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1 Some important processes

1.1 The Poisson process
1.1 Definition. Let (S;)r>1 be random variables on (9,.#,P) with 0 <
Si(w) < Sa(w) < -+ forall k > 1, w e Q. Then N = (Ny, t > 0) with

Nt :Zl{skgt}’ t}O,
k=1

is called counting process (Zéhlprozess) with jump times (Sprungzeiten) (Sg).

1.2 Definition. A counting process N is called Poisson process of intensity
A>0if

(i)
(i)
)

(iii) (independent increments) (N, — Ny, ,)i<i<n are independent for 0 =ty <
t] <o <t

P(Ngyn — Ny =1) = Ah + o(h) for h | 0;
P(Niyp — Ny =0) =1—Aa+ o(h) for h ] 0;

(iv) (stationary increments) Ny — Ny 4 Ni_gforallt>s>0.

1.3 Theorem. For a counting process N with jump times (Sg) the following
are equivalent:

(a) N is a Poisson process;

(b) N satisfies conditions (i), (iv) of a Poisson process and Ny ~ Poiss(At)
holds for all t > 0;

(c) Ty := S1, Ty, := Sk — Sk—1, k = 2, are i.i.d. Exp(\)-distributed random
variables;

(d) Ny ~ Poiss(At) holds for all t > 0 and the law of (Si,...,Sn) given
{N; = n} has the density

F@r, . mn) = Blioce <ocant)- (1.1)

(e) N satisfies condition (iii) of a Poisson process, E[N1] = X and (1.1) is
the density of (S1,...,Sn) given {Ny = n}.

1.4 Remark. Let Uy, ... U, ~ U([0,t]) i.i.d. and consider their order statistics
U(l), ey U(n), ie. U(l) = mini UZ‘, U(Q) = min({Ul, ceey Un} \ {U(l)}) etc. Then
(U(1ys - -, Ugny) has exactly density (1.1).

The characterisations give rise to three simple methods to simulate a Poisson
process: the definition gives an approximation for small h (forgetting the o(h)-
term), part (c) just uses exponentially distributed inter-arrival times T} and
part (d) uses the value at a specified right-end point and then uses the uniform
order statistics as jump times in-between (write down the details!).



Proof. We prove the equivalence by a circle argument.
(a)=(b) Put p,(t) = P(N; = n). By (i), (ii), (iii) we infer
po(t +h) =P(Nt =0, Npyp — Ne = 0) = po(t)(1 — Ah + o(h)),
which implies

/ . po(t+h)—po(?)
pr— = — > .
() 1&101 Y Apo(t), t=0

In view of pg(0) = 1 we obtain py(t) = e .

Similarly, we have for n > 1:

pn(t+h) =P({Nepp =n} N ({Ne <n -2 U{Ny =n -1} U{N; = n}))
= P(N; < n— 2)o(h) + P(N; = n — 1)(Ah + o(h))
FB(N; = n)(1 — M+ o(h))
= Pt ()M + pa(t)(1 — AR) + o(h).

This implies p},(t) = —=App(t) + Apn—1(t). Using p,(0) = 0 we infer p,(t) =
A" Xt

n!

(b)=(c) Let 0 =bg < a3 < by <--+ < a, < by, and calculate

P (;él{ak < S < bk})

n—1

= P ( m {Nak - ka—l = 07 ka - Nak = ]'} N {Nan - an,1 = 07 an - Nan > 1})

k=1

i) (T

= ( H P(Nakfbkfl = 0) ]P)(kafak)> IP)(“]\'fc’ﬂn*bn—l - O) ]P)(an*an 2 1)
k=1

n—1
= ( H A(bx — ak)e—k(bk—ak)—A(ak—bk—l))e—)\(an—bn,l)(l _ e_A(bn_an))
k=1

n—1
= (e — e MmN T (b — i)
k=1

b1 pba—x1 bp—T1——Tp_1
= / / . / Nle Azt tan) g o droday .
ai a2—x1 An—T1— " —Tn—1

Consequently, (11,75,...,T,) = (51,5 — S1,...,5, — Sn—1) has den-
sity Ae~ M@t F20) for 2. > 0. The product density form implies that
Ti,...,T, are independent and each 7; is Exp(\)-distributed.

(c)=(d) We find P(N; = 0) = P(S; > t) = e~ and

=
Z
I
2
I
=
=z
Y
2
|
=
=
Y

n+1) =P(S, <t) — P(Spi1 < 1).



Since S, = T1 + - -+ + T, is T'(\, n)-distributed, we obtain

t )\nl.n—l )\n—&-lxn e ()\t)n i
I[D(Nt_n)_/o ((n—l)!_ n! )e do = nl ¢

and we conclude N; ~ Poiss(\t). By density transformation the joint

density of (S1,...,Sp41) isfor spp1 =8, =+ =81 =280=0
n+1
fSl’""S”“(Sb ey Sngl) = H e Mer—sk-1) — \ntlo=Asnir
k=1

Noting {N; = n} = {S, < t,Sp41 >t} we consider 0 < a3 < by < -+ <
an < b, <t and obtain the conditional law via

P(Sl S [al,bl], .. .,Sn S [an,bn] ‘ Ny = n)
_ ]P)(Sl € [alabl]a o '7‘S’n S [anabn]75n+l > t)
N QD"

!
b1 bn )
t’n
a1 an

which identifies the integrand as the conditional density.

(d)=(e) E[N;] = X\ is direct from the assumption. For 0 =to < t; < ---t, =1t
and ki, ..., k, € Ng consider with K := "' | k

PVI=1,...,n: Ny — Ny, = ky)
=P(N, = K)P(Vl=1,...,n: N;, = Ny,_, = k| Ny = K)

AWK
:?e P(S}gl<t]_<Sk1+1,...,SKgtn<SK+1’Nt:K)
— CORBY R s U/

K! t& k!

