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Abstract In this chapter we discuss different aspects of statistical estimation
for Lévy-based processes based on low-frequency observations. In particular,
we consider the estimation of the Lévy triplet and the Blumenthal-Getoor
index in Lévy and time-changed Lévy models. Moreover, a calibration prob-
lem in exponential Lévy models based on option data is studied. The com-
mon feature of all these statistical problems is that they can be conveniently
formulated in the Fourier domain. We introduce a general spectral estima-
tion/calibration approach that can be applied to these and many other statis-
tical problems related to Lévy processes. On the theoretical side, we provide a
comprehensive convergence analysis of the proposed algorithms and address
each time the question of optimality.
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1 Introduction

Statistics for jump processes and especially Lévy processes has been attract-
ing a lot of attention recently. This is on one hand due to the more and more
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refined understanding of these processes in probability theory and to the
mathematical challenges posed by basic inference questions from mathemat-
ical statistics. On the other hand, jump models are very popular in diverse
applications, notably in physics, biology, economics and finance. This is not
surprising if one takes into account their simplicity and analytic tractability
as well as the ability to reproduce many features observed in empirical data.

The problem of nonparametric statistical inference for jump processes has
a long history with early works by Rubin and Tucker [51] and Basawa and
Brockwell [6]. Currently, the field is developing quickly and there are two
major strands of recent literature dealing with statistical inference for Lévy
processes or more generally for semi-martingale models. The first type of lit-
erature considers the so-called high-frequency or infill asymptotics, where the
corresponding estimates are studied under the assumption that the distance
between observation times tends to zero, see Aı̈t-Sahalia and Jacod [3] for
a recent review. In the second strand of literature the frequency of observa-
tions is assumed to be fixed or to converge slowly to infinity (the so-called
low-frequency setup) and the asymptotic analysis is performed under the
premiss that the observational horizon tends to infinity. Clearly, none of the
above asymptotic hypotheses can be perfectly realised on real data and they
can only serve as a convenient approximation, as in practice the frequency of
observations and the horizon are always finite. Here, we concentrate on the
low-frequency setting which is significantly harder since the statistician has
no access to the underlying continuous-time dynamics. Moreover, we shall
adopt a general nonparametric point of view where the quantities of inter-
est like the jump measure are only assumed to possess certain regularity
properties, but no finite-dimensional parameter model is imposed. This more
agnostic point of view is often essential to exclude or at least reduce errors
due to model misspecification, which are not transparent within a parametric
statistical analysis.

If a Lévy process is only observed at discrete time points, we do not know
how many jumps have occurred between two observations and to what ex-
tent the jumps are superposed by regular continuous dynamics of a diffusive
component. In this case we therefore observe the jumps only indirectly and
it turns out that already in simple cases estimating the distribution of jump
sizes is a complex problem which has all the difficulties of a nonparametric
deconvolution problem and is in addition inherently nonlinear. Another case
of major interest is when the underlying jump process is not observed, but
only derived data are available. This is most pronounced in financial deriva-
tive products on assets or term structures, where the underlying risk-neutral
pricing model is often supposed to allow for jumps and only information
about the derived product (e.g. an option) is at our disposal. This calibra-
tion approach leads to a typical statistical inverse problem, which is nonlinear
and ill-posed in the sense that additional regularisation is necessary and non-
parametric convergence rates are much slower. Due to the special structure of
Lévy processes the direct application of standard likelihood based approaches
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is not possible, since most Lévy processes do not have densities in closed form.
In view of the well-known Lévy-Khintchine formula, a natural approach to-
wards statistical inference for Lévy processes is a spectral method working
with the characteristic function in the Fourier domain.

Such a spectral approach for nonparametric estimation was first introduced
in Belomestny and Reiß [10] in the context of non-parametric calibration of
the Lévy triplet to option prices, but in fact it is very generally applicable.
In particular, it has been successfully adopted to the case of low-frequency
observations. Not aiming at a full literature review, let us point out the works
by Gugushvili [34] and by Figueroa-Lopez and Houdré [32] on nonparametric
jump density estimation from low and high-frequency observations, respec-
tively. The surprisingly difficult problem of adaptive nonparametric estima-
tion (i.e., a completely data-driven choice of tuning parameters) has been ad-
dressed by Kappus [42] for low-frequency observations, building on the high-
frequency model selection approach by Comte and Genon-Catalot [20]. Con-
fidence intervals and bands for the Lévy triplet involving a jump density have
been constructed by Figueroa-Lopez [31] and Söhl [54] for high-frequency and
option price observations, respectively. The power of the spectral approach
for both, high and low frequency observations, has been demonstrated for
the important problem of nonparametric testing by Reiß [50], which shows
also the close relationship with the so realized Laplace transform approach
by Todorov and Tauchen [57] for high-frequency observations. The natural
question whether the (generalised) distribution function of the Lévy measure
allows for a Donsker-type theorem has been considered by Nickl and Reiß
[49], using advanced theory for Fourier multipliers and smoothed empirical
processes. In Trabs [58] semiparametric efficiency for this estimation is es-
tablished. The spectral estimation method has found several applications in
finance, see e.g. Belomestny and Schoenmakers [11] for Libor model calibra-
tion.

In the next section we briefly review the main facts about Lévy and more
general jump processes that will be fundamental for the statistical method-
ology developed subsequently. For the spectral approach the empirical char-
acteristic function, viewed as a process in the frequency argument, is a fun-
damental object and in Section 3 we present its main theory, in particular
uniform convergence results based on exponential inequalities and entropy
arguments. The basic estimation method for the Lévy triplet based on low-
frequency observations is presented in Section 4. In particular, the error de-
composition and the upcoming bias-variance dilemma are discussed in detail
and minimax convergence rates are derived. Section 5 then introduces the
methodology to establish lower bounds on the error and demonstrates that
the spectral estimators are indeed rate-optimal. While the estimator in Sec-
tion 4 was designed for finite jump intensity only, Section 6 reveals its quite
natural behaviour under general jump measures. Moreover, an approach for
general Lévy triplets which results in the estimation of the Lévy measure in
a weak (negative Sobolev) norm is proposed. Following these ideas further,
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an estimator of the Blumenthal-Getoor index, which measures the (often in-
finite) activity of small jumps, is constructed and analysed in Section 7. Then
in Section 8 the spectral estimation method is extended to the case of time-
changed Lévy processes, often used in applications. The extension to option
data is presented in Section 9, which also reports results from real data (DAX
options). Finally, Section 10 points out further directions of research where
still many open questions exist.

2 Lévy and related processes

In this section we gather some basic results on Lévy and related processes,
most of which can be found e.g. in Sato [52].

2.1 Lévy processes

Definition 2.1. An Rd-valued process X = (Xt , t ≥ 0) defined on a filtered
probability space (Ω ,F,(Ft)t≥0,P) is called a Lévy process if it is (Ft)-adapted
and has the following properties:

(a) X is continuous in probability, i.e., for fixed u > 0, P(|Xt −Xu| > ε)→ 0
holds as t→ u for all ε > 0.

(b) P(X0 = 0) = 1.
(c) For 0≤ s≤ t, Xt −Xs is equal in distribution to Xt−s.
(d) For 0≤ s≤ t, Xt −Xs is independent of Fs.

Definition 2.2. A Lévy measure on Rd is a σ -finite measure ν on Rd such
that ∫

Rd
(1∧|x|2)ν(dx) < ∞. (2.1)

Sometimes we shall assume ν({0}) = 0 (no jumps of size zero), but usually
the integrands for ν will vanish at zero anyway. Fundamental for the under-
standing of Lévy processes and in particular for their statistical inference is
the celebrated Lévy-Khintchine formula.

Proposition 2.3 (Lévy-Khintchine Formula). Let X be a Lévy process
taking values in Rd . Then for each t ≥ 0 the law of Xt is infinitely divisible
and its characteristic function admits the representation

E[ei〈u,Xt 〉] = etψ(u), u ∈ Rd , (2.2)

where the characteristic exponent ψ(u) is given by the Lévy-Khintchine for-
mula
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ψ(u) = i〈u,γ〉− 1
2
〈u,σ2u〉+

∫
Rd

(ei〈x,u〉−1−i〈x,u〉1(|x| ≤ 1))ν(dx) (2.3)

where γ ∈ Rd , σ2 ∈ Rd×d is a positive semi-definite matrix, and ν is a Lévy
measure on Rd .

The quantity (γ,σ2,ν) is called the characteristic triplet of X .

Remark 2.4. Under some additional assumptions on ν the Lévy-Khintchine
formula (2.3) has a simpler form.

(a) If
∫
Rd (1∧|x|)ν(dx) < ∞ holds, then (2.3) reduces to

ψ(u) = t
(
i〈u,γ0〉−

1
2
〈u,σ2u〉+

∫
Rd

(ei〈x,u〉−1)ν(dx)

)
(2.4)

with γ0 = γ−
∫
Rd x1(|x| ≤ 1)ν(dx).

