈ [a1, b1], . . . , Sn ∈ [an, bn] |Nt = n)

=
P(S1 ∈ [a1, b1], . . . , Sn ∈ [an, bn], Sn+1 > t)

(λt)n

n! e−λt

=

∫ b1

a1

· · ·
∫ bn

an

n!

tn
1(0 6 s1 6 · · · 6 sn 6 t) dsn · · · ds1,

which identifies the integrand as the conditional density.

(d)⇒(e) E[N1] = λ is direct from the assumption. For 0 = t0 < t1 < · · · tn = t
and k1, . . . , kn ∈ N0 consider with K :=

∑n
l=1 kl

P(∀l = 1, . . . , n : Ntl −Ntl−1
= kl)

= P(Ntn = K)P(∀l = 1, . . . , n : Ntl −Ntl−1
= kl |Nt = K)

=
(λt)K

K!
e−λt P(Sk1 6 t1 < Sk1+1, . . . , SK 6 tn < SK+1 |Nt = K)

=
(λt)K

K!
e−λt

K!

tK

n∏
l=1

(tl − tl−1)kl

kl!

=

n∏
l=1

P(Ntl −Ntl−1
= kl).

Hence, (Ntl −Ntl−1
)l are independent.

(e)⇒(a) For 0 = t0 < t1 < · · · tn = t and k1, . . . , kn ∈ N0, h > 0, m >
k1 + · · ·+ kn note the shift invariance

P(∀l = 1, . . . , n : Ntl+h −Ntl−1+h = kl |Nt+h = m)

=
m!

(t+ h)m

m∏
l=1

(tl + h− (tl−1 + h))kl

kl!

= P(∀l = 1, . . . , n : Ntl −Ntl−1
= kl |Nt+h = m)

Summing up over all m > k1 + · · ·+ kn yields identity in law:

(Nt1+h −Nt0+h, . . . , Ntn+h −Ntn−1+h)
d
= (Nt1 −Nt0 , . . . , Ntn −Ntn−1).
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This gives (iv) (put n = 1) and for 0 < h < 1

P(Nh = 0) =

∞∑
k=0

P(N1 = k)P(N1−Nh = k |N1 = k) =

∞∑
k=0

P(N1 = k)(1−h)k.

Because of
∑∞

k=0 P(N1 = k)k = E[N1] = λ < ∞ the function p(h) :=
P(Nh = 0) is differentiable in [0, 1] with p′(0) = −λ. We conclude

P(Nh = 0) = P(N0 = 0)− λh+ o(h) = 1− λh+ o(h).

By a similar argument, P(Nh = 1) equals

∞∑
k=1

P(N1 = k)P(N1 −Nh = k − 1 |N1 = k) =
∞∑
k=1

P(N1 = k)k(1− h)k−1,

and this implies P(Nh = 1) = λh+ o(h).

1.2 Markov chains

1.5 Definition. Let T = N0 (discrete time) or T = [0,∞) (continuous time)
and S be a countable set (state space). Then random variables (Xt)t∈T with
values in (S,P(S)) form a Markov chain if for all n ∈ N, t1 < t2 < · · · < tn+1,
s1, . . . , sn+1 ∈ S with P(Xt1 = s1, . . . , Xtn = sn) > 0 the Markov property is
satisfied:

P(Xtn+1 = sn+1 |Xt1 = s1, . . . , Xtn = sn) = P(Xtn+1 = sn+1 |Xtn = sn).

1.6 Definition. For a Markov chain X and t1 6 t2, i, j ∈ S

pij(t1, t2) := P(Xt2 = j |Xt1 = i) (or arbitrary if not well-defined)

defines the transition probability to reach state j at time t2 from state i at time
t1. The transition matrix is given by

P (t1, t2) := (pij(t1, t2))i,j∈S .

The transition matrix and the Markov chain are called time-homogeneous if
P (t1, t2) = P (0, t2 − t1) =: P (t2 − t1) holds for all t1 6 t2.

1.7 Proposition. The transition matrices satisfy the Chapman-Kolmogorov
equation

∀t1 6 t2 6 t3 : P (t1, t3) = P (t1, t2)P (t2, t3) (matrix multiplikation).

In the time-homogeneous case this gives the semigroup property

∀t, s ∈ T : P (t+ s) = P (t)P (s),

in particular P (n) = P (1)n for n ∈ N.
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Proof. By definition we obtain

P (t1, t3)ij = P(Xt3 = j |Xt1 = i)

=
∑
k∈S

P(Xt3 = j,Xt2 = k |Xt1 = i)

=
∑
k∈S

P(Xt3 = j |Xt1 = i,Xt2 = k)P(Xt2 = k |Xt1 = i)

Markov
=

∑
k∈S

P(Xt3 = j |Xt2 = k)P(Xt2 = k |Xt1 = i)

=
∑
k∈S

P (t2, t3)kjP (t1, t2)ik

= (P (t1, t2)P (t2, t3))ij .

For time-homogeneous Markov chains this reduces to P (t3 − t1) = P (t2 −
t1)P (t3 − t2) and substituting t = t2 − t1, s = t3 − t2 yields the assertion.

2 General theory of stochastic processes

2.1 Basic notions

2.1 Definition. A family X = (Xt, t ∈ T ) of random variables on a common
probability space (Ω,F ,P) is called stochastic process. We call X time-discrete
if T = N0 and time-continuous if T = R+

0 = [0,∞). If all Xt take values in
(S,S ), then (S,S ) is the state space (Zustandsraum) of X. For each fixed ω ∈
Ω the mapping t 7→ Xt(ω) is called sample path (Pfad), trajectory (Trajektorie)
or Realisation (Realisierung) of X.