=1

n
= H]P(Ntl - Ntl—l = kl)'

=1

Hence, (Ny, — Ny,_,); are independent.

(e)=(a) For 0 =typ < t; < ---t, =t and ky,...,k, € No, h > 0, m >
k1 + -+ + k,, note the shift invariance

IP’(W = ]., ey Ntl—l-h - Ntl_1+h = kl | Nt+h = m)

_ . m! ﬁ (ti+h— (g +h)k
C(t+h)m e k!

=P(Vl=1,...,n: Ny — Ny,_, = ki | Ny = m)

Summing up over all m > k1 + - -+ + k,, yields identity in law:

d
(Nt1+h - Nto+h> s 7Ntn+h - Ntn—1+h) = (Ntl - Ntov s 7Ntn - Ntnfl)'



This gives (iv) (put n =1) and for 0 < h < 1
P(N, =0) =Y P(Ny P(Ny—Nj, = k| Ny = k) =Y _P(Ny = k)(1-h)".
k=0 k=0

Because of > ;2 (P(Ny = k)k = E[N1] = A < oo the function p(h) :=
P(Ny, = 0) is differentiable in [0, 1] with p’(0) = —\. We conclude

P(N), = 0) = P(Ng = 0) — Ah + o(h) = 1 — A + o(h).

By a similar argument, P(Ny, = 1) equals
Y P(Ni=k)P(N1 -~ Npy=k—1|Ny =k) =) P(Ny = k)k(1—h)*!

and this implies P(N, = 1) = Ah + o(h).

1.2 Markov chains

1.5 Definition. Let T" = Ny (discrete time) or 7' = [0, 00) (continuous time)
and S be a countable set (state space). Then random variables (X;)ier with
values in (S, P(9)) form a Markov chain if for all n € N, t] < to < -+ < ty41,
Sly..vySnt1 € S with P(Xy, = s1,..., X, = sp) > 0 the Markov property is
satisfied:

]P)(th-kl = Sn+1 ‘ th == S1,... ,th == Sn) == P(th+1 = Sn+1 |th == Sn).
1.6 Definition. For a Markov chain X and t; <9, 4,j € S
pij(ti,t2) :==P(Xy, = j| Xy, = 1) (or arbitrary if not well-defined)

defines the transition probability to reach state j at time to from state ¢ at time
t1. The transition matrix is given by

P(ty,t2) == (pij(t1,t2))ijes-

The transition matrix and the Markov chain are called time-homogeneous if
P(tl,tg) = P(O,tg - tl) = P(tQ - tl) holds for all tl S tg

1.7 Proposition. The transition matrices satisfy the Chapman-Kolmogorov
equation

Yty < to < tg: P(t1,t3) = P(t1,t2)P(ta, t3) (matriz multiplikation).
In the time-homogeneous case this gives the semigroup property
Vt,s €T : P(t+s) = P(t)P(s),

in particular P(n) = P(1)" for n € N.



Proof. By definition we obtain
P(ty,t3)ij = P(Xpy = j | Xy, =)
= ZP(XR; =7, Xe, = k| Xy, =1)

kesS
= ZP(th =Jj| Xy, =4, X4, = k) P(Xy, = k[ Xy, =)
kesS
Marke . .
=" ZP(Xta =Jj| X, = k) P( Xy, = k[ Xy, =4)
keS
= P(ta,t3)k; P(t1, t2)ik
kes

= (P(t1,t2) P(ta, t3) ).

For time-homogeneous Markov chains this reduces to P(ts — t1) = P(ta —
t1)P(t3 — t2) and substituting ¢t = ty — t1, s = t3 — t9 yields the assertion. [J

2 General theory of stochastic processes

2.1 Basic notions

2.1 Definition. A family X = (X3, ¢t € T') of random variables on a common
probability space (€2,.%,P) is called stochastic process. We call X time-discrete
if T = Ny and time-continuous if 7 = R} = [0,00). If all X; take values in
(S,.7), then (5, .7) is the state space (Zustandsraum) of X. For each fixed w €
Q the mapping ¢t — X;(w) is called sample path (Pfad), trajectory (Trajektorie)
or Realisation (Realisierung) of X.

2.2 Lemma. For a stochastic process (X, t € T) with state space (S,.) the
mapping X : Q@ — ST with X (w)(t) := X¢(w) is a (ST, 79T -valued random
variable.

2.3 Remark. Later on, we shall also consider smaller function spaces than S7,
e.g. C(R+) instead of RR P Exereise .

Proof. We have to show measurability. Since .#®7 is generated by the projec-
tions m : ST — S, t € T, onto the t-th coordinate, X is measurable if all
compositions m; 0 X : Q@ — S are measurable, but by definition 7; 0 X = X,
t € T, are measurable as random variables. ]

2.4 Definition. Given a stochastic process (X¢, t € T'), the laws of the random
vectors (Xy,,...,Xy,) with n > 1, t1,...,t, € T are called finite-dimensional
distributions of X. We write P, . ¢, 1= P&XtrsXen)

2.5 Definition. Two processes (X, t € T), (Y, t € T') on (2,.%,P) are called

(a) indistinguishable (ununterscheidbar) if PVt € T: X, =Y;) = 1;

(b) versions or modifications (Versionen, Modifikationen) of each other if we
haveVteT: P(X; =Y;) = 1.




2.6 Remarks.

(a) Obviously, indistinguishable processes are versions of each other. The con-
verse is in general false.

(b) If X is a version of Y, then X and Y share the same finite-dimensional dis-
tributions. Processes with the same finite-dimensional distributions need
not even be defined on the same probability space and will in general not
be versions of each other.