(b) If
∫
Rd |x|1(|x|> 1)ν(dx) < ∞ holds, we can rewrite (2.3) in the form

ψ(u) =

(
i〈u,γ1〉−

1
2
〈u,σ2u〉+

∫
Rd

(ei〈x,u〉−1−i〈x,u〉)ν(dx)

)
with γ1 = γ +

∫
Rd x1(|x|> 1)ν(dx) and we have E[Xt ] = γ1t.

(c) If d = 1 and
∫
R x2ν(dx) < ∞ holds, then the so-called Kolmogorov repre-

sentation holds:

ψ(u) = iuγ̃− σ2u2

2
+
∫
R

eixu−1−ixu
x2 ν̃(dx)

= iuγ̃ +
∫
R

eixu−1−ixu
x2 νσ (dx) (2.5)

with ν̃(dx) = x2ν(dx) and νσ (dx) = ν̃(dx) + σ2δ0(dx), using at x = 0 the
continuous extension of the integrand to −u2/2 in the second representa-
tion. Here the first two moments take a particularly nice form: E[Xt ] = γ̃t,
Var(Xt) = (σ2 + ν̃(R))t = νσ (R)t.

2.2 Affine processes

The class of affine processes extends the class of Lévy processes and encom-
passes many interesting processes, e.g. used in finance. It is also defined via
properties of the characteristic function.

Definition 2.5. The process (Xt , t ≥ 0) is an affine process if it is a stochasti-
cally continuous, time-homogenous Markov process with state space D ⊆ Rd,
such that the conditional characteristic function of Xs given X0 is an expo-
nentially affine function of the initial state X0:
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ϕ(u|s,x) := E
[

ei〈u,Xs〉
∣∣∣X0 = x

]
= eψ0(u,s)+〈x,ψ1(u,s)〉, u ∈ Rd , (2.6)

where ψ0 and ψ1 take values in C and Cd , respectively.

The affine process Xt is called regular, if the derivatives

F0(u) :=
∂ψ0(u,s)

∂ s

∣∣∣∣
s=0

, F1(u) :=
∂ψ1(u,s)

∂ s

∣∣∣∣
s=0

(2.7)

exist and are continuous at u = 0. As was recently shown by Keller-Ressel et
al. [44], any affine process is, in fact, regular. The following theorem provides
the characterization of affine processes and is proved in Duffie et al. [25].

Theorem 2.6. If X is an affine process, then the complex valued functions
ψ0 and ψ1 satisfy the (generalized) Riccati equations

∂ψ0(u,s)
∂ s

= F0(ψ1(u,s)), ψ0(u,0) = 0, (2.8)

∂ψ1(u,s)
∂ s

= F1(ψ1(u,s)), ψ1(u,0) = u, (2.9)

where

F0(z) = −1
2
〈z,σ0 z〉+i〈z,γ0〉+

∫
D\{0}

(
ei〈z,u〉−1−i〈z,u〉1(|u| ≤ 1)

)
ν0(du),

F1, j(z) = −1
2
〈z,σ j z〉+i〈z,γ j〉+

∫
D\{0}

(
ei〈z,u〉−1−i〈z,u〉1(|u| ≤ 1)

)
ν j(du)

for j = 1, . . . ,d. Here σ2
j ∈ Rd×d , γ j ∈ Rd , and ν j is a Lévy measure on Rd .

Under some admissibility conditions a regular affine process X is a Feller
process in the domain D = Rm ×Rd−m

+ (see Duffie et al. [26]), where the
function F0 corresponds to the state-independent part of the infinitesimal
generator and F1 is related to the state-dependent one.

Spectral estimation for affine processes is treated by Belomestny [8] in
specific cases, but the general methodology is far from understood, see the
discussion in Section 10 below.

2.3 Time-changed Lévy processes

Let Xt be a d-dimensional Lévy process with characteristic exponent ψ(u). Let
furthermore t → T (t), t ≥ 0 be an increasing right-continuous process with
left limits such that T (0) = 0 and for each fixed t, the random variable T (t)
is a stopping time with respect to the filtration (Ft)t≥0. Suppose furthermore
that T (t) is finite P-a.s. for all t ≥ 0 and that T (t)→ ∞ as t→ ∞. Then the
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family (T (t))t≥0 defines a random time change. The d-dimensional process
Yt := XT (t) is called time-changed Lévy process.

We compute the characteristic function of Yt in the case of independent
processes (T (t)) and (Xt) as

ϕY (u|t) = E
[
ei〈u,XT (t)〉

]
= Lt(−ψ(u)), (2.10)

where Lt is the Laplace transform of T (t):

Lt(λ ) = E
[
e−λT (t)

]
.

As we shall see, the formula (2.10) plays a crucial role in statistical inference
for time-changed processes based on low-frequency data.

Let us look at some examples. If T (t) is a Lévy process, then Yt is another
Lévy process. A more general situation is when T (t) is modeled by a non-
decreasing semimartingale

T (t) = bt +
∫ t

0

∫
∞

0
yρ(dy,ds),

where b is a drift and ρ is the counting measure of jumps in the time change.
Often, the case bt = 0 is considered with locally deterministic time changes

T (t) =
∫ t

0
Zs− ds, (2.11)

where Z is a non-negative jump process (instantaneous activity rate). When
Xt is Brownian motion and ρ is proportional to the instantaneous variance
rate of the Brownian motion, then Yt is a pure jump Lévy process with the
Lévy measure proportional to ρ.

3 Empirical characteristic functions and processes

In this section we consider arbitrary i.i.d. random variables (Xk)k>1 and study
their empirical characteristic function ϕn(u) as a process in u∈Rd . Because of
their independent and identically distributed increments, we shall later apply
the results to the observations of Lévy processes. The study of the empirical
characteristic function as a process in the frequency variable has attracted
considerable interest in the 1970s and 80s when Feuerverger and Mureika
[29] have shown its usefulness for statistical questions and then the devel-
oping general theory of empirical processes was used to understand better
which kind of uniform convergence on the real line can hold for the empirical
characteristic process, see e.g. Csörgö [23]. Here we shall prove a basic uni-
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formity result in detail and then present a general result which is most useful
for our purposes.

Definition 3.1. The empirical characteristic function of i.i.d. Rd-valued ran-
dom variables X1, . . . ,Xn is given by

ϕn(u) =
1
n

n

∑
k=1

ei〈u,Xk〉, u ∈ Rd ,

and the empirical characteristic process is

u 7→ Cn(u) =
√

n(ϕn(u)−ϕ(u)) with ϕ(u) = E[ei〈u,X1〉].

For complex-valued random variables Zi we define CovC(Z1,Z2) =E[Z1Z̄2]−
E[Z1]E[Z2] and VarC(Z1) = E[|Z1 − E[Z1]|2]. Standard calculations in the
scalar case d = 1 yield E[ϕn(u)] = ϕ(u), CovC(ϕn(u),ϕn(v)) = 1

n (ϕ(u− v)−
ϕ(u)ϕ(−v)), VarC(ϕn(u)) = 1

n (1−|ϕ(u)|2)6 1
n . The standard multivariate cen-

tral limit theorem therefore shows the convergence of the empirical charac-
teristic process

Cn
f idi−−→ Γ

(fidi denoting weak convergence of the finite-dimensional distributions) with a
centred complex-valued Gaussian process Γ (u) satisfying CovC(Γ (u),Γ (v)) =
ϕ(u− v)−ϕ(u)ϕ(−v).

For our purposes we shall need a much stronger result, which is in partic-
ular uniform in the frequency u ∈ Rd . This will be achieved by exponential
inequalities and we start with a straight-forward, but slightly sub-optimal
result using Hoeffding’s inequality [35].

Proposition 3.2 (Hoeffding’s inequality (1963)). Suppose the real-
valued and centred random variables Y1, . . . ,Yn are i.i.d. and set Sn = ∑

n
k=1 Yk.

If there exists a deterministic number R with |Y1|6 R almost surely, then

∀κ > 0 : P(|Sn|> κ) 6 2exp
(
− κ2

2nR2

)
Proposition 3.3. For i.i.d. random vectors (Xk)k>1 in Rd with Xk ∈ L1 and
any constant R > 8

√
d the empirical characteristic process satisfies uniformly

in n ∈ N and K > 1

P
(

max
u∈[−K,K]d

|Cn(u)|> R
√

log(nK2)
)
≤C(

√
nK)(64d−R2)/(64d+64)

for some constant C depending on d and E[|X1|] only.

Proof. We consider the real part first and set Sn(u) = ∑
n
k=1(cos(〈Xk,u〉)−

E[cos(〈Xk,u〉)]). Then Sn(u) is for each u ∈ Rd a sum of i.i.d. centred random
variables, bounded by 2, and Hoeffding’s inequality yields
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P(|Sn(u)|> κ/2) 6 2exp
(
− (κ/2)2

8n

)
.