2.2 Lemma. For a stochastic process (Xt, t ∈ T ) with state space (S,S ) the
mapping X̄ : Ω → ST with X̄(ω)(t) := Xt(ω) is a (ST ,S ⊗T )-valued random
variable.

2.3 Remark. Later on, we shall also consider smaller function spaces than ST ,
e.g. C(R+) instead of RR+

I Exercise .

Proof. We have to show measurability. Since S ⊗T is generated by the projec-
tions πt : ST → S, t ∈ T , onto the t-th coordinate, X̄ is measurable if all
compositions πt ◦ X̄ : Ω → S are measurable, but by definition πt ◦ X̄ = Xt,
t ∈ T , are measurable as random variables.

2.4 Definition. Given a stochastic process (Xt, t ∈ T ), the laws of the random
vectors (Xt1 , . . . , Xtn) with n > 1, t1, . . . , tn ∈ T are called finite-dimensional
distributions of X. We write Pt1,...,tn := P(Xt1 ,...,Xtn ).

2.5 Definition. Two processes (Xt, t ∈ T ), (Yt, t ∈ T ) on (Ω,F ,P) are called

(a) indistinguishable (ununterscheidbar) if P(∀ t ∈ T : Xt = Yt) = 1;

(b) versions or modifications (Versionen, Modifikationen) of each other if we
have ∀ t ∈ T : P(Xt = Yt) = 1.
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2.6 Remarks.

(a) Obviously, indistinguishable processes are versions of each other. The con-
verse is in general false.

(b) If X is a version of Y , then X and Y share the same finite-dimensional dis-
tributions. Processes with the same finite-dimensional distributions need
not even be defined on the same probability space and will in general not
be versions of each other.

(c) Suppose (Xt, t > 0) and (Yt, t > 0) are real-valued stochastic proces-
ses with right-continuous sample paths. Then they are indistinguishable
already if they are versions of each other. I Exercise

2.7 Definition. A process (Xt, t > 0) is called continuous if all sample paths
are continuous. It is called stochastically continuous, if tn → t always implies

Xtn
P−→ Xt (convergence in probability).

2.8 Remark. Every continuous process is stochastically continuous since al-
most sure convergence implies stochastic convergence. On the other hand, the
Poisson process is stochastically continuous, but obviously not continuous:

∀ε ∈ (0, 1) : lim
tn→t

P(|Nt −Ntn | > ε) = lim
tn→t

(1− e−λ|t−tn|) = 0.

2.2 Polish spaces and Kolmogorov’s consistency theorem

2.9 Definition. A metric space (S, d) is called Polish space if it is separable
and complete. More generally, a separable topological space which is metrizable
with a complete metric is called Polish. Canonically, it is equipped with its Borel
σ-algebra BS , generated by the open sets.

2.10 Definition. For finitely or countably many metric spaces (Sk, dk)
the product space

∏
k Sk is canonically equipped with the product metric

d((sk), (tk)) :=
∑

k 2−k(dk(sk, tk) ∧ 1), which generates the product topology,
in which a vector/sequence converges iff all coordinates converge.

2.11 Lemma. Let Sk, k > 1, be Polish spaces, then the Borel σ-algebra of the
product satisfies B∏

k>1 Sk
=
⊗

k>1 BSk .

Proof.
⊗

k>1 BSk is the smallest σ-algebra such that the coordinate projecti-
ons πi :

∏
k>1 Sk → Si, i > 1, are measurable. Analogously, the product to-

pology on
∏
k>1 Sk is the coarsest topology such that all πi are continuous.

Consequently, each πi is in particular B∏
k>1 Sk

-measurable, which implies

B∏
k>1 Sk

⊇
⊗

k>1 BSk .

By separability, any open set O ⊆
∏
k>1 Sk is a countable union of open sets

of the form
⋂N
i=1 π

−1
i (Oi) with N ∈ N and Oi ∈ Si open, which are elements of⊗

k>1 BSk . This shows B∏
k>1 Sk

⊆
⊗

k>1 BSk .

2.12 Remark. The ⊇-relation holds for all topological spaces and products of
any cardinality with the same proof. The ⊆-property can already fail for the
product of two topological (non-Polish) spaces.
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2.13 Definition. A probability measure P on a metric space (S,BS) is called

(a) tight (straff) if ∀ε > 0 ∃K ⊆ S compact : P (K) > 1− ε,

(b) regular (regulär) if ∀ε > 0, B ∈ BS ∃K ⊆ B compact : P (B \ K) 6 ε
and ∀ε > 0, B ∈ BS ∃O ⊇ B open : P (O \B) 6 ε.

2.14 Proposition. Every probability measure on a Polish space is tight.

Proof. Let (sn)n>1 be a dense sequence in S and consider for any radius ρ > 0
the closed ballsBρ(sn) around sn. Then S =

⋃
nBρ(sn) and σ-continuity implies

lim
N→∞

P
( N⋃
n=1

Bρ(sn)
)

= 1.

Now select for ε > 0 and every ρ = 1/k an index Nk such that

P
( Nk⋃
n=1

B1/k(sn)
)
> 1− ε2−k.

Then K :=
⋂∞
k=1

⋃Nk
n=1B1/k(sn) is a closed subset, hence complete. Since for

any δ > 0 there is a finite cover of K by balls B1/k(sn) of diameter less than δ
(K is totally bounded), any sequence in K has a subsequence which is Cauchy.
By completeness, the Cauchy sequence converges and K is compact. By con-
struction,

P(S \K) = P
( ∞⋃
k=1

Nk⋂
n=1

B1/k(sn){
)
6
∞∑
k=1

ε2−k = ε

holds. Since ε > 0 was arbitrary, this shows tightness.

2.15 Theorem (Ulam, 1939). Every probability measure on a Polish space
(S, d) is regular.

Proof. We consider the family of Borel sets

D :=
{
B ∈ BS

∣∣∣P (B) = sup
K⊆B compact

P (K) = inf
O⊇B open

P (O)
}
.