(c) Suppose (X¢t > 0) and (Y, t > 0) are real-valued stochastic proces-
ses with right-continuous sample paths. Then they are indistinguishable
already if they are versions of each other. » Exease

2.7 Definition. A process (X;, ¢ > 0) is called continuous if all sample paths
are continuous. It is called stochastically continuous, if ¢,, — ¢ always implies

Xi, 5 x, (convergence in probability).

2.8 Remark. Every continuous process is stochastically continuous since al-
most sure convergence implies stochastic convergence. On the other hand, the
Poisson process is stochastically continuous, but obviously not continuous:
Ve € (0,1) ¢ lim PNy — Ny, | >¢) = lim (1 e~ At=taly —
n—>

n

2.2 Polish spaces and Kolmogorov’s consistency theorem

2.9 Definition. A metric space (S, d) is called Polish space if it is separable
and complete. More generally, a separable topological space which is metrizable
with a complete metric is called Polish. Canonically, it is equipped with its Borel
o-algebra Bg, generated by the open sets.

2.10 Definition. For finitely or countably many metric spaces (Sk,dg)
the product space [[, Sk is canonically equipped with the product metric
d((sk), (tk)) := 3. 27%(dk(sk, tk) A 1), which generates the product topology,
in which a vector/sequence converges iff all coordinates converge.

2.11 Lemma. Let S, k > 1, be Polish spaces, then the Borel o-algebra of the
product satisfies By, _ 5, = Q=1 Bs,,-

Proof. ®k>1 B, is the smallest o-algebra such that the coordinate projecti-
ons ; : H,@l Sr — Si, i = 1, are measurable. Analogously, the product to-
pology on Hk>1 Sk is the coarsest topology such that all m; are continuous.
Consequently, each m; is in particular %Hk;1 s,-measurable, which implies
%Hk>l Sk 2 ®k>1 %Sk'

By separability, any open set O C [],, Sk is a countable union of open sets
of the form ﬂf\il 7, 1(0;) with N € N and O; € S; open, which are elements of
Qp>1 Bs,,- This shows B],.., 5 € X1 B, - O

2.12 Remark. The D-relation holds for all topological spaces and products of
any cardinality with the same proof. The C-property can already fail for the
product of two topological (non-Polish) spaces.



2.13 Definition. A probability measure PP on a metric space (S,Bg) is called
(a) tight (straff) if Ve > 03K C S compact : P(K) >1—¢,

(b) regular (reguldr) if Ve > 0, B € 833K C B compact : P(B\ K) < ¢
and Ve >0, B€®Bg30 D Bopen: P(O\B) <e.

2.14 Proposition. Fvery probability measure on a Polish space is tight.

Proof. Let (sn)n>1 be a dense sequence in S and consider for any radius p > 0
the closed balls B,(s,) around s,,. Then S = | J,, B,(sn) and o-continuity implies

Jim P ( G Bp(sn)) — 1.
n=1

Now select for € > 0 and every p = 1/k an index Ny such that
Ny,
P( U Bl/k(sn)) >1-e27k,
n=1

Then K := (72, UM, By /k(sn) is a closed subset, hence complete. Since for
any 0 > 0 there is a finite cover of K by balls By /;(s,) of diameter less than §
(K is totally bounded), any sequence in K has a subsequence which is Cauchy.
By completeness, the Cauchy sequence converges and K is compact. By con-
struction,

oo Ng 00
P(S\ K) =P ( Uun Bl/k(sn)c) <Y ert=c
k=1

k=1n=1
holds. Since € > 0 was arbitrary, this shows tightness. O

2.15 Theorem (Ulam, 1939). FEvery probability measure on a Polish space
(S,d) is regular.

Proof. We consider the family of Borel sets

D = {B € By ( P(B)= sup P(K)= _inf P(O)}.
KCB compact O2B open
Note first S € D because S is open and P is tight by the preceding theorem.
Now consider any closed set F' C S. By tightness, for any € > 0 there is a
compact set K. with P(K.) > 1—¢e. Then FN K. C F is compact with

P(F\ (FNK.) <P(KE) <e.

This shows P(F') = supg P(K) with K C F compact. The open sets O,, :=
{s € S| infzerd(s,z) < 1/n} satisfy F' = (1,5, On. By o-continuity, we infer
P(F) = infy>1 }P’(ﬂnNzl O,,). Since finite intersections of open sets are open, we
have shown the second regularity property and thus F' € D.

Furthermore, D is closed under set differences and countable unions (D is
a o-Ting) P Exeross .

Altogether we have shown that D is a o-algebra containing the closed sets,
which implies D = Bg, as asserted. O



2.16 Lemma. Let (X;, t € T)) be a stochastic process with state space (S,.%)
and denote by myr : S — ST for I C J the coordinate projection 51((85)jer) =
(sj)jer- Then the finite-dimensional distributions satisfy the following consi-
stency condition:

VICJCT withI,J finiteVA € " Pj(n1(A)) = Pr(A). (2.1)
Proof. We just write
Pr(A) = P((Xi)ter € A) = P(X € 711 (A4))
=P(X € (ryromry) H(A) = P(Xi)ies € mr1(A))
= P;(m1(A)).
O

2.17 Definition. Let I # @ be an index set and (5,.”) be a measurable
set. Let for each finite subset J C I a probability measure P; on the product
space (S7,.7%7) be given. Then (P;) JCI finite 15 called projective family if the
following consistency condition is satisfied:

vJ C J' C I finite, A € %7 : Pj(A) = Py(ny},(A)).