We consider for some J = J(n) the (2J)d equidistant grid points u j = jK/J,
j ∈ Gd

J := {−J + 1,−J + 2, . . . ,0,1, . . . ,J}d on the cube [−K,K]d and obtain

P
(

max
j∈Gd

J

|Sn(u j)|> κ/2
)
6 ∑

j∈Gd
J

2exp
(
− (κ/2)2

8n

)
= 2(2J)d exp

(
− (κ/2)2

8n

)
.

For arbitrary u,v ∈ Rd we have

|cos(〈Xk,u〉)− cos(〈Xk,v〉)|6 |Xk||u− v|.

From E[|Xk|] < ∞ we infer |Sn(u)−Sn(v)| 6 ∑
n
k=1(|Xk|+E[|Xk|])|u− v| and be-

cause of maxu∈[−K,K]d min j|u−u j|6
√

dK/J

P
(

max
u∈[−K,K]d

|Sn(u)|> κ

)
6 P

(
max
j∈Gd

J

|Sn(u j)|+
n

∑
k=1

(|Xk|+E[|Xk|])
√

dKJ−1 > κ

)
.

By Markov’s inequality we obtain

P
(

max
u∈[−K,K]d

|Sn(u)|> κ

)
6 P

(
max
j∈Gd

J

|Sn(u j)|> κ/2
)

+P
( n

∑
k=1

(|Xk|+E[|Xk|])
√

dKJ−1 > κ/2
)

6 2(2J)d exp
(
− (κ/2)2

8n

)
+
√

dKJ−1(κ/2)−1
n

∑
k=1

E[|Xk|+E[|Xk|]]

= 2d+1Jd exp
(
− κ2

32n

)
+ 4
√

dnKJ−1
κ
−1E[|Xk|].

The choice J = (nK/κ)1/(d+1) exp(κ2/32(d + 1)n) yields the order

P
(

max
u∈[−K,K]d

|Sn(u)|> κ

)
≤C(nK/κ)d/(d+1) exp

(
− κ2

32(d + 1)n

)
with C = 2d+1 + 4

√
dE(|X1|). For R > 8

√
d and nK2→ ∞ we arrive at

P
(

max
u∈[−K,K]

|Sn(u)|> R
2

√
n log(nK2)

)
≤C(

√
nK)d/(d+1) exp

(
− R2 log(nK2)

128(d + 1)

)
≤C(

√
nK)d/(d+1)−R2/(64(d+1)).

An analogous bound for the imaginary part of ϕn then yields the result due
to {|ϕn−ϕ|> R} ⊆ {|Re(ϕn−ϕ)|> R/2}∪{|Im(ϕn−ϕ)|> R/2}. ut
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The result implies that the empirical characteristic function converges uni-
formly on compact intervals in probability (or even in Lp, p > 1) to the true
characteristic function with rate (log(n)/n)1/2. Using the theory of empirical
processes, in particular a bracketing entropy argument, it is possible to im-
prove the rate to 1/n1/2 and to obtain also a bound for any derivative and on
the entire real axis.

Based on the proof in Neumann and Reiß [48], the following theorem is
derived in Kappus and Reiß [42].

Theorem 3.4. Let X be a one-dimensional Lévy process with finite (2k + γ)-

th moment and choose w(u) = (log(e+ | u |))−1/2−δ for some constants γ,δ > 0
and k ∈ N0. Then for the k-th derivative C

(k)
n,∆ of the characteristic process

Cn,∆ (u) =
√

n
(1

n

n

∑
k=1

eiu(Xk∆−X(k−1)∆ )−E[eiuX∆ ]
)
, u ∈ R, ∆ > 0,

we have

sup
n>1,∆61

∆
−(k∧1)/2E

[
sup
u∈R
|C (k)

n,∆ (u)|w(u)

]
< ∞.

From this bound in the mean it is nowadays standard to derive more
powerful uniform concentration results of the empirical characteristic process,
using Talagrand’s concentration inequality, see the nice exposition by Massart
and Picard [47] or Chapter “Adaptive Estimation for Lévy processes” by F.
Comte and V. Genon-Catalot in this book.

4 Spectral estimation of the Lévy triplet in the finite
intensity case

4.1 Basic ideas

Since the characteristics of a Lévy process X appear linearly in the character-
istic exponent of X , it is reasonable to work in the Fourier domain to estimate
them.

The main idea of the spectral approach can be well illustrated in the case
of one-dimensional Lévy processes with finite Lévy measures. We have due
to the Lévy-Khintchine formula for the characteristic exponent of X :

ψ(u) = iuγ− 1
2

u2
σ

2−λ +F [ν ](u), (4.1)

where λ =
∫

ν(dx)<∞ is the jump intensity and F [ν ] =
∫
R eiuxν(dx) stands for

the Fourier transform of ν . If ν is absolutely continuous with an absolutely
integrable density, then by the Riemann-Lebesgue lemma (see [43], p. 43)
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F [ν ](u)→ 0 as |u| → ∞, and consequently ψ(u) can be viewed, at least for
large |u|, as a second order polynomial with the coefficients (−λ ,iγ,−σ2/2).
So, the parametric part of the Lévy triplet can be approximated via the
solution of the following optimisation problem

inf
(σ2,γ,λ )

∫
{|u|>A}

w(u)
∣∣ψ(u)−iuγ +

1
2

u2
σ

2 + λ
∣∣2 du

for some nonnegative weight function w and a large A > 0.
Of course, the characteristic exponent ψ needs to be estimated from the

data. This can be conveniently done via a plug-in estimator based on the
empirical characteristic function. Let ∆ > 0 be fixed and let X0,X∆ , . . . ,Xn∆ be
n + 1 equidistant observations of the Lévy process X . Define

ϕn(u) :=
1
n

n

∑
j=1

eiu(X j∆−X( j−1)∆ ),

and set
ψn(u) = ∆

−1 logϕn(u),

where the branch of the complex logarithm is taken in such a way that ψn is
continuous on (−x0,n,x0,n) with ψn(0) = 0 and x0,n being the first zero of ϕn.

In fact, since ϕ does not vanish on R, we have x0,n
a.s.→ ∞ (see [61], p. 156).

Figure 1 shows the plot of Re(ψ(u)) and its polynomial approximation
−u2σ2/2−λ in the so called Merton model, where the process is a compound
Poisson process plus Brownian motion. More specifically, the triplet is ν(dx) =

10√
2π

e−x2/2 dx, γ = 0 and σ = 1. The figure shows also 10 typical estimates ψn

in the case of n = 500 and ∆ = 0.1. As can be seen, the deviation of ψn from
ψ becomes larger as u increases. The reason for this is that the variance of
ψn increases exponentially in u if σ > 0, since |ϕ(u)| decreases exponentially
with u and logϕn− logϕ ≈ (ϕ−ϕn)/ϕ. This means that we should restrict the
range of the frequencies u used to estimate (σ2,γ,λ ). The latter task can be
accomplished by using weight functions supported on [0,Un], with a sequence
Un,→∞, n→∞. These weight functions naturally appear as the solution of a
certain optimisation problem. Let

w̃Un(u) := (1/Un) w̃(u/Un) ,

where w̃(u) is a continuous function, supported on the interval [0,1] with
w̃(u) > 0 on (0,1). Consider the optimisation problem

(σ
2
n ,λn) := argmin

(σ2,λ )

∫
∞

0
w̃Un(u)(Reψn(u)+ σ

2u2/2 + λ )2 du. (4.2)

By straight-forward calculations, the solution σ2
n of (4.2) is found to be
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− u2σ2 2 − λ

Fig. 1 The real part of the characteristic exponent ψ(u) (black solid line) together
with 10 realisations of its estimate ψn (grey dashed line) and the polynomial −u2σ2/2−
λ (red solid line) for the compound Poisson process with normally distributed jump
sizes.

σ
2
n =

∫
∞

0
wUn

σ (u)Reψn(u)du, (4.3)

where

wUn
σ (u) := w̃Un(u)

2
[(∫

∞

0 w̃Un(s) ds
)

u2−
∫

∞

0 w̃Un(s)s2 ds
]

(
∫

∞

0 w̃Un(s)s2 ds)2−
∫

∞

0 w̃Un(s)s4 ds •
∫

∞

0 w̃Un(s) ds.
(4.4)

As a result wUn
σ (u) satisfies the rather natural conditions∫ Un

0
(−u2/2)wUn

σ (u)du = 1,
∫ Un

0
wUn

σ (u)du = 0. (4.5)

Moreover, wUn
σ (u) = U−3

n w1
σ (u/Un). Note that w1

σ is supported on [0,1] and

bounded since
(∫ 1

0 w̃(s)s2 ds
)2
−
∫ 1

0 w̃(s)s4 ds •
∫ 1

0 w̃(s)ds> 0 due to the Cauchy-

Schwarz inequality. Analogously,

λn =
∫

∞

0
wUn

λ
(u)Reψn(u)du (4.6)
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holds where wUn
λ

(u) = U−1
n w1

λ
(u/Un) with

w1
λ
(u) := w̃(u)

(∫ 1
0 w̃(s)s2 ds

)
u2−

∫ 1
0 w̃(s)s4 ds∫ 1

0 w̃(s)s4 ds •
∫ 1

0 w̃(s) ds−
(∫ 1

0 w̃(s)s2 ds
)2 . (4.7)

The weight function wUn
λ

obviously fulfills∫ Un

0
(−1)wUn

λ
(u)du = 1,

∫ Un

0
(−u2/2)wUn

λ
(u)du = 0.