Note first S ∈ D because S is open and P is tight by the preceding theorem.
Now consider any closed set F ⊆ S. By tightness, for any ε > 0 there is a

compact set Kε with P(Kε) > 1− ε. Then F ∩Kε ⊆ F is compact with

P(F \ (F ∩Kε)) 6 P(K{
ε ) 6 ε.

This shows P(F ) = supK P(K) with K ⊆ F compact. The open sets On :=
{s ∈ S | infx∈F d(s, x) < 1/n} satisfy F =

⋂
n>1On. By σ-continuity, we infer

P(F ) = infN>1 P(
⋂N
n=1On). Since finite intersections of open sets are open, we

have shown the second regularity property and thus F ∈ D.
Furthermore, D is closed under set differences and countable unions (D is

a σ-ring) I Exercise .
Altogether we have shown that D is a σ-algebra containing the closed sets,

which implies D = BS , as asserted.
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2.16 Lemma. Let (Xt, t ∈ T ) be a stochastic process with state space (S,S )
and denote by πJ,I : SJ → SI for I ⊆ J the coordinate projection πJ,I((sj)j∈J) =
(sj)j∈I . Then the finite-dimensional distributions satisfy the following consi-
stency condition:

∀ I ⊆ J ⊆ T with I, J finite ∀A ∈ S ⊗I : PJ(π−1
J,I(A)) = PI(A). (2.1)

Proof. We just write

PI(A) = P((Xt)t∈I ∈ A) = P(X̄ ∈ π−1
T,I(A))

= P(X̄ ∈ (πJ,I ◦ πT,J)−1(A)) = P((Xt)t∈J ∈ π−1
J,I(A))

= PJ(π−1
J,I(A)).

2.17 Definition. Let I 6= ∅ be an index set and (S,S ) be a measurable
set. Let for each finite subset J ⊆ I a probability measure PJ on the product
space (SJ ,S ⊗J) be given. Then (PJ)J⊆I finite is called projective family if the
following consistency condition is satisfied:

∀J ⊆ J ′ ⊆ I finite, A ∈ S ⊗J : PJ(A) = PJ ′(π−1
J ′,J(A)).

2.18 Theorem (Kolmogorov’s consistency theorem). Let (S,BS) be a Polish
space, I an index set and let (PJ) be a projective family of probability measures
for S and I. Then there exists a unique probability measure P on the product
space (SI ,B⊗IS ) satisfying

∀J ⊆ I finite, B ∈ B⊗JS : PJ(B) = P(π−1
I,J(B)).

Proof. Let A :=
⋃
J⊆I finite π

−1
I,J(B⊗JS ) be the algebra (check!) of cylinder sets

on SI , which generates B⊗IS . Since A is ∩-stable, P is uniquely determined by
its values on the cylinder sets.

The existence of P follows from Caratheodory’s extension theorem if P on
A, as defined in the theorem, is a premeasure. The consistency of (PJ) ensures
that P is well-defined on A and additive: for disjoint A,B ∈ A there are a
finite J ⊆ I and disjoint A′, B′ ∈ B⊗JS with A = π−1

I,J(A′), B = π−1
I,J(B′). Since

PJ is a probability measure and standard set operations commute with taking
preimages, we conclude

P(A ∪B) = PJ(A′ ∪B′) = PJ(A′) + PJ(B′) = P(A) + P(B).

Trivially, also P(SI) = PJ(SJ) = 1 holds, using any finite J ⊆ I. It remains to
show that P is σ-additive on A, which is (under finite additivity) equivalent to
P(Bn)→ 0 for any sequence Bn ↓ ∅ of sets Bn ∈ A (σ-continuity at ∅).

We can write Bn = π−1
I,Jn

(An) for some finite Jn ⊆ I, An ∈ B⊗JnS .
Without loss of generality we shall assume Jn ⊆ Jn+1 for all n. Now let
Kn ⊆ An be compact with PJn(An \ Kn) 6 ε2−n by Ulam’s Theorem. Then
K ′n =

⋂n−1
l=1 π

−1
Jn,Jl

(Kl) ∩Kn is compact in SJn as a closed subset of a compact
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set and Cn = π−1
I,Jn

(K ′n) = ∩nl=1π
−1
I,Jl

(Kl) ⊆ Bn satisfies also Cn ↓ ∅. Below we
prove that there is already an n0 ∈ N with Cn0 = ∅. From this we conclude

lim sup
n→∞

P (Bn) 6 P(Bn0) = P(Bn0 \ Cn0) 6
n0∑
l=1

PJl(Al \Kl) 6 ε.

Since ε > 0 was arbitrary, this shows P(Bn)→ 0, as desired.
We prove the claim via reductio ad absurdum, assuming that for all n ∈ N

there is a yn ∈ Cn. Since K ′n is compact in SJn , we can find a subse-

quence (n
(1)
l ), such that (πI,J1(y

n
(1)
l

))l>1 converges in K ′1, a further subse-

quence (n
(2)
l ) such that (πI,J2(y

n
(2)
l

))l>1 converges in K ′2 and so on. Along

the diagonal sequence (n
(l)
l )l>1 then (πI,Jm(y

n
(l)
l

))l>1 converges in K ′m for all

m > 1. Hence, (πI,∪m>1Jm(y
n
(l)
l

))l>1 converges in the product topology (me-

tric) to some z ∈ S∪m>1Jm (note:
⋃
m>1 Jm is countable). Because Cn+1 ⊆ Cn,

n > 1, are nested, this implies z ∈ πI,∪m>1Jm(Cn) for all n > 1 and thus
z ∈ πI,∪m>1Jm(

⋂
n>1Cn). This contradicts

⋂
n>1Cn = ∅ and the claim is pro-

ved.