2.18 Theorem (Kolmogorov’s consistency theorem). Let (S,Bg) be a Polish
space, I an index set and let (Py) be a projective family of probability measures
for S and I. Then there exists a unique probability measure P on the product
space (ST, ‘B?I) satisfying

V.J C I finite, B € BE : P;(B) =P(x}(B)).

Proof. Let 2 := U cr finite 771_}](%?‘]) be the algebra (check!) of cylinder sets

on S’ which generates %?I . Since 2 is N-stable, P is uniquely determined by
its values on the cylinder sets.

The existence of P follows from Caratheodory’s extension theorem if P on
2, as defined in the theorem, is a premeasure. The consistency of (Py) ensures
that P is well-defined on 2 and additive: for disjoint A, B € 2 there are a
finite J C I and disjoint A’, B' € B’ with A = 7 }(A), B =7 }(B'). Since
P; is a probability measure and standard set operations commute with taking
preimages, we conclude

P(AUB) =P (A UB)=P;(A) +P;(B) =P(A) +P(B).

Trivially, also P(S?) = P;(S”) = 1 holds, using any finite J C I. It remains to
show that PP is o-additive on 2, which is (under finite additivity) equivalent to
P(B,,) — 0 for any sequence B,, | @ of sets B,, € 2 (o-continuity at &).

We can write B, = W;}n (4,) for some finite J, C I, A, € %?J”.
Without loss of generality we shall assume J, C J,11 for all n. Now let
K, C A, be compact with P; (A, \ K,) < 27" by Ulam’s Theorem. Then
K| = ﬂ?z_ll 7T3n17 5,(K1) N K, is compact in S Jn as a closed subset of a compact



set and C),, = 7rIJ (K}) =nL 17T[J (K;) C B, satisfies also C), | @. Below we
prove that there is already an ng € N with Cj,, = @. From this we conclude

no
limsup P(By) < P(Bng) = P(Bno \ Cng) < > Py (A1 \ K)) < e
Since € > 0 was arbitrary, this shows P(B,,) — 0, as desired.
We prove the claim via reductio ad absurdum, assuming that for all n € N
there is a g, € C,. Since K! is compact in S/», we can find a subse-

(1)

quence (n; ), such that (77, (y 1)))i=1 converges in Kj, a further subse-
l

quence (nl(z)) such that (m7,5,(y 2))i>1 converges in K3 and so on. Along
l

(@)

the diagonal sequence (n;”);>1 then (w7, (y «))i=1 converges in Ky, for all
m > 1. Hence, (7r]7um>1]m(yn(l)))l>1 converges in the product topology (me-
- l

tric) to some z € SYm>1/m (note: Uns1 Jm is countable). Because Cy,11 C Ch,
n > 1, are nested, this implies z € 77 y,,5,7,(Cpn) for all n > 1 and thus
2 € TIUps1Jm ((ps1 Cn)- This contradicts (1,,-; C, = @ and the claim is pro-
ved. O

2.19 Corollary. For any Polish space (S,Bgs) and any index set T # & there
exists to a prescribed projective family (Py), J C T finite, a stochastic process
(Xt,t € T) whose finite-dimensional distributions are given by (Py).

Proof. By Kolmogorov’s consistency theorem construct the probability measure
P on (ST, %®T) which satisfies P(7 . T{t1 1tn}(A)) =Py, 1,3(A) for all n € N,

t1,...,tn € T, A € BG. Define X to be the coordinate process on (ST, ’B®T,]P’)
via X¢((s7)rer) := s¢. Then X is measurable for every ¢ € T and

P((Xiys- s Xoy) € A) = Blrzd, () = Py, oy (A)
for all A € %?". O

2.20 Corollary. For any family (P;);er of probability measures on (S,.7) there
exists the product measure @, ; B; on (S1,.7%1). In particular, a family (X;)icr
of independent random variables with prescribed laws PXi exists.

Proof for (S,.) Polish: for finite product measures the consistency condition
holds because for all B € ‘B?J

(@5 )it~ (@2, ) & =)™ - (@)io
JeJ’! jeJ jeJN\J jeJ
Define X; : ST — S by X;((s;)jer) := s;. Then the assertion follows from the

preceding corollary. For general measure spaces (.9,.7) the proof is similar to
that of Kolmogorov’s consistency theorem, see e.g. Bauer (1991). O

2.21 Remark. Kolmogorov’s consistency theorem does not hold for gene-
ral measure spaces (S,8), cf. the counterexample by Sparre Andersen, Jessen
(1948). The Ionescu-Tulcea Theorem, however, shows the existence of the pro-
bability measure on general measure spaces under a Markovian dependence
structure, see e.g. Klenke (2008).



3 The conditional expectation

3.1 Orthogonal projections

3.1 Proposition. Let L be a closed linear subspace of the Hilbert space H.
Then for each x € H there is a unique y; € L with ||x — yz|| = disty(z) :=
infyepllz -yl

3.2 Definition. For a closed linear subspace L of the Hilbert space H the
orthogonal projection Py, : H — L onto L is defined by Pr(z) = y, with y,

from the previous proposition.
3.3 Lemma. We have:

(a) Pr o Pp, = Pp, (projection property);

(b) Vo € H: (x— Prx) € L+ (orthogonality).
3.4 Corollary. We have:

(a) Each x € H can be decomposed uniquely as x = Prx + (x — Prx) in the
sum of an element of L and an element of L*;

(b) Py is selfadjoint: (Ppz,y) = (x, PLy);

(c) Pp is linear.

3.2 Construction and properties

3.5 Definition. For a random variable X on (2,.#,P) with values in (5,.7)
we introduce the c-algebra (!) o(X) := {X1(A)|A € ¥} C .Z. For a given
probability space (§2,.%,P) we set
M :=M(Q, F) :={X : Q — R measurable};

MT:=MT(Q,.F) :={X : Q — [0,00] measurable};

L= LP(Q, .7 ,P) :={X e M(Q, #)| E[|X]P] < c0};

LP:=LP(Q,7,P) = {[X]| X € LP(Q2, #,P)}

where [X]:={Y e M(2,.7)| P(X =Y) = 1}.