By considering the optimisation problem

γn := argmin
γ

∫
∞

0
w̃Un(u)(Imψn(u)− γu)2 du, (4.8)

we arrive at

γn =
∫

∞

0
wUn

γ (u) Imψn(u)du, (4.9)

where wUn
γ (u) = U−2

n w1
γ (u/Un) fulfills

∫ Un

0
uwUn

γ (u)du = 1.

All functions w1
σ , w1

γ and w1
λ

are bounded and supported on [0,1]. Assume
now that the Lévy measure ν possesses a density, which we denote, with a
slight abuse of notation, by ν(x). Then we define the estimate for ν as a
regularised inverse Fourier transform of the remainder:

νn(x) := F−1
[(

ψn(•)+ σ2
n

2 (•)2−iγn(•)+ λn

)
wν(•/Un)

]
(x), x ∈ R, (4.10)

where wν is a weight function supported on [−1,1]. Note that
∫
R νn(x)dx =

λn, if wν(0) = 1. Due to the estimation error and as a result of the cut-
off procedure in (4.10), the estimate νn can take negative values and needs
correcting. A corrected version ν+

n can be constructed via finding a density
which is closest to νn, i.e., we need to solve the optimisation problem

‖ν+
n −νn‖2

L2(R)→min, inf
x∈R

ν
+
n ≥ 0

subject to ∫
ν

+
n (x)dx =

∫
νn(x)dx = λn.

It turns out that the above optimisation problem can be solved explicitly:
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Fig. 2 The estimated Lévy densities ν1000 for four different cut-off parameters in the
Merton model.

ν
+
n (x;ξ ) = max{0,νn(x)−ξ},

where ξ is chosen to satisfy the equation
∫

ν+
n (x;ξ )dx = λn.

Let us analyse the performance of the estimator νn from (4.10) in the
Merton model with the same parameters as before (see Figure 1). Fig-
ure 2 shows 20 estimated densities ν1000 (grey) together with the true

Lévy density ν(x) = 10√
2π

e−x2/2 (red) for four different cut-off parameters

U ∈ {2.5,3.5,4.5,5}. As one can see, the larger U , the higher the variance
of νn is. On the other hand, the approximation error or bias in estimating ν

decreases with U (compare with Figure 1) and the optimal value of U should
balance the bias and the variance (see Section 4.2 for the choice of U based
on asymptotic considerations).
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4.2 Error decomposition

For the sake of clarity we focus our analysis on the estimate σn. First note
that by (4.3) and (4.5) the difference σ2

n −σ2 can be decomposed as follows:

σ
2
n −σ

2 =
∫ Un

0
wUn

σ (u)Re(ψn(u)−ψ(u)) du +
∫ Un

0
wUn

σ (u)Reψ(u)du−σ
2

=
∫ Un

0
wUn

σ (u)Re(ψn(u)−ψ(u)) du︸ ︷︷ ︸
Statistical error

+
∫ Un

0
wUn

σ (u)F [ν ](u)du︸ ︷︷ ︸
Bias

. (4.11)

While the first term in (4.11) is connected to the statistical error due to the
use of ψn instead of ψ, the second one reflects the misspecification error (bias)
due to the approximation of Reψ(u) by −σ2u2/2−λ . The statistical error
can be further decomposed into the first order (linear) term and a remainder:∫ Un

0
wUn

σ (u)Re
(
ψn(u)−ψ(u)

)
du =

∫ Un

0
wUn

σ (u)Re
(
(ϕn(u)−ϕ(u))/ϕ(u)

)
du︸ ︷︷ ︸

Linear term

+Rn.

In fact, the remainder Rn contains higher order terms of the Taylor expansion
of log(1 + z).

We shall use throughout the notation A . B if A is bounded by a constant
multiple of B, independently of the parameters involved, that is, in the Landau
notation A = O(B). Equally A & B means B . A and A ∼ B stands for A . B
and A & B simultaneously.

4.2.1 Bias

Let us first study the bias term in (4.11). Its order obviously depends on
the decay of the Fourier transform F [ν ](u), which in turn is related to the
smoothness of ν (see [43]). Suppose that the s-fold derivative ν(s) of ν satisfies
‖ν(s)‖L∞(R) 6C for some C > 0, then by the Plancherel identity∣∣∣∣∫ ∞

0
wUn

σ (u)F [ν ](u)du
∣∣∣∣ = 2π

∣∣∣∣∫ ∞

−∞

ν
(s)(x)F−1[wUn

σ (•)/(i•)s](x)dx
∣∣∣∣

≤ U−(s+3)
n ‖ν(s)‖∞‖F (w1

σ (u)/us)‖L1 .

So ∣∣∣∣∫ ∞

0
wUn

σ (u)F [ν ](u)du
∣∣∣∣.U−(s+3)

n , (4.12)
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provided ‖F (w1
σ (•)/•s)‖L1 < ∞.

4.2.2 Linear term

The linear term

Ln :=
∫ Un

0
wUn

σ (u)Re
(

ϕn(u)−ϕ(u)

ϕ(u)

)
du

can be analysed using the covariance structure of ϕn (see Section 3). We have
E [Ln] = 0 and

Var [Ln] ≤
∫ Un

0

∫ Un

0
wUn

σ (u)wUn
σ (v) CovC

(
ϕn(u)/ϕ(u),ϕn(v)/ϕ(v)

)
dudv

=
1
n

∫ Un

0

∫ Un

0
wUn

σ (u)wUn
σ (v)ϕ

−1(u)ϕ
−1(−v)(ϕ(u− v)−ϕ(u)ϕ(−v))dudv

≤ 2
n

(∫ Un

0

∣∣wUn
σ (u)/ϕ(u)

∣∣ du
)2

=
2

nU4
n

(∫ 1

0

∣∣w1
σ (u)/ϕ(uUn)

∣∣ du
)2

=: ε
2
1,n (4.13)

Hence, Markov’s inequality yields

P(|Ln|> Aε1,n)≤ A−2. (4.14)

4.2.3 Remainder term

Introduce the good event

Gn :=
{
‖(ϕn−ϕ)/ϕ‖Un

≤ 1/2
}

with ‖ f‖Un := sup
u∈[−Un,Un]

| f (u)|.

Then the simple inequality | log(1 + z)− z| ≤ 2|z|2 for |z|< 1/2 yields on Gn

ψn(u)−ψ(u) =
1
∆

{
ϕn(u)−ϕ(u)

ϕ(u)
+ O

(∣∣∣∣ϕn(u)−ϕ(u)

ϕ(u)

∣∣∣∣2
)}

. (4.15)

Let us estimate the probability of the complement G c
n . This can be conve-

niently done using Proposition 3.3:
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P(G c
n ) ≤ P

(√
n/ log(nU2

n )‖ϕn−ϕ‖Un
>

1
2

√
n/ log(nU2

n ) inf
u∈[−Un,Un]

|ϕ(u)|
)

= P
(√

n/ log(nU2
n )‖ϕn−ϕ‖Un

> κn

)
= O

(
(
√

nUn)(64−κn)/128
)
,

provided Un is chosen in such a way that

κn :=
1
2

√
n/ log(nU2

n ) inf
u∈[−Un,Un]

|ϕ(u)|> 64.

The latter condition means that Un should not increase too fast with n. In a
similar way we can bound the quadratic term in (4.15). Denote ε2,n = 1/κn
then

P
(
‖(ϕn−ϕ)/ϕ‖2

Un
> 4Aε

2
2,n

)
≤ P

(
n‖ϕn−ϕ‖2

Un
> 4A log(nU2

n )
)

= O
(

(
√

nUn)(64−4A)/128
)

(4.16)

for A > 16. Hence, we have on Gn

|Rn| . ∆
−1 ‖(ϕn−ϕ)/ϕ‖2

Un

∫ Un

0
|wUn

σ (u)|du . ∆
−1U−2

n .

4.3 Minimax upper bounds

In this section we derive the uniform (over a class of Lévy models) convergence
of the estimators σ2

n , γn, λn and νn defined in Section 4.1. First let us define
the corresponding class of Lévy processes.

Definition 4.1. For s ∈ N and R, σmax > 0 let Gs(R,σmax) denote the set of
all Lévy triplets T = (γ,σ2,ν), such that ν is s-times (weakly) differentiable
and

σ ∈ [0,σmax], |γ|, λ ∈ [0,R], ‖ν(s)‖L∞(R) 6 R.