2.19 Corollary. For any Polish space (S,BS) and any index set T 6= ∅ there
exists to a prescribed projective family (PJ), J ⊆ T finite, a stochastic process
(Xt, t ∈ T ) whose finite-dimensional distributions are given by (PJ).

Proof. By Kolmogorov’s consistency theorem construct the probability measure
P on (ST ,B⊗TS ) which satisfies P(π−1

T,{t1,...,tn}(A)) = P{t1,...,tn}(A) for all n ∈ N,

t1, . . . , tn ∈ T , A ∈ Bn
S . Define X to be the coordinate process on (ST ,B⊗TS ,P)

via Xt((sτ )τ∈T ) := st. Then Xt is measurable for every t ∈ T and

P((Xt1 , . . . , Xtn) ∈ A) = P(π−1
T,{t1,...,tn}(A)) = P{t1,...,tn}(A)

for all A ∈ B⊗nS .

2.20 Corollary. For any family (Pi)i∈I of probability measures on (S,S ) there
exists the product measure

⊗
i∈I Pi on (SI ,S ⊗I). In particular, a family (Xi)i∈I

of independent random variables with prescribed laws PXi exists.

Proof for (S,S ) Polish: for finite product measures the consistency condition
holds because for all B ∈ B⊗JS(⊗

j∈J ′
Pj
)

(π−1
J ′,J(B)) =

(⊗
j∈J

Pj
)

(B)•
( ⊗
j∈J ′\J

Pj
)

(SJ
′\J) =

(⊗
j∈J

Pj
)

(B).

Define Xi : SI → S by Xi((sj)j∈I) := si. Then the assertion follows from the
preceding corollary. For general measure spaces (S,S ) the proof is similar to
that of Kolmogorov’s consistency theorem, see e.g. Bauer (1991).

2.21 Remark. Kolmogorov’s consistency theorem does not hold for gene-
ral measure spaces (S, S), cf. the counterexample by Sparre Andersen, Jessen
(1948). The Ionescu-Tulcea Theorem, however, shows the existence of the pro-
bability measure on general measure spaces under a Markovian dependence
structure, see e.g. Klenke (2008).
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3 The conditional expectation

3.1 Orthogonal projections

3.1 Proposition. Let L be a closed linear subspace of the Hilbert space H.
Then for each x ∈ H there is a unique yx ∈ L with ‖x − yx‖ = distL(x) :=
infy∈L‖x− y‖.
3.2 Definition. For a closed linear subspace L of the Hilbert space H the
orthogonal projection PL : H → L onto L is defined by PL(x) = yx with yx
from the previous proposition.

3.3 Lemma. We have:

(a) PL ◦ PL = PL (projection property);

(b) ∀x ∈ H : (x− PLx) ∈ L⊥ (orthogonality).

3.4 Corollary. We have:

(a) Each x ∈ H can be decomposed uniquely as x = PLx + (x − PLx) in the
sum of an element of L and an element of L⊥;

(b) PL is selfadjoint: 〈PLx, y〉 = 〈x, PLy〉;

(c) PL is linear.

3.2 Construction and properties

3.5 Definition. For a random variable X on (Ω,F ,P) with values in (S,S )
we introduce the σ-algebra (!) σ(X) := {X−1(A) |A ∈ S } ⊆ F . For a given
probability space (Ω,F ,P) we set

M := M(Ω,F ) := {X : Ω→ R measurable};
M+ := M+(Ω,F ) := {X : Ω→ [0,∞] measurable};
Lp := Lp(Ω,F ,P) := {X ∈M(Ω,F ) | E[|X|p] <∞};
Lp := Lp(Ω,F ,P) := {[X] |X ∈ Lp(Ω,F ,P)}

where [X] := {Y ∈M(Ω,F ) | P(X = Y ) = 1}.

3.6 Proposition. Let X be a (S,S )-valued and Y a real-valued random varia-
ble. Then Y is σ(X)-measurable if and only if there is a (S ,BR)-measurable
function ϕ : S → R such that Y = ϕ(X).

3.7 Lemma. Let G be a sub-σ-algebra of F . Then L2(Ω,G ,P) is embedded as
closed linear subspace in the Hilbert space L2(Ω,F ,P).

3.8 Definition. Let X be a random variable on (Ω,F ,P). Then for Y ∈
L2(Ω,F ,P) the conditional expectation (bedingte Erwartung) of Y given X
is defined as the L2(Ω,F ,P)-orthogonal projection of Y onto L2(Ω, σ(X),P):
E[Y |X] := PL2(Ω,σ(X),P)Y . If ϕ is the measurable function such that E[Y |X] =
ϕ(X) a.s., we write E[Y |X = x] := ϕ(x) (conditional expected value, bedingter
Erwartungswert).

More generally, for a sub-σ-algebra G the conditional expectation of Y ∈
L2(Ω,F ,P) given G is defined as E[Y |G ] = PL2(Ω,G ,P)Y .
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3.9 Lemma. E[Y |G ] is as element of L2 uniquely determined by the following
properties:

(a) E[Y |G ] is G -measurable (modulo null sets);

(b) ∀G ∈ G : E[E[Y |G ]1G] = E[Y 1G].

3.10 Theorem. Let Y ∈M+(Ω,F ) or Y ∈ L1(Ω,F ,P) and let G be a sub-σ-
algebra of F . Then there is a P-a.s. unique element E[Y |G ] in M+(Ω,G ) and
L1(Ω,G ,P), respectively, such that

∀G ∈ G : E[E[Y |G ]1G] = E[Y 1G].

3.11 Definition. For Y ∈M+(Ω,F ) or Y ∈ L1(Ω,F ,P) and a sub-σ-algebra
G of F the general conditional expectation of Y given G is defined as E[Y |G ]
from the preceding theorem. We put E[Y | (Xi)i∈I ] := E[Y |σ(Xi, i ∈ I)] for
random variables Xi, i ∈ I.