~— — —

3.6 Proposition. Let X be a (S,.7)-valued and Y a real-valued random varia-
ble. Then'Y is o(X)-measurable if and only if there is a (%, BRr)-measurable
function ¢ : S — R such that Y = p(X).

3.7 Lemma. Let 9 be a sub-o-algebra of .F. Then L*(Q,9,P) is embedded as
closed linear subspace in the Hilbert space L*(Q,.F,P).

3.8 Definition. Let X be a random variable on (2,.%#,P). Then for ¥ €
L?(Q),.#,P) the conditional expectation (bedingte Erwartung) of Y given X
is defined as the L?(§2,.%,P)-orthogonal projection of Y onto L?(2,o(X),P):
E[Y | X]:= Pr2(q.(x)pY - If ¢ is the measurable function such that E[Y | X] =
o(X) a.s., we write E[Y | X = z] := ¢(z) (conditional expected value, bedingter
Erwartungswert).

More generally, for a sub-o-algebra ¢ the conditional expectation of Y &€
L*(Q,.7,P) given ¢ is defined as E[Y |¥] = Pr2 (g9 p)Y.

10



3.9 Lemma. E[Y |¥] is as element of L? uniquely determined by the following
properties:

(a) E[Y | 9] is 4-measurable (modulo null sets);
(b) VG € 9 : E[E[]Y |¥4]1¢] = E[Y1g].

3.10 Theorem. Let Y € MT(Q,.%) or Y € LY(Q,.#,P) and let 4 be a sub-o-
algebra of F. Then there is a P-a.s. unique element E[Y | 4] in Mt (Q,¥) and
LY(Q,%,P), respectively, such that

VG e9: EE[Y |9)1¢] = E[Y1g].

3.11 Definition. For Y € M*(Q, %) or Y € LY(Q,.#,P) and a sub-o-algebra
& of .F the general conditional expectation of Y given ¢ is defined as E[Y | ¥]
from the preceding theorem. We put E[Y | (X;)icr] := E[Y |o(X;, i € I)] for
random variables X;, ¢ € I.

3.12 Proposition. Let Y € LY(Q,.%,P) and let 4 be a sub-c-algebra of F.
Then:

(o) EE)Y |9]] = E[Y];

(b) Y 4-measurable = E[Y |9] =Y a.s.;

(c) a€R, Z e LY (Q,Z,P): ElaY + Z|¥] = aE[Y |9] + E[Z | 9] a.s.;
(d) Y 20 as. = EY|¥9] >0 as.;

(e) Yo € MT(QF), Y, 1Y as. = E[Y,|¥9] T E[Y |¥] a.s. (monotone con-
vergence);

(f) Y, € MT(Q,#) = Elliminf, YV, |¥4] < liminf, E[Y,,|¥] a.s. (Fatou’s
Lemma);

(9) Yo € M(Q,.F), Yo = Y, |Ya| < Z with Z € LNQ, Z,P): E[Y, |¥] —
E[Y |¥] a.s. (dominated convergence);

(h) # C 94 = E[E]Y |¥9]| ] =E[]Y | H] a.s. (projection/tower property);
(i) Z 4-measurable, ZY € L': E[ZY |9] = ZE[Y |¥9] a.s.;
(j) Y independent of 4: E[Y |¥] = E[Y] a.s.

3.13 Proposition (Jensen’s Inequality). If ¢ : R — R is convex and Y, o(Y")
are in L, then p(E[Y |¥9]) < E[p(Y) |¥4] holds for any sub-o-algebra 4 of F.
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4 Martingale theory

4.1 Martingales, sub- and supermartingales

4.1 Definition. A sequence (%, ),>0 of sub-o-algebras of .Z# is called filtration
if #, C Zp+1,n >0, holds. (2, #,P, (£#,)) is called filtered probability space.

4.2 Definition. A sequence (M,,),>0 of random variables on a filtered probabi-
lity space (2, .#,P,(.%,)) forms a martingale (submartingale, supermartingale)

if:

(a) M, € L', n>0;
(b) M, is %,-measurable, n > 0 (adapted);

(c¢) E[Myy1| Zn] = My, (vesp. E[Myy1|.%n] > M, for submartingale, resp.
E[My+1| %] < M, for supermartingale).

If #, = o(Mo, ..., M,) holds, then (.%,) is the natural filtration of M, notation
(7).

4.3 Definition. A martingale (M,) is closable (abschliefbar), if there exists
an X € L! with M,, = E[X | %,], n > 0.

4.4 Definition. A process (X, )n>1 is predictable (vorhersehbar) (w.r.t. (%))
if each X, is %, _1-measurable. For a predictable process (X,) and a mar-
tingale (or more general: adapted process) (M,) the martingale transform
(or discrete stochastic integral) ((XeM),)n>o is defined by (XeM)y := 0,
(XoM)n = ZZ:l Xk(Mk - Mk,1>.

4.5 Lemma. For a bounded predictable (X,,) and a martingale (M,,) (or just
predictable (X,,) and Xy, My, € L? for all n) ((XeM),)n>0 is again a martin-
gale.

4.6 Lemma. Let (M,) be a martingale and ¢ : R — R convex with p(M,) €
L', n > 0. Then ¢(M,) is a submartingale. In particular, (M2) is a submar-
tingale for an L?-martingale (M,,).