Definition 4.2. Let {Pϑ ,ϑ ∈ Θ} be a family of probability measures on
(Ω ,F). Assume that ξn = ξn(ϑ) is a sequence of random variables, possibly
depending on ϑ , all defined on (Ω ,F). We write ξn = OP,Θ(rn) for a sequence
of positive numbers rn, if

lim
A→∞

limsup
n→∞

sup
ϑ∈Θ

Pϑ

(
|ξn(ϑ)|> Arn

)
= 0.

The main statement about the convergence of σ2
n in the case σ2 > 0 is as

follows.

Theorem 4.3. Suppose that the weight function w1
σ satisfies
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‖F (w1
σ (u)/us)‖L1 < ∞.

Choosing for some σ̄ > σmax the cut-off Un := σ̄−1(log(n)/∆)1/2, we obtain for
the risk of σ2

n the uniform convergence rate

σ
2
n −σ

2 = OP,Gs

(
(∆σ̄

2/ log(n))(s+3)/2). (4.17)

Proof. We have for n large enough

ε1,n =

√
2√

nU2
n

∫ 1

0

∣∣w1
σ (u)/ϕ(uUn)

∣∣ du

.
1√

nU2
n |ϕ(Un)|

∫ 1

0

∣∣w1
σ (u)

∣∣ du .
1√

n log(n)
nσ2/(2σ̄2)

and

ε2,n = 2
√

(1/n) log(nU2
n )

[
inf

u∈[−Un,Un]
|ϕ(u)|

]−1

.
√

(1/n) log(nU2
n ) |ϕ(Un)|−1 .

√
logn

n
nσ2/(2σ̄2).

Combining this with (4.12), (4.16) and (4.14), we get

lim
A→∞

limsup
n→∞

sup
(σ2,γ,µ)∈Gs(R,σmax)

P(σ2,γ,µ)

(
|σ2

n −σ
2|> A(∆σ̄

2/ log(n))(s+3)/2
)

= 0.

In a similar way one can derive the following minimax convergence rates for
γ, λ and ν .

Theorem 4.4. Suppose that the weight functions w1
γ and w1

λ
satisfy

‖F (w1
γ (u)/us)‖L1 < ∞, ‖F (w1

λ
(u)/us)‖L1 < ∞.

For any σ̄ > σmax we choose

Un := σ̄
−1( log(n)/∆

)1/2
. (4.18)

Then
γn− γ = OP,Gs

(
(∆σ̄

2/ log(n))(s+2)/2)
and

λn−λ = OP,Gs

(
(∆σ̄

2/ log(n))(s+1)/2).
For σ = 0 the convergence rates of γn and λn become polynomial. In this case
one can prove that

γn− γ = OP,Gs

(
(∆/n)(2s+4)/(2s+5)

)
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and
λn−λ = OP,Gs

(
(∆/n)(2s+2)/(2s+5)

)
.

An imminent statistical question is, of course, a fully data-driven choice
of the spectral cut-off value Un, independently of knowing the values of s or
σ . In practice, the very simple quasi-optimality criterion works well, while
it only allows for statistical optimality results in a Bayesian (average) sense
and may fail in a minimax sense, see Bauer and Reiß [7]. Since the level of
the stochastic error is not known a priori, it is highly non-standard to find
a provably minimax optimal selection rule for Un which has been achieved
recently by Comte and Genon-Catalot [20] for a high-frequency setting and by
Kappus [41] in a low-frequency setting, both based on a penalized empirical
risk criterion, see also chapter “Adaptive Estimation for Lévy processes” by
F. Comte and V. Genon-Catalot in this book. In practice, however, a much
smaller penalisation constant must be chosen than necessary for the proofs.

5 Rate optimality for the triplet estimation

We want to prove that our spectral estimation method achieves optimal con-
vergence rates. Conceptually, it is clear that we need a convergence rate over
a certain nonparametric class because individual rates for each parameter are
not well-defined since the parameter is then known. A general paradigm is
the minimax risk approach where the uniform risk over a class is minimised.

Definition 5.1. Consider a sequence of statistical models (i.e., measurable
spaces with a family of probability measures) (Xn,Fn,(P f ,n) f∈G ), n ∈ N, with
a family G of unknown parameters, equipped with a semi-metric d. Let (vn)n>1
be a sequence converging to zero and assume that there are estimators f̂n in
model n (i.e., f̂n : Xn → G measurable) such that d( f̂n, f ) = OP,G (vn) holds
according to Definition 4.2. Then (vn) is called optimal rate of convergence
in a minimax sense over G if also

∃ε > 0 : liminf
n→∞

inf
ϑ̂n

sup
f∈G

P f ,n(d(ϑ̂n, f ) > εvn) > 0

holds, the infimum being taken over all estimators ϑ̂n over the observations
in model n.

The limiting property in the display of the definition means that d(ϑ̂n, f )
is not oP(vn) uniformly in f ∈ G for any estimator sequence (ϑ̂n). The optimal
rates of convergence are formulated in an OP-setting, which is the right type
of convergence for the construction of confidence regions and facilitates the
proof of the upper bound. A lower bound in OP-sense, of course, yields a
fortiori also a lower bound for a pth moment risk E f ,n[d( f̂n, f )p]1/p.
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Here, we shall first explain in detail how lower bounds for the minimax risk
are proved, inspired by the exposition in Tsybakov [60]. This is in fact not
too difficult, although at first sight it seems quite untractable to deal with
the minimal risk over the set of all estimators, that is measurable functions
of the data. Afterwards we apply this technology to derive the lower bound
for estimating the scalar parameters σ2,γ,λ of the Lévy triplet.

5.1 A general recipe for lower bound proofs

Let us reduce the statement of the lower bound for estimators to a test
problem between a finite set { f1, . . . , fM} ⊆ G of parameters. Suppose for
some ε > 0

d( fk, fl) > 2εvn for all k, l = 1, . . . ,M with k 6= l.

Then any estimator ϑ̂n in model n satisfies

sup
f∈G

P f ,n(d(ϑ̂n, f ) > εvn) > max
j=1,...,M

P f j ,n(d(ϑ̂n, f j) > εvn) > max
j=1,...,M

P f j ,n(ψ
∗
n 6= j),

where ψ∗n := argmin j=1,...,M d(ϑ̂n, f j) denotes the minimum-distance test based

upon ϑ̂n. If we can show

liminf
n→∞

inf
ψn

max
j=1,...,M

P f j ,n(ψn 6= j) > 0

for all tests ψn in model n, then this implies in particular the lower bound
for estimation.

Definition 5.2. For measures µ and ν on (X ,F) we denote their total vari-
ation distance by

‖µ−ν‖TV := sup
A∈F
|µ(A)−ν(A)|.

Proposition 5.3. Let P1, . . . ,PM be probability measures on (X ,F) with den-
sities p1, . . . , pM with respect to some measure µ (e.g. take µ = ∑

M
i=1Pi). Then

any test (measurable map) ψ : X →{1, . . . ,M} between the M hypotheses sat-
isfies

max
j=1,...,M

P j(ψ 6= j) >
1
M

M

∑
j=1

P j(ψ 6= j) > 1− 1
M

∫
X

max
j=1,...,M

p j(x) µ(dx)

For M = 2 and hypotheses H0,H1 we obtain in terms of the total-variation
distance

max
j=0,1

P j(ψ 6= j) >
1
2

(
P0(ψ = 1)+P1(ψ = 0)

)
>

1
2

(
1−‖P0−P1‖TV

)
.
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Proof. The first inequality is trivial since the average is never larger than the
maximum. For the second inequality note

1
M

M

∑
j=1

P j(ψ 6= j) = 1− 1
M

M

∑
j=1

∫
1(ψ(x) = j)p j(x) µ(dx)

= 1− 1
M

∫ ( M

∑
j=1

1(ψ(x) = j)p j(x)
)

µ(dx).

Remarking that the last integrand is at most max j p j(x), we conclude

1
M

M

∑
j=1

P j(ψ 6= j) > 1− 1
M

∫
max

j=1,...,M
p j(x) µ(dx).

For M = 2 we use
∫

p1dµ = 1 and find

P0({x ∈X : p0(x) > p1(x)})−P1({x ∈X : p0(x) > p1(x)})

=
∫
{p0>p1}

(p0(x)− p1(x)) µ(dx)+
∫

X
p1(x) µ(dx)−1

=
∫
{p0>p1}

p0(x) µ(dx)+
∫
{p06p1}

p1(x) µ(dx)−1.

This shows ‖P0 − P1‖TV + 1 >
∫
X max(p0(x), p1(x)) µ(dx). Insertion in the

general case yields the result. ut

The case M = 2 yields the well-known characterisation of the total variation
distance in terms of the minimax error in testing:

inf
ψ: test

(
P0(ψ = 1)+P1(ψ = 0)

)
= 1−‖P0−P1‖TV .