3.12 Proposition. Let Y ∈ L1(Ω,F ,P) and let G be a sub-σ-algebra of F .
Then:

(a) E[E[Y |G ]] = E[Y ];

(b) Y G -measurable ⇒ E[Y |G ] = Y a.s.;

(c) α ∈ R, Z ∈ L1(Ω,F ,P): E[αY + Z |G ] = αE[Y |G ] + E[Z |G ] a.s.;

(d) Y > 0 a.s.⇒ E[Y |G ] > 0 a.s.;

(e) Yn ∈ M+(Ω,F ), Yn ↑ Y a.s. ⇒ E[Yn |G ] ↑ E[Y |G ] a.s. (monotone con-
vergence);

(f) Yn ∈ M+(Ω,F ) ⇒ E[lim infn Yn |G ] 6 lim infn E[Yn |G ] a.s. (Fatou’s
Lemma);

(g) Yn ∈ M(Ω,F ), Yn → Y , |Yn| 6 Z with Z ∈ L1(Ω,F ,P): E[Yn |G ] →
E[Y |G ] a.s. (dominated convergence);

(h) H ⊆ G ⇒ E[E[Y |G ] |H ] = E[Y |H ] a.s. (projection/tower property);

(i) Z G -measurable, ZY ∈ L1: E[ZY |G ] = Z E[Y |G ] a.s.;

(j) Y independent of G : E[Y |G ] = E[Y ] a.s.

3.13 Proposition (Jensen’s Inequality). If ϕ : R→ R is convex and Y, ϕ(Y )
are in L1, then ϕ(E[Y |G ]) 6 E[ϕ(Y ) |G ] holds for any sub-σ-algebra G of F .
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4 Martingale theory

4.1 Martingales, sub- and supermartingales

4.1 Definition. A sequence (Fn)n>0 of sub-σ-algebras of F is called filtration
if Fn ⊆ Fn+1, n > 0, holds. (Ω,F ,P, (Fn)) is called filtered probability space.

4.2 Definition. A sequence (Mn)n>0 of random variables on a filtered probabi-
lity space (Ω,F ,P, (Fn)) forms a martingale (submartingale, supermartingale)
if:

(a) Mn ∈ L1, n > 0;

(b) Mn is Fn-measurable, n > 0 (adapted);

(c) E[Mn+1 |Fn] = Mn (resp. E[Mn+1 |Fn] > Mn for submartingale, resp.
E[Mn+1 |Fn] 6Mn for supermartingale).

If Fn = σ(M0, . . . ,Mn) holds, then (Fn) is the natural filtration of M , notation
(FM

n ).

4.3 Definition. A martingale (Mn) is closable (abschließbar), if there exists
an X ∈ L1 with Mn = E[X |Fn], n > 0.

4.4 Definition. A process (Xn)n>1 is predictable (vorhersehbar) (w.r.t. (Fn))
if each Xn is Fn−1-measurable. For a predictable process (Xn) and a mar-
tingale (or more general: adapted process) (Mn) the martingale transform
(or discrete stochastic integral) ((X•M)n)n>0 is defined by (X•M)0 := 0,
(X•M)n :=

∑n
k=1Xk(Mk −Mk−1).

4.5 Lemma. For a bounded predictable (Xn) and a martingale (Mn) (or just
predictable (Xn) and Xn,Mn ∈ L2 for all n) ((X•M)n)n>0 is again a martin-
gale.

4.6 Lemma. Let (Mn) be a martingale and ϕ : R → R convex with ϕ(Mn) ∈
L1, n > 0. Then ϕ(Mn) is a submartingale. In particular, (M2

n) is a submar-
tingale for an L2-martingale (Mn).

4.7 Theorem (Doob decomposition). Given a submartingale (Xn), there exists
a martingale (Mn) and a predictable increasing process (An) such that

Xn = X0 +Mn +An, n > 1; M0 = A0 = 0.

This decomposition is a.s. unique and An =
∑n

k=1 E[Xk −Xk−1 |Fk−1].

4.8 Definition. The predictable process (An) in the Doob decomposition of
(Xn) is called compensator of (Xn). For an L2-martingale (Mn) the compensator
of (M2

n) is called quadratic variation of (Mn), denoted by 〈M〉n.

4.9 Lemma. We have 〈M〉n =
∑n

k=1 E[(Mk −Mk−1)2 |Fk−1], n > 1.
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4.2 Stopping times

4.10 Definition. A map τ : Ω → {0, 1, . . . ,+∞} is called stopping time
(Stoppzeit) with respect to a filtration (Fn) if {τ = n} ∈ Fn holds for all
n > 0.

4.11 Lemma. Every deterministic time τ = n0 is stopping time. For stopping
times σ and τ also σ ∧ τ , σ ∨ τ and σ + τ are stopping times.

4.12 Theorem (Optional Stopping). Let (Mn) be a (sub/super-)martingale
and τ a stopping time. Then the stopped process (M τ

n) = (Mn∧τ ) is again a
(sub/super-)martingale.

4.13 Definition. For a stopping time τ the σ-algebra of τ -history (τ -
Vergangenheit) is defined by Fτ := {A ∈ F | ∀n > 0 : A ∩ {τ 6 n} ∈ Fn}.

4.14 Lemma. Fτ is a σ-Algebra and τ is Fτ -measurable.

4.15 Lemma. For stopping times σ and τ with σ 6 τ we have Fσ ⊆ Fτ .

4.16 Lemma. For an adapted process (Xn) and a finite stopping time τ the
random variable Xτ is Fτ -measurable.

4.17 Theorem (Optional Sampling). Let (Mn) be a martingale (submartinga-
le) and σ, τ bounded stopping times with σ 6 τ . Then E[Mτ |Fσ] = Mσ (resp.
E[Mτ |Fσ] >Mσ) holds.