4.7 Theorem (Doob decomposition). Given a submartingale (X,,), there ezists
a martingale (M) and a predictable increasing process (Ay) such that

X,=Xo+M,+ A, n=>1; My = Ao =0.
This decomposition is a.s. unique and Ay, =Y p_ E[ X — X1 | Fr—1].

4.8 Definition. The predictable process (A;) in the Doob decomposition of
(X,,) is called compensator of (X,,). For an L?-martingale (M,,) the compensator
of (M?) is called quadratic variation of (M,), denoted by (M),

4.9 Lemma. We have (M), = >3 E[(My — My—1)?| Fr_1], n > 1.
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4.2 Stopping times

4.10 Definition. A map 7 : Q@ — {0,1,...,+00} is called stopping time
(Stoppzeit) with respect to a filtration (%,) if {r = n} € %, holds for all
n > 0.

4.11 Lemma. FEvery deterministic time T = ng s stopping time. For stopping
times 0 and T also o AT, oV T and o + T are stopping times.

4.12 Theorem (Optional Stopping). Let (M,) be a (sub/super-)martingale
and T a stopping time. Then the stopped process (M]) = (Mpnr) is again a
(sub/super- )martingale.

4.13 Definition. For a stopping time 7 the o-algebra of 7-history (7-
Vergangenheit) is defined by ., :=={A € .Z |Vn>0: An{r <n}e .Z,}.

4.14 Lemma. .%; is a o-Algebra and 7 is % -measurable.
4.15 Lemma. For stopping times o and 7 with o < 7 we have %, C ;.

4.16 Lemma. For an adapted process (Xy) and a finite stopping time T the
random variable X, is %--measurable.

4.17 Theorem (Optional Sampling). Let (M,) be a martingale (submartinga-
le) and o, T bounded stopping times with o < 1. Then E[M, | #;] = M, (resp.
E[M; | .%,] > M,) holds.

4.18 Corollary. Let (M,) be a martingale and T a finite stopping time. Then
E[M;] = E[My] holds under one of the following conditions:

(a) T is bounded;
(b) (M:pn)n>0 is uniformly bounded;
(c) Elr] < 0o and (E[|Mpt1 — M| | Fn))nso is uniformly bounded.

4.19 Corollary (Wald’s Identity). Let (Xj)r>1 be (Fi)-adapted random va-
riables such that supy E[|X|] < oo, E[X;] = p € R and Xy, is independent of
Fr—1, k = 1. Then for Sy, := > "}_, Xk, So = 0 and every (Fy)-stopping time
T with E[1] < co we have E[S;] = nE[7].

4.3 Martingale inequalities and convergence

4.20 Proposition (Maximal inequality). Any martingale (M,,) satisfies

Va>0: P( sup [My| > a) < LE[|M,]], n>0.
0<k<n

4.21 Theorem (Doob’s LP-inequality). An LP-martingale (My,) (i.e. M,, € LP
for all n) with p > 1 satisfies

max ‘Mk‘H < LHMnHLp.
1<k<n w p—1
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4.22 Definition. The number of upcrossings (aufsteigende Uberquerungen)
on an interval [a,b] by a process (X}) until time n is defined by Ut =
sup{k > 1|7; < n}, where inductively 79 := 0, opy1 = inf{l > 7| Xy < a},
Ti41 = inf{l > o1 | Xy > b}.

4.23 Proposition (Upcrossing Inequality). The upcrossings of a submartingale
(X,) satisfy E[US") < 52 E[(M,, — a) v 0].

4.24 Theorem (First martingale convergence theorem). Let (M) be a (sub-
/super-)martingale with sup,, E[|M,|] < co. Then My = limy_oo M, ezists
a.s. and M~ is in L1.

4.25 Corollary. Each non-negative supermartingale converges a.s.

4.26 Proposition. Let (M,) be an L?>-martingale. Then lim,, oo M, (w) exists
for P-almost all w, for which limy, (M), (w) < co holds.

4.27 Corollary (Strong law of large numbers for L?-martingales). An L2-
martingale (M,,) satisfies for any o > 1/2

: My(w)
o (@)~

for P-almost all w, for which lim, (M), (w) is infinite.

4.28 Definition. A family (X;);er of random variables is uniformly integrable
(gleichgradig integrierbar) if

lim sup E[|X;|14x, >R}y = 0.

R—o0 je7
4.29 Lemma.

(a) If (Xi)ier is wuniformly integrable, then (X;)ier 14s L'-bounded:
sup;e E[| Xi|] < oo.

(b) If (Xi)ier is LP-bounded (sup;c;E[|X;P] < oo) for some p > 1, then
(Xi)ier is uniformly integrable.

(c) If | X;| <Y holds for alli € I and someY € L', then (X;)icr is uniformly
integrable.

4.30 Theorem (Vitali). Let (X,,)n>0 be random variables with X, 5x (in
probability). Then the following statements are equivalent:

(a) (Xn)n>0 is uniformly integrable;
(b) X, — X in L';
(¢) E[[Xn[] = E[|X]] < oco.

4.31 Theorem (Second martingale convergence theorem).
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(a) If (M) is a uniformly integrable martingale, then (M,) converges a.s.
and in L' to some My, € L*. (M,) is closable with M, = E[My | .Z,].

(b) If (M,) is a closable martingale, with M,, = E[M | %#,] say, then (M,) is
uniformly integrable and (a) holds with My, = E[M | Foo] where Foo =
o(Fp,n>1).

4.32 Corollary. Let p > 1. Every LP-bounded martingale (M) (i.e.

sup,, E[|M,,|P] < o0) converges for n — oo a.s. and in LP, hence also in L.

4.33 Definition. A process (M_p)n>0 is called backward martingale
(Riickwartsmartingal) with respect to (F_p)n>0 with #_,,_1 C.%_, if M_,, €
L', M_,, #_,-measurable and E[M_,, |.%_,,_1] = M_,,_1 hold for all n > 0.