A test that attains the bound on the right-hand side is the Neyman-Pearson
test ψ(x) = 1(p1(x) > p0(x)).

For statistical purposes the total variation distance is often not very use-
ful because it cannot easily be bounded for product measures, e.g. arriving
from i.i.d. observations. For this, other methods to measure the closeness
of distributions are much more convenient like Kullback-Leibler divergence
(also known as relative entropy) or the Hellinger distance, see Tsybakov [60].
For estimates in the Fourier domain, the χ2-divergence has proved to be a
powerful tool.

Definition 5.4. For probability measures P and Q on (X ,F) we denote their
χ2-divergence by

χ
2(P|Q) :=

{∫
X

( dP
dQ −1

)2dQ, if P�Q,

+∞, otherwise.
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Lemma 5.5. The χ2-divergence satisfies:

(a) ‖P−Q‖TV 6 1
2

√
χ2(P|Q);

(b) χ2(P⊗n|Q⊗n) = (1 + χ2(P|Q))n−1 6 exp
(
nχ2(P|Q)

)
−1.

Proof. For part (a) we may assume P�Q and thus obtain by the relationship
between total-variation and L1-distance as well as by the Cauchy-Schwarz or
Jensen inequality:

‖P−Q‖TV =
1
2

∫
X

∣∣∣ dP
dQ
−1
∣∣∣dQ6

1
2

(∫
X

∣∣∣ dP
dQ
−1
∣∣∣2dQ

)1/2
.

Part (b) follows from the formula

χ
2(P⊗n|Q⊗n) =

∫
X n

( dP⊗n

dQ⊗n

)2
dQ⊗n−

∫
X n

2dP⊗n +
∫

X n
1dQ⊗n

=
(∫

X

( dP
dQ

)2
dQ
)n
−1.

and the inequality (1 + x) 6 ex. ut

The proofs in the sequel will rely on testing between M = 2 hypotheses
based on a sample of i.i.d. observations. Consequently, we gather the findings
of this section for this case. Lower bound results in a global functional norm
like L2 require a high combinatorial complexity of the test problem with Mn
hypotheses and Mn→ ∞ quickly.

Theorem 5.6. Suppose that for some ε > 0 and n ∈ N there are parameters
f0,n, f1,n ∈ G such that

d( f0,n, f1,n) > 2εvn.

If the observations in model n follow the product law P f ,n = P⊗n
f under param-

eter f ∈ G and
χ

2(P f1,n |P f0,n) 6 n−1 log(1 +(2−4δ )2)

holds for some δ ∈ (0,1/2), then the following lower bound holds for all esti-
mators ϑ̂n based on observations from model n:

inf
ϑ̂n

sup
f∈G

P f ,n
(
d(ϑ̂n, f ) > εvn

)
> δ .

If the above holds for fixed ε,δ > 0 and all n ∈ N, then the optimal rate of
convergence in a minimax sense over G is not faster than vn.

Proof. We infer from the preceding lemma

‖P⊗n
f1,n
−P⊗n

f2,n
‖TV 6

1
2

√
elog(1+(2−4δ )2)−1 = 1−2δ .
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Proposition 5.3 yields the minimax lower bound for testing

max
j=0,1

P f j (ψ 6= j) >
1
2

(1− (1−2δ )) = δ ,

which by the reduction of estimation to testing problems yields the assertion.
The asymptotic rate result then holds by definition. ut

5.2 Lower bound for estimating the triplet

We now come back to the estimation problem from Section 4.1 and derive
rate optimality of the estimator.

Theorem 5.7. The rates for estimating σ2,γ and λ , respectively, among
triplets in the class Gs(R,σmax) with s,R,σmax > 0 from Theorem 4.4 are min-
imax optimal.

Proof. We need a kernel function K whose Fourier transform satisfies
FK(u) = 1 for u ∈ [−1,1]. For convenience, we require K to be a Schwartz
functions, that is K,FK ∈C∞(R) show polynomial decay of any order for the
function and its derivatives. Such functions K are called flat-top kernel and
an example is given by

FK(u) =


1, |u| ≤ 1,

exp
(
− e−1/(|u|−1)

2−|u|

)
, 1 < |u|< 2,

0, |u| ≥ 2.

Introduce Kh(x) = h−1K(h−1x) for some (bandwidth) h > 0. Suppose
(σ2,γ,ν)∈ Gs(R/2,σmax) with σ = σmax/2, γ = 0 and a Lévy density ν ∈Cs(R)
such that

∫
|x|mν(dx) < ∞ and on the other hand

ν(x) & (1 + |x|)−2m

for some m ∈ N, m > 2, e.g. take ν(x) = c(1 + |x|)−2m with a sufficiently small
c > 0.

We now perturb (σ ,ν) such that for low frequencies the characteristic
functions still coincide. For δ > 0 we set

σ
2
0 = σ

2, ν0 = ν−δK′′h ; σ
2
1 = σ

2 + 2δ , ν1 = ν .

Note that ν0 is positive when h is small enough, provided δ = o(h3) since then
as h→ 0

δ |K′′h (x)|= δh−3|K′′(x/h)|. δh−3(1 + |x|/h)−2m = o((1 + |x|)−2m) = o(ν(x))
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(uniformly over x ∈ R) follows by the polynomial decay of K′′ of any order.
Moreover, we have

‖(ν0−ν)(s)‖∞ = δ‖K(s+2)
h ‖∞ = δh−s−3‖K(s+2)‖∞ . δh−s−3

such that for δ = δ ′hs+3 with some small, but fixed δ ′ > 0, both triplets are
asymptotically as h→ 0 still in the parameter class Gs(R,σmax).

For the corresponding characteristic exponents we obtain (note FK′′h (u) =
−u2FKh,

∫
K′′h = 0):

ψ1(u)−ψ0(u) = δu2(−1 +FK(hu)),

which is zero for u ∈ [−h−1,h−1].
The marginal density p0 of the Lévy process with triplet (σ2

0 ,0,ν0) at time
∆ > 0 then satisfies using the Poisson convolution exponential and λ = ‖ν0‖L1 :

p0(x) =
(

N(0,σ2
0 ∆)∗

∞

∑
k=0

e−λ∆ (λ∆)k

k!
ν
∗k
0

)
(x)

> λ∆e−λ∆ (N(0,σ2
0 ∆)∗ν0)(x)

& ∆(1 + |x|)−2m,

in view of the positivity of the summands, ν0 & ν and the exponential decay
of the Gaussian density (uniformly for ∆ . 1 and keeping λ ,σ0,ν0 fixed). The
χ2-divergence between the two densities (i.e. their laws) then satisfies

χ
2(p1|p0) =

∫
(p1(x)− p0(x))2

p0(x)
dx . ∆

−1
∫

(1 + x2m)(p1(x)− p0(x))2dx.

By the Plancherel identity and F [(ix)m p(x)] = (F p)(m) we arrive at

χ
2(p1|p0) . ∆

−1(‖ϕ1−ϕ0‖2
L2 +‖(ϕ1−ϕ0)(m)‖2

L2

)
.

With the inequality |1−e−z|6 2|z| for z = x+ iy∈C with x > 0 (use 1−e−x 6 x
by concavity and |e−x− e−(x+iy)|6

√
2|y|) we can estimate

‖ϕ1−ϕ0‖2
L2 6

∫
2max(|ϕ0(u)|, |ϕ1(u)|)2

∆
2|ψ1(u)−ψ0(u)|2du

.
∫
|u|>h−1

e−∆σ2u2
∆

2
δ

2u4|−1 +FK(hu)|2du

. ∆
2
δ

2
∫
|u|>h−1

e−∆σ2u2
u4du

. ∆
3/2

σ
−1

δ
2h−4e−∆σ2h−2

.
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The main order is e−∆σ2h−2
and this we also expect for ‖(ϕ1−ϕ0)(m)‖2

L2 .
For j = 0,1 we have by the Leibniz formula

ϕ
(m)
j = (∆ψ

′
jϕ j)

(m−1) = ∆

m−1

∑
k=0

(
m−1

k

)
ϕ

(k)
j ψ

(m−k)
j .

Now, using the (rough) bounds |ϕ(k)
j (u)|. (1+ |u|)k|ϕ j(u)|, |ψ(m−k)

j (u)|. (1+

|u|) (because of
∫
|x|mν j(dx) < ∞) and the preceding formula, iteratively for k

instead of m, we arrive at

|(ϕ1−ϕ0)(m)(u)|. ∆

m−1

∑
k=0
|(ψ1−ψ0)(m−k)(u)|(1 + |u|k)e−∆σ2u2/2.

Together with ‖FK(h•)(k)‖∞ . hk . 1 this yields for h < 1 the L2-bound

‖(ϕ1−ϕ0)(m)‖2
L2 . ∆

2
δ

2
∫
|u|>h−1

u2m+4e−∆σ2u2
du . ∆

3/2
σ
−1

δ
2h−2m−4e−∆σ2h−2

.