4.18 Corollary. Let (Mn) be a martingale and τ a finite stopping time. Then
E[Mτ ] = E[M0] holds under one of the following conditions:

(a) τ is bounded;

(b) (Mτ∧n)n>0 is uniformly bounded;

(c) E[τ ] <∞ and (E[|Mn+1 −Mn| |Fn])n>0 is uniformly bounded.

4.19 Corollary (Wald’s Identity). Let (Xk)k>1 be (Fk)-adapted random va-
riables such that supk E[|Xk|] < ∞, E[Xk] = µ ∈ R and Xk is independent of
Fk−1, k > 1. Then for Sn :=

∑n
k=1Xk, S0 = 0 and every (Fk)-stopping time

τ with E[τ ] <∞ we have E[Sτ ] = µE[τ ].

4.3 Martingale inequalities and convergence

4.20 Proposition (Maximal inequality). Any martingale (Mn) satisfies

∀α > 0 : P
(

sup
06k6n

|Mk| > α
)
6 1

α E[|Mn|], n > 0.

4.21 Theorem (Doob’s Lp-inequality). An Lp-martingale (Mn) (i.e. Mn ∈ Lp
for all n) with p > 1 satisfies∥∥∥ max

16k6n
|Mk|

∥∥∥
Lp

6
p

p− 1
‖Mn‖Lp .
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4.22 Definition. The number of upcrossings (aufsteigende Überquerungen)

on an interval [a, b] by a process (Xk) until time n is defined by U
[a,b]
n :=

sup{k > 1 | τk 6 n}, where inductively τ0 := 0, σk+1 := inf{` > τk |X` 6 a},
τk+1 := inf{` > σk |X` > b}.

4.23 Proposition (Upcrossing Inequality). The upcrossings of a submartingale

(Xn) satisfy E[U
[a,b]
n ] 6 1

b−a E[(Mn − a) ∨ 0].

4.24 Theorem (First martingale convergence theorem). Let (Mn) be a (sub-
/super-)martingale with supn E[|Mn|] < ∞. Then M∞ := limn→∞Mn exists
a.s. and M∞ is in L1.

4.25 Corollary. Each non-negative supermartingale converges a.s.

4.26 Proposition. Let (Mn) be an L2-martingale. Then limn→∞Mn(ω) exists
for P-almost all ω, for which limn→∞〈M〉n(ω) <∞ holds.

4.27 Corollary (Strong law of large numbers for L2-martingales). An L2-
martingale (Mn) satisfies for any α > 1/2

lim
n→∞

Mn(ω)

(〈M〉n(ω))α
= 0

for P-almost all ω, for which limn→∞〈M〉n(ω) is infinite.

4.28 Definition. A family (Xi)i∈I of random variables is uniformly integrable
(gleichgradig integrierbar) if

lim
R→∞

sup
i∈I

E[|Xi|1{|Xi|>R}] = 0.

4.29 Lemma.

(a) If (Xi)i∈I is uniformly integrable, then (Xi)i∈I is L1-bounded:
supi∈I E[|Xi|] <∞.

(b) If (Xi)i∈I is Lp-bounded (supi∈I E[|Xi|p] < ∞) for some p > 1, then
(Xi)i∈I is uniformly integrable.

(c) If |Xi| 6 Y holds for all i ∈ I and some Y ∈ L1, then (Xi)i∈I is uniformly
integrable.

4.30 Theorem (Vitali). Let (Xn)n>0 be random variables with Xn
P−→ X (in

probability). Then the following statements are equivalent:

(a) (Xn)n>0 is uniformly integrable;

(b) Xn → X in L1;

(c) E[|Xn|]→ E[|X|] <∞.

4.31 Theorem (Second martingale convergence theorem).
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(a) If (Mn) is a uniformly integrable martingale, then (Mn) converges a.s.
and in L1 to some M∞ ∈ L1. (Mn) is closable with Mn = E[M∞ |Fn].

(b) If (Mn) is a closable martingale, with Mn = E[M |Fn] say, then (Mn) is
uniformly integrable and (a) holds with M∞ = E[M |F∞] where F∞ =
σ(Fn, n > 1).

4.32 Corollary. Let p > 1. Every Lp-bounded martingale (Mn) (i.e.
supn E[|Mn|p] <∞) converges for n→∞ a.s. and in Lp, hence also in L1.

4.33 Definition. A process (M−n)n>0 is called backward martingale
(Rückwärtsmartingal) with respect to (F−n)n>0 with F−n−1 ⊆ F−n if M−n ∈
L1, M−n F−n-measurable and E[M−n |F−n−1] = M−n−1 hold for all n > 0.

4.34 Theorem. Every backward martingale (M−n)n>0 converges for n → ∞
a.s. and in L1.

4.35 Corollary. (Kolmogorov’s strong law of large numbers) For i.i.d. random
variables (Xk)k>1 in L1 we have

1

n

n∑
k=1

Xk
a.s. and L1

−−−−−−−→ E[X1].

4.4 The Radon-Nikodym theorem

4.36 Definition. Let µ and ν be measures on the measurable space (Ω,F ).
Then µ is absolutely continuous (absolutstetig) with respect to ν, notation
µ� ν, if ∀A ∈ F : ν(A) = 0⇒ µ(A) = 0. µ and ν are equivalent (äquivalent),
notation µ ∼ ν, if µ � ν and ν � µ. If there is an A ∈ F with ν(A) = 0 and
µ(AC) = 0, then µ and ν are singular (singulär), notation µ ⊥ ν.