4.34 Theorem. FEvery backward martingale (M_,)n>0 converges for n — oo
a.s. and in L'.

4.35 Corollary. (Kolmogorov’s strong law of large numbers) For i.i.d. random
variables (Xp)k>1 in L' we have
1 « 1
< ZXk a.s. and L E[Xl]
n
k=1

4.4 The Radon-Nikodym theorem

4.36 Definition. Let 1 and v be measures on the measurable space (§2,.%).
Then g is absolutely continuous (absolutstetig) with respect to v, notation
p<Lv, ifvAe .Z :v(A) =0= p(A) =0. p and v are equivalent (dquivalent),
notation p ~ v, if g < v and v < p. If there is an A € % with v(A) = 0 and
w(AY) = 0, then p and v are singular (singulir), notation u L v.

4.37 Theorem (Radon-Nikodym). Let v be a o-finite measure and p a finite
measure with u < v, then there is an f € L'(Q),.#,v) such that

u(A):/Adefor all A € .

4.38 Definition. The function f in the Radon-Nikodym theorem is called
Radon-Nikodym derivative, density or likelihood function of u with respect to

v, notation f = Z—’Ij.

4.39 Theorem (Kakutani). Let (Xj)r>1 be independent random variables with
X >0 and E[X}] = 1. Then M, :=[[;_y Xi, Mo =1 is a non-negative mar-
tingale converging a.s. to some My,. The following statements are equivalent:

(a) E[Ms] = 1;
(b) M, — My in L';
(c) (M) is uniformly integrable;

(d) T1i2, ar > 0, where aj, := E[X,im] € (0,1];

15



(¢) 22521 (1—ax) < oo.
If one (then all) statement fails to hold, then My, = 0 holds a.s. (Kakutani’s

dichotomy).

5 Markov chains: recurrence and transience

In this section (X,, n > 0) always denotes a time-homogeneous Markov chain
with state space (S,8), realized as coordinate process on Q = SN0 with o-
algebra .# = 8§¥MNo_ filtration .7, = ZX and measure P, where u denotes the
initial distribution. We write short P, := Pj_.

5.1 Definition. For n > 0 the shift operator 9, : @ — Q is given by
Un((8k)k=0) = (Sk+n)k>0-

5.2 Theorem. Let Y € MT(Q,.%) and T be a finite (F,)-stopping time. Then
the strong Markov property holds:

E,[Y 00, | %] =Ex.[Y] P,-as.

5.3 Definition. For y € S, k € N introduce the k' time of return to y
recursively by T?f = inf{n > T;:_l | X, = y} and Tz? = 0. Put T, := qu and
Pay = Py(T, < 00) for z € S.

5.4 Proposition. For k € N and x,y € S we have PI(T;c <o) = pwyp’;;l.

5.5 Definition. A state y € S is called recurrent (rekurrent) if py, = 1 and
transient (transient) if p,, < 1.

5.6 Definition. By N, := Zn21 1¢x,-,} we denote the number of visits to
state y.

5.7 Proposition.

(a) If a state y is transient, then E,[Ny] = % < 00 holds for all x € S.

(b) A state y is recurrent if and only if E,[N,] = oo holds.

5.8 Proposition. Let x € S be recurrent and pgy > 0 for somey € S. Then y
is recurrent and py, = 1.

5.9 Definition. A set C' C S of states is closed (abgeschlossen) if p;, = 0 holds
forallz € C,y € S\C. Aset D C S is irreducible (irreduzibel) if p,, > 0 holds
for all x,y € D. If S is irreducible, then the Markov chain is called irreducible.

5.10 Proposition. For an irreducible Markov chain on a finite state space S
all states are recurrent.
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6 Ergodic theory

6.1 Stationary and ergodic processes

6.1 Definition. A stochastic process (X, t € T) with T € {Np,Z,R" R} is

stationary (stationar) if (Xy,, ..., X¢,) % (Xi,4s ..., Xy, +s) holds for all n > 1,
t1, - ,tp €T and s € T.

6.2 Definition. For a time-homogeneous Markov chain (X,,, n > 0) an initial
distribution y is invariant if P, (X1 = i) = Pu(Xo = i) = p({i}) holds for all
i€S.

6.3 Lemma. A time-homogeneous Markov chain with invariant initial distri-
bution is stationary.

6.4 Definition. A measurable map 7" : 2 — 2 on a probability space ({2, .7, P)
is called measure-preserving (maferhaltend) if P(7~1(A4)) = P(A) holds for all
Ae 7.

6.5 Lemma.

(a) Every S-valued stationary process (X,,n > 0) induces a measure-
preserving transformation T on (SN0, §8No PX) yiq

T((xo,x1,z2,...)) = (x1,22,--+) (left shift).

(b) For a random variable Y and a measure-preserving map T on (Q,.7,P)
the process X, (w) := Y (T™(w)), n >0, (T° :=1d) is stationary.

6.6 Definition. A event A is (almost) invariant with respect to a measure-
preserving map T on (Q,.%,P) if P(T~'(A)AA) = 0 holds. The o-algebra (!)
of all (almost) invariant events is denoted by .#p. T is ergodic if #p is trivial,
i.e. P(A) € {0,1} holds for all A € #p.

6.7 Lemma. Let 91 be the invariant o-algebra with respect to some measure-
preserving transformation T on (Q, % P). Then:

(a) A (real-valued) random variable Y is Fp-measurable if and only if it is
P-a.s. invariant, i.e. P(Y o T =Y) = 1. In particular, T is ergodic if
and only if each P-a.s. invariant and bounded random variable is P-a.s.
constant.