Inserting the choice of δ = δ ′hs+3, the χ2-divergence is bounded by

χ
2(p1|p0) . ∆

1/2
σ
−1h2(s−m+1)e−∆σ2h−2

.

If we choose h =
√

(1− ε)∆σ2/ logn for any (small) ε ∈ (0,1), then χ2(p1|p0).
n−(1+ε) follows. Applying Theorem 5.6, we have thus proved that

|σ2
1 −σ

2
0 |= 2δ

′hs+3 ∼
(

∆σ2

logn

)(s+3)/2

gives a lower bound for the minimax rate for estimating σ2.
The minimax rate for γ and λ follow in the same way. For γ we use the

alternatives

γ0 = γ, ν0 = ν−δK′h; γ1 = γ + δ , ν1 = ν

with σ1 = σ0 > 0 and note FK′h(u) = −iuFK(hu), ‖(ν0− ν)(s)‖∞ . δh−s−2.
For λ we only perturb the Lévy density by considering

ν0 = ν + δKh; ν1 = ν ,

for which λ0−λ1 = δ and ‖(ν0−ν)(s)‖∞ . δh−s−1 hold. ut

The L2-lower bound for ν requires Fano’s lemma or Assouad’s cube tech-
nique with many alternatives, but does not use any fine interplay between ν j
and σ j. We refer to Gugushvili [34] for the proof.

In the case σ = 0, the same argument via bounding the χ2-divergence goes
through (with slightly different estimates), but it is even easier to apply the
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result of Thm. 2.6 in Liese [46] that the Kullback-Leibler divergence in the
case γ0 = γ1 satisfies

KL(p1|p0) 6 KL(ν1|ν0).

So, we can transfer all lower bound techniques for density estimation in the
natural Kullback-Leibler topology, see e.g. Tsybakov [60], to the estimation
of the jump density in the compound Poisson case.

The general bounds in Liese [46] do not take the smoothing effect of a
Gaussian component into account and are thus highly suboptimal in the case
σ > 0 (or even for most infinite jump activity models). The idea to mimick the
diffusive part at low frequencies exactly through a suitable difference of jump
measures has been first applied by Jacod and Reiß [37] for infinite variation
jump models. A lower bound for the estimation of functionals of the Lévy
density is given in Neumann and Reiß [48].

6 Extension to the infinite intensity case

The natural statistical problem is certainly the estimation of the Lévy triplet
in the general case, allowing for infinite jump intensity. The structural non-
parametric problem is that, even if a jump density exists, it will have a strong
singularity at zero and smoothing methods are not appropriate. One possibil-
ity is to estimate the jump density only away from zero as in Figueroa-Lopez
and Houdré [32].

One can also argue that finite activity Lévy processes approximate arbi-
trarily well general Lévy processes in terms of their finite-dimensional distri-
butions. Due to the statistical uncertainty we cannot recover the true object
from a finite sample anyway and thus we may still use an estimator designed
for the finite intensity case. In Section 6.1 we shall study this estimator in
the general case and in particular see that infinite activity of small jumps is
absorbed by an increase in the estimated diffusion coefficient besides a high,
but finite estimated activity.

Another way to deal with the general case is that a weaker norm is used
in order to assess the performance of the Lévy measure estimator, where
the measure is used to integrate functions of some minimal regularity, cf.
Neumann and Reiß [48]. In Section 6.2 we shall investigate another estimator,
based on the second derivative of the empirical characteristic function, from
this point of view. The material of this section is mainly new.
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6.1 Performance of the finite intensity estimator

The class of Lévy processes with finite intensity jumps lies dense in the class of
all Lévy processes with respect to the weak convergence of finite-dimensional
distributions. The natural statistical question, which is treated here, is how
the above spectral estimator, designed for the finite intensity case, works if the
underlying Lévy process has infinite jump intensity. In statistical language
we study the behaviour of the spectral method in Section 4 under model
misspecification.

At a qualitative level the definition of the estimators σ2
n ,λn in (4.2) as solu-

tions to an optimisation problem explains the behaviour. In the infinite inten-
sity case Re(ψ(u))→−∞ holds for u→ ∞ even without diffusion coefficient.
On the frequency interval [0,Un] the estimators σ2

n ,λn minimise a weighted
L2-distance of Re(ψ(u)) to −σ2

n u2/2−λn. The jump part in |Re(ψ(u))| grows
more slowly than u2 in u→∞ and thus the infinite intensity jump part results
in an increase of both, σ2

n and λn. In the entire argument we only need to
focus on the bias part in (4.11) as it is easy to see that for σ > 0 the analy-
sis of the statistical error in the infinite intensity case does not change: it is
governed by the Gaussian decay of the characteristic function. For a precise
quantitative statement we restrict, as often in the literature, to a stable-like
behaviour of the jump component.

Proposition 6.1. Suppose the triplet of the Lévy process X satisfies σ > 0
and

∫
(1− cos(ux))ν(dx) = cα uα + O(uβ ) for 0 6 β < α < 2 and cα > 0 with

the asymptotics u→ ∞. Then for any σ̄ > σ :

σ
2
n = σ

2 + OP

(
Uα−2

n + n−1/2U−2
n eσ̄2∆U2

n /2
)
, λn &Uα

n + OP

(
n−1/2eσ̄2∆U2

n /2
)
.

In particular, for the choice of Un in Theorem 7.3 the estimator σ2
n is still

consistent with rate (logn)(α−2)/2.

Proof. The infinite-intensity analogue of (4.11), not using
∫

dν < ∞ and∫
wUn

σ = 0, gives the bias term in σ2
n

E[σ2
n ]−σ

2 =
∫ Un

0
wUn

σ (u)Reψ(u)du−σ
2 =

∫ Un

0
wUn

σ (u)
∫

(cos(ux)−1)ν(dx)du.

By the assumption on ν we infer that the bias term can be estimated as∣∣∣E[σ2
n ]−σ

2
∣∣∣=
∣∣∣U−2

n

∫ 1

0
w1

σ (v)
∫

(1− cos(Unvx))ν(dx)dv
∣∣∣

.U−2
n

∫ 1

0
|w1

σ (v)|Uα
n vα dv

.Uα−2
n .
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For the infinite intensity parameter λ the difference of λn and the statistical
error is∫ Un

0
wUn

λ
(u)
∫

(1− cos(ux))ν(dx)du =
∫ 1

0
w1

λ
(v)
∫

(1− cos(Unvx))ν(dx)dv

= cαUα
n

∫ 1

0
w1

λ
(v)vα dv + O(Uβ

n ).

From (4.7) we know that with some constant C > 0∫ 1

0
w1

λ
(v)vα dv = C

(∫ 1

0
w̃v2

∫ 1

0
w̃v2+α −

∫ 1

0
w̃v4

∫ 1

0
w̃vα

)
.

By the Hölder inequality in L1(w̃) with p = 4−α

2−α
, q = 4−α

2 we obtain

∫ 1

0
w̃v2 <

(∫ 1

0
w̃v4
)1/p(∫ 1

0
w̃vα

)1/q
,
∫ 1

0
w̃v2+α <

(∫ 1

0
w̃v4
)1/q(∫ 1

0
w̃vα

)1/p
.

This shows
∫ 1

0 w1
λ
(v)vα dv < 0 and thus

∫Un
0 wUn

λ
(u)
∫

(1−cos(ux))ν(dx)du &Uα
n .

The analysis of the statistical error is exactly as in Section 4. ut

Interestingly, by the optimal choice of Un for σ2
n we can achieve the rate

(logn)−(2−α), which can be shown to be minimax optimal (with respect to
jump components whose characteristic function decays at most like e−c|u|α for
|u| → ∞, c > 0), without any regularity or density assumptions on the Lévy
measure. Because of νn(R) = λn the estimated Lévy measure νn will be large,
but relatively smooth around zero. So, the quantitative estimates around
zero might be bad, but the large intensity of small jumps will be captured.
The analysis for γn is slightly more delicate. Especially, in the unbounded
variation case the drift is not well defined and depending on the symmetry
or asymmetry of ν around zero the drift estimate might remain bounded or
diverge (to compensate for the small jumps).

Figure 3 shows the performance of the estimate σ2
n in finite and infinite

intensity cases. In particular, we simulate 200 samples each of length n = 1000
from the distribution of X1, where

(0) X is a finite jump activity Lévy process with parameters σ2 = 0.25,
γ = 0, ν = 0 (Brownian motion)

(1) X is a finite jump activity Lévy process with parameters σ2 = 0.25, γ =

0, ν(dx) = 1√
2π

e−x2/2 dx (Brownian motion plus compound Poisson process)

(2) X is an infinite jump activity Lévy process with parameters σ2 = 0.25,
γ = 0, ν(dx) = x−1e−x1{x≥0} dx (Brownian motion plus Gamma process)

(3) X is an infinite jump activity Lévy process with parameters σ2 = 0.25,
γ = 0, ν(dx) = (2π)−1|x|−1K1(|x|)dx, where K1 is the modified Bessel func-
tion of the second kind (Brownian motion plus Normal Inverse Gaussian
process, see [5])
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Fig. 3 The box plots of the estimate σ2
n in Normal (0), Merton (1), Gamma (2) and

NIG (3) Lévy models.