4.37 Theorem (Radon-Nikodym). Let ν be a σ-finite measure and µ a finite
measure with µ� ν, then there is an f ∈ L1(Ω,F , ν) such that

µ(A) =

∫
A
f dν for all A ∈ F .

4.38 Definition. The function f in the Radon-Nikodym theorem is called
Radon-Nikodym derivative, density or likelihood function of µ with respect to

ν, notation f = dµ
dν .

4.39 Theorem (Kakutani). Let (Xk)k>1 be independent random variables with
Xk > 0 and E[Xk] = 1. Then Mn :=

∏n
k=1Xk, M0 = 1 is a non-negative mar-

tingale converging a.s. to some M∞. The following statements are equivalent:

(a) E[M∞] = 1;

(b) Mn →M∞ in L1;

(c) (Mn) is uniformly integrable;

(d)
∏∞
k=1 ak > 0, where ak := E[X

1/2
k ] ∈ (0, 1];
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(e)
∑∞

k=1(1− ak) <∞.

If one (then all) statement fails to hold, then M∞ = 0 holds a.s. (Kakutani’s
dichotomy).

5 Markov chains: recurrence and transience

In this section (Xn, n > 0) always denotes a time-homogeneous Markov chain
with state space (S, S), realized as coordinate process on Ω = SN0 with σ-
algebra F = S⊗N0 , filtration Fn = FX

n and measure Pµ, where µ denotes the
initial distribution. We write short Px := Pδx .

5.1 Definition. For n > 0 the shift operator ϑn : Ω → Ω is given by
ϑn((sk)k>0) = (sk+n)k>0.

5.2 Theorem. Let Y ∈M+(Ω,F ) and τ be a finite (Fn)-stopping time. Then
the strong Markov property holds:

Eµ[Y ◦ ϑτ |Fτ ] = EXτ [Y ] Pµ -a.s.

5.3 Definition. For y ∈ S, k ∈ N introduce the kth time of return to y
recursively by T ky := inf{n > T k−1

y |Xn = y} and T 0
y := 0. Put Ty := T 1

y and
ρxy := Px(Ty <∞) for x ∈ S.

5.4 Proposition. For k ∈ N and x, y ∈ S we have Px(T ky <∞) = ρxyρ
k−1
yy .

5.5 Definition. A state y ∈ S is called recurrent (rekurrent) if ρyy = 1 and
transient (transient) if ρyy < 1.

5.6 Definition. By Ny :=
∑

n>1 1{Xn=y} we denote the number of visits to
state y.

5.7 Proposition.

(a) If a state y is transient, then Ex[Ny] =
ρxy

1−ρyy <∞ holds for all x ∈ S.

(b) A state y is recurrent if and only if Ey[Ny] =∞ holds.

5.8 Proposition. Let x ∈ S be recurrent and ρxy > 0 for some y ∈ S. Then y
is recurrent and ρyx = 1.

5.9 Definition. A set C ⊆ S of states is closed (abgeschlossen) if ρxy = 0 holds
for all x ∈ C, y ∈ S \C. A set D ⊆ S is irreducible (irreduzibel) if ρxy > 0 holds
for all x, y ∈ D. If S is irreducible, then the Markov chain is called irreducible.

5.10 Proposition. For an irreducible Markov chain on a finite state space S
all states are recurrent.
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6 Ergodic theory

6.1 Stationary and ergodic processes

6.1 Definition. A stochastic process (Xt, t ∈ T ) with T ∈ {N0,Z,R+,R} is

stationary (stationär) if (Xt1 , . . . , Xtn)
d
= (Xt1+s, . . . , Xtn+s) holds for all n > 1,

t1, · · · , tn ∈ T and s ∈ T .

6.2 Definition. For a time-homogeneous Markov chain (Xn, n > 0) an initial
distribution µ is invariant if Pµ(X1 = i) = Pµ(X0 = i) = µ({i}) holds for all
i ∈ S.

6.3 Lemma. A time-homogeneous Markov chain with invariant initial distri-
bution is stationary.

6.4 Definition. A measurable map T : Ω→ Ω on a probability space (Ω,F ,P)
is called measure-preserving (maßerhaltend) if P(T−1(A)) = P(A) holds for all
A ∈ F .

6.5 Lemma.

(a) Every S-valued stationary process (Xn, n > 0) induces a measure-
preserving transformation T on (SN0 , S⊗N0 ,PX) via

T ((x0, x1, x2, . . .)) = (x1, x2, · · · ) (left shift).

(b) For a random variable Y and a measure-preserving map T on (Ω,F ,P)
the process Xn(ω) := Y (Tn(ω)), n > 0, (T 0 := Id) is stationary.

6.6 Definition. A event A is (almost) invariant with respect to a measure-
preserving map T on (Ω,F ,P) if P(T−1(A)∆A) = 0 holds. The σ-algebra (!)
of all (almost) invariant events is denoted by IT . T is ergodic if IT is trivial,
i.e. P(A) ∈ {0, 1} holds for all A ∈ IT .

6.7 Lemma. Let IT be the invariant σ-algebra with respect to some measure-
preserving transformation T on (Ω,F ,P). Then:

(a) A (real-valued) random variable Y is IT -measurable if and only if it is
P-a.s. invariant, i.e. P(Y ◦ T = Y ) = 1. In particular, T is ergodic if
and only if each P-a.s. invariant and bounded random variable is P-a.s.
constant.

(b) For each invariant event A ∈ IT there exists a strictly invariant event B
(i.e. with T−1(B) = B exactly) such that P(A∆B) = 0.

6.2 Ergodic theorems

6.8 Lemma (Maximal ergodic lemma). Let X ∈ L1 and T be measure-
preserving on (Ω,F ,P). Denoting Sn :=

∑n−1
i=0 X ◦ T i, S0 := 0 and Mn :=

max{S0, . . . , Sn}, we have E[X1{Mn>0}] > 0.
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6.9 Theorem (Birkhoff’s ergodic theorem). Let X ∈ L1 and T be measure-
preserving on (Ω,F ,P). Then:

lim
n→∞

1

n

n−1∑
i=0

X ◦ T i = E[X |IT ] P-a.s. and in L1.