(b) For each invariant event A € S there exists a strictly invariant event B
(i.e. with T~Y(B) = B exactly) such that P(AAB) = 0.
6.2 Ergodic theorems

6.8 Lemma (Maximal ergodic lemma). Let X € L' and T be measure-
preserving on (Q,.%,P). Denoting S, := Z?;(}X oT% Sy := 0 and M, =
max{So, ..., Sn}, we have E[ X117 <01] > 0.
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6.9 Theorem (Birkhoff’s ergodic theorem). Let X € L' and T be measure-
preserving on (2, .%#,P). Then:

n—1

1 .
lim — Z XoT' =E[X | 77] P-a.s. and in L'.
1=0

n—00 N 4

If T is even ergodic, then

n—1
. 1 i ; 1
nlgl;oa E_O XoT' =E[X] P-a.s. and in L.

6.10 Theorem (von Neumann’s ergodic theorem). For X € LP, p > 1, and
measure-preserving T on (Q, %, P)we have

1 n—1 ‘
lim — ZX oT" =E[X | 7] P-a.s. and in LP.
n—oo N =

6.11 Corollary. Let (X,,, n > 0) be an ergodic process in L* (i.e. X, € Lt
and the associated left shift on (RN, %% NO,]P’X) is ergodic). Then

1 n—1
lim — " X; = E[X]] P-a.s. and in L',
1=0

n—00 N 4
In particular, Kolmogorov’s strong law of large number for (X,) in L' follows.

6.3 The structure of the invariant measures

6.12 Definition. Let 7 : Q — Q be measurable on (§,.%). Each probability
measure 4 on . with u(T71(A)) = u(A) for all A € .7 is called invariant with
respect to T. If T' is even ergodic on (2, .#, 1), then also u is called ergodic.
The set of all invariant probability measures with respect to 17" is denoted by

M.

6.13 Lemma. .#Zt1 is convez.
6.14 Proposition. Any two distinct ergodic measures are singular.

6.15 Theorem. The ergodic measures are exactly the extremal points of the
conver set M.

6.16 Corollary. IfT possesses exactly one invariant probability measure, then
this measure is ergodic.
6.4 Application to Markov chains

6.17 Definition. A recurrent state x € S is called positive-recurrent if
E,[Tz] < oo, otherwise it is called null-recurrent.
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6.18 Theorem. Suppose x € S is positive-recurrent and set

Ex TI__l - OO— T n—Y, Lz n
ulfy}) = [Znﬁj[&xn ) _ S P o=y Te>n)

y € S.

Then p is an invariant initial distribution.

6.19 Theorem. An irreducible Markov chain has at most one invariant initial
distribution p. If it exists, it satisfies u({y}) > 0 for all y € S and the Markov
chain is ergodic under p.

6.20 Corollary. If (X,, n > 0) is an irreducible Markov chain with some
positive-recurrent state x, then it is an ergodic process under the invariant initial
distribution u from Theorem 6.18.

6.21 Theorem. If an irreducible Markov chain (X, n > 0) has an invariant
wnatial distribution w, then it is ergodic, all its states are positive-recurrent and

p({y}) = 1/ Ey[Ty], y € S, holds.

7 Weak convergence

7.1 Fundamental properties

Throughout (S,Bg) denotes a metric space with Borel o-algebra. The space of
all bounded continuous and real-valued functions on S is denoted by Cjy(.S).

7.1 Definition. Probability measures P,, converge weakly (schwach) to a pro-
bability measure P on (S,Bg) if

Ve Cy(S) lim/deP’n:/deP’

holds, notation P, 2 P (S,%Bs)-valued random variables X,, converge in

distribution (or in law, in Verteilung) to some random variable X if PXn 25 pX
holds, i.e.

Ve Cy(S): lim E[f(X,)] = E[f(X)].
Notation X, i) X or X, i> PX.

7.2 Proposition. For (S,Bg)-valued random variables d(X,,, X) 5o (in pro-
bability) implies Xy, 4 x.

7.3 Theorem (Portmanteau). For probability measures (Pr)nen, P on (S,Bg)
the following are equivalent:

(a) P, = P;
(b) VU C S open: liminf, oo P,(U) > P
(¢) VF C S closed: limsup,_,. Pn(F) < P(F);
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(d) VA € Bg with P(OA) =0 : limy_ye0 Pu(A4) = P(A).

7.4 Theorem (Continuous mapping). If g : S — T is continuous, T another
metric space, then: Xy, 4 X = 9(Xn) LN g9(X).

7.5 Proposition. P, = P is already valid if [ fdP, — [ fdP holds for all
bounded, Lipschitz-continuous functions f.

7.6 Lemma. (Slutsky) We have for (S, B;)-valued random variables (X,,), (Yy,)

X, %X, d(X,Y,) S5 0=Y, S X

7.7 Corollary. If real-valued random wvariables satisfy Y, 4 a, a € R, and
X, 4, X, then (X, Yn) 4, (X, a), in particular X,,Y,, 4, aX, X,+Y, 4 X ta.
7.2 Tightness

7.8 Definition. A family (P;);c; of probability measures on (S,Bg) is called
(weakly) relatively compact if each sequence (P;, )x>1 has a weakly convergent

subsequence. The family (IP;);c; is (uniformly) tight (straff) if for any ¢ > 0
there is a compact set K, C S such that P;(K.) > 1—¢ for all i € I.

7.9 Theorem. Any relatively compact family of probability measures on a se-
parable metric space is tight.

7.10 Theorem (Prohorov). Any tight family of probability measures on a Po-
lish space is relatively compact.

7.11 Corollary (Prohorov). On a Polish space a family of probability measures
is relatively compact if and only if it is tight.
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