If T is even ergodic, then

lim
n→∞

1

n

n−1∑
i=0

X ◦ T i = E[X] P-a.s. and in L1.

6.10 Theorem (von Neumann’s ergodic theorem). For X ∈ Lp, p > 1, and
measure-preserving T on (Ω,F ,P)we have

lim
n→∞

1

n

n−1∑
i=0

X ◦ T i = E[X |IT ] P-a.s. and in Lp.

6.11 Corollary. Let (Xn, n > 0) be an ergodic process in L1 (i.e. Xn ∈ L1

and the associated left shift on (RN0 ,B⊗N0
R ,PX) is ergodic). Then

lim
n→∞

1

n

n−1∑
i=0

Xi = E[X1] P-a.s. and in L1.

In particular, Kolmogorov’s strong law of large number for (Xn) in L1 follows.

6.3 The structure of the invariant measures

6.12 Definition. Let T : Ω → Ω be measurable on (Ω,F ). Each probability
measure µ on F with µ(T−1(A)) = µ(A) for all A ∈ F is called invariant with
respect to T . If T is even ergodic on (Ω,F , µ), then also µ is called ergodic.
The set of all invariant probability measures with respect to T is denoted by
MT .

6.13 Lemma. MT is convex.

6.14 Proposition. Any two distinct ergodic measures are singular.

6.15 Theorem. The ergodic measures are exactly the extremal points of the
convex set MT .

6.16 Corollary. If T possesses exactly one invariant probability measure, then
this measure is ergodic.

6.4 Application to Markov chains

6.17 Definition. A recurrent state x ∈ S is called positive-recurrent if
Ex[Tx] <∞, otherwise it is called null-recurrent.
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6.18 Theorem. Suppose x ∈ S is positive-recurrent and set

µ({y}) :=
Ex[
∑Tx−1

n=0 1{Xn=y}]

Ex[Tx]
=

∑∞
n=0 Px(Xn = y, Tx > n)

Ex[Tx]
, y ∈ S.

Then µ is an invariant initial distribution.

6.19 Theorem. An irreducible Markov chain has at most one invariant initial
distribution µ. If it exists, it satisfies µ({y}) > 0 for all y ∈ S and the Markov
chain is ergodic under µ.

6.20 Corollary. If (Xn, n > 0) is an irreducible Markov chain with some
positive-recurrent state x, then it is an ergodic process under the invariant initial
distribution µ from Theorem 6.18.

6.21 Theorem. If an irreducible Markov chain (Xn, n > 0) has an invariant
initial distribution µ, then it is ergodic, all its states are positive-recurrent and
µ({y}) = 1/Ey[Ty], y ∈ S, holds.

7 Weak convergence

7.1 Fundamental properties

Throughout (S,BS) denotes a metric space with Borel σ-algebra. The space of
all bounded continuous and real-valued functions on S is denoted by Cb(S).

7.1 Definition. Probability measures Pn converge weakly (schwach) to a pro-
bability measure P on (S,BS) if

∀f ∈ Cb(S) : lim
n→∞

∫
S
f dPn =

∫
S
f dP

holds, notation Pn
w−→ P. (S,BS)-valued random variables Xn converge in

distribution (or in law, in Verteilung) to some random variable X if PXn w−→ PX
holds, i.e.

∀f ∈ Cb(S) : lim
n→∞

E[f(Xn)] = E[f(X)].

Notation Xn
d−→ X or Xn

d−→ PX .

7.2 Proposition. For (S,BS)-valued random variables d(Xn, X)
P−→ 0 (in pro-

bability) implies Xn
d−→ X.

7.3 Theorem (Portmanteau). For probability measures (Pn)n∈N, P on (S,BS)
the following are equivalent:

(a) Pn
w−→ P;

(b) ∀U ⊆ S open : lim infn→∞ Pn(U) > P(U);

(c) ∀F ⊆ S closed : lim supn→∞ Pn(F ) 6 P(F );
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(d) ∀A ∈ BS with P(∂A) = 0 : limn→∞ Pn(A) = P(A).

7.4 Theorem (Continuous mapping). If g : S → T is continuous, T another

metric space, then: Xn
d−→ X ⇒ g(Xn)

d−→ g(X).

7.5 Proposition. Pn
w−→ P is already valid if

∫
f dPn →

∫
f dP holds for all

bounded, Lipschitz-continuous functions f .

7.6 Lemma. (Slutsky) We have for (S,Bs)-valued random variables (Xn), (Yn)

Xn
d−→ X, d(Xn, Yn)

P−→ 0⇒ Yn
d−→ X.

7.7 Corollary. If real-valued random variables satisfy Yn
d−→ a, a ∈ R, and

Xn
d−→ X, then (Xn, Yn)

d−→ (X, a), in particular XnYn
d−→ aX, Xn+Yn

d−→ X+a.

7.2 Tightness

7.8 Definition. A family (Pi)i∈I of probability measures on (S,BS) is called
(weakly) relatively compact if each sequence (Pik)k>1 has a weakly convergent
subsequence. The family (Pi)i∈I is (uniformly) tight (straff) if for any ε > 0
there is a compact set Kε ⊆ S such that Pi(Kε) > 1− ε for all i ∈ I.

7.9 Theorem. Any relatively compact family of probability measures on a se-
parable metric space is tight.

7.10 Theorem (Prohorov). Any tight family of probability measures on a Po-
lish space is relatively compact.

7.11 Corollary (Prohorov). On a Polish space a family of probability measures
is relatively compact if and only if it is tight.
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