In all four above models we construct σ2
n via (4.2) with w̃(u) = 1{0.5≤u<1} and

optimally chosen Un. We see that the performance of σ2
n remains reasonable

even in the case of infinite activity Lévy models.

6.2 Spectral estimation for general Lévy measures

In this section we work under the assumption of a finite second moment
∫

x2dν

for an otherwise completely general Lévy measure ν . Then the measure

νσ (dx) = σ
2
δ0(dx)+ x2

ν(dx)

is a finite measure. This measure is an intrinsic object in the description of a
Lévy process because

ψ
′′(u) =−σ

2 +
∫

(ix)2eiux
ν(dx) =−Fνσ (u)

holds and the Kolmogorov representation of the characteristic function reads

ϕt(u) = etψ(u), ψ(u) = iγu +
∫ eiux−1− iux

x2 νσ (dx),
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where the integrand is continuously extended to −u2/2 at x = 0. The weak
topology of infinitely divisible distributions is completely described by the
pair (γ,νσ ), which follows by the convergence of the characteristic functions,
see also Theorem VII.2.9 and Remark VII.2.10 in Jacod and Shiryaev [38] or
Theorem 19.1 in Gnedenko and Kolmogorv [33].

Proposition 6.2. The convergence Pσ2
m,γm,νm

w−→ Pσ2,γ,ν for a sequence of

triplets (σ2
m,γm,νm)m>1 takes place if and only if γm→ γ and νσ ,m

w−→ νσ (weak
convergence for finite measures).

In particular, the result shows that the diffusion part σ and the small
jump part in ν cannot be disentangled unless a (statistically sometimes ar-
tificial) bound on the intensity of small jumps is imposed. A natural object
of inference is therefore the measure νσ itself, which, however, will not have
any smoothness properties due to the point measure at zero (for σ > 0). [48]
therefore treat the estimation of functionals

∫
f dνσ for suitable integrands

f , using a general minimum-distance estimator. In line with the approaches
taken here, we consider a spectral estimator for νσ , but measure its perfor-
mance in a weak norm, namely in the Sobolev space H−1(R), the dual of the
Sobolev space H1(R) of functions f ∈ L2(R) with weak derivative f ′ ∈ L2(R).
Note that all finite measures on R lie in H−1(R). In the spectral domain we
shall use

‖g‖H−1 =
1√
2π
‖(1 + u2)−1/2Fg(u)‖L2

such that for H1(R)-functions f we can analyse the error of functional esti-
mation via (H1,H−1)-duality by∣∣∣∫ f dνσ ,n−

∫
f dνσ

∣∣∣6 ‖ f‖H1‖νσ ,n−νσ‖H−1 .

The estimator νσ ,n is again based upon a plug-in approach. Owing to
νσ = F−1[−ψ ′′], we use a kernel function K ∈ L1(R) which satisfies

∫
K = 1

and is band-limited: supp(FK)⊆ [−1,1]. We define for some bandwidth h> 0

νσ ,n :=−F−1[ψ ′′n FKh] =
−1
∆

F−1[(ϕ
′′
n /ϕn− (ϕ

′
n/ϕn)2)FKh]. (6.1)

Here we suppose that ϕn does not vanish on [−h−1,h−1], the maximal support
of FKh, which for suitable h is the case with overwhelming probability, see
Lemma 6.4 below.

We obtain the error decomposition for νσ ,n

νσ ,n−νσ :=−F−1[FKh(ψ
′′
n −ψ

′′)]︸ ︷︷ ︸
statistical error

−F−1[(FKh−1)ψ
′′]︸ ︷︷ ︸

approximation error

. (6.2)

The approximation error is handled by standard methods since



Estimation and calibration of Lévy models via Fourier methods 31

−F−1[(FKh−1)ψ
′′] = Kh ∗νσ −νσ

holds. In particular, when assuming no regularity for νσ , we obtain the general
order O(h1/2) for this error.

Lemma 6.3. Suppose that the kernel K satisfies
∫
|η |1/2K(η)dη < ∞. Then

we have as h→ 0
‖Kh ∗νσ −νσ‖H−1 . h1/2.

Proof. We calculate by the dual definition of H−1,
∫

K = 1 and by the Cauchy-
Schwarz inequality:

‖Kh ∗νσ −νσ‖H−1 = sup
‖ f‖H1 =1

∣∣∣∫ f d(Kh ∗νσ −νσ )
∣∣∣

= sup
‖ f‖H1 =1

∣∣∣∫ ( f ∗Kh(−•)− f )dνσ

∣∣∣
6 sup
‖ f‖H1 =1

sup
x∈R
|( f ∗Kh(−•)− f )(x)|‖νσ‖TV

. sup
‖ f‖H1 =1

sup
x∈R

∣∣∣∫ ( f (x)− f (x + y))Kh(y)dy
∣∣∣

6 sup
‖ f ′‖L2 =1

sup
x∈R

∣∣∣∫ (∫ f ′(z)1[x,x+y](z)dz
)

Kh(y)dy
∣∣∣

6
∫
|y|1/2|Kh(y)|dy

=
∫

h1/2|η |1/2K(η)dη . h1/2.

ut

The next lemma identifies the main term in the statistical error.

Lemma 6.4. Introduce

Mh := max
k=0,1,2

sup
|u|61/h

|(1/ϕ)(k)(u)|.

If Mhn = o(n1/2 log(h−1
n )−(1+δ )/2) holds for a sequence hn→ 0 and some δ > 0,

then we have

F−1[FKhn ∆(ψ
′′
n −ψ

′′)](x) = F−1[FKhn(ϕ
−1(ϕn−ϕ))′′](x)+ Rn(x)

with a second order term Rn satisfying

‖Rn‖H−1 = OP(M2
hn

n−1 log(h−1
n )1+δ ).
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Proof. To linearise ψ ′′n −ψ ′′ = ∆−1(log(ϕn/ϕ))′′, we set F(y) = log(1+y), η =
(ϕn−ϕ)/ϕ, and use

(F ◦η)′′(u) = F ′(η(u))η
′′(u)+ F ′′(η(u))η

′(u)2

= F ′(0)η
′′(u)+ O

(
‖F ′′‖∞

(
‖η‖∞‖η ′′‖∞ +‖η ′‖2

∞

))
,

where the supremum norms are taken over the ranges of u and η(u), respec-
tively. On the event Ωn := {‖(ϕn−ϕ)/ϕ‖L∞[−h−1,h−1] 6 1/2} the values η are

in [−1/2,1/2] and we obtain the error estimate

sup
|u|6h−1

|(log(ϕn/ϕ))′′(u)− ((ϕn−ϕ)/ϕ)′′(u)|

= O
(

max
k=0,1,2

‖((ϕn−ϕ)/ϕ)(k)‖2
L∞[−h−1,h−1]

)
= O

(
M2

h max
k=0,1,2

‖(ϕn−ϕ)(k)‖2
L∞[−h−1,h−1]

)
.

From Theorem 3.4 we know that under our moment assumption on ν (for
k = 0,1,2 and any δ > 0)

‖(ϕn−ϕ)(k)‖L∞[−h−1,h−1] = OP(n−1/2
∆

(k∧1)/2 log(h−1)(1+δ )/2).

Together with the growth assumption on Mhn this shows P(Ωn)→ 1 and then

sup
|u|6h−1

n

|∆(ψ
′′
n (u)−ψ

′′(u))− ((ϕn−ϕ)/ϕ)′′(u)|= OP(M2
hn

n−1 log(h−1
n )1+δ ).

Integration over u in the frequency domain yields the asserted bound for
‖Rn‖H−1 . ut

The expected H−1-norm of the main statistical error term is bounded using

VarC[ϕ
(k)
n (u)] 6 n−1E[X2k

∆
] for k = 0,1,2:

E[‖F−1[FKh((ϕn−ϕ)/ϕ)′′]‖2
H−1 ] =

1
2π

E[‖(1 + u2)−1/2FKh((ϕn−ϕ)/ϕ)′′‖2
L2 ]

. M2
h

∫ 1/h

−1/h
(1 + u2)−1

2

∑
k=0

VarC[ϕ
(k)
n (u)]du

. n−1M2
h .

Altogether we have proved the following result, where the condition on Mh
ensures that the second order term is negligible.

Proposition 6.5. Suppose that the kernel K satisfies
∫
|η |1/2K(η)dη <∞ and

that h→ 0 as n→∞ such that Mh = o(n1/2(log(h−1)−1−δ ) holds for some δ > 0.
Then the estimator νσ ,n of νσ satisfies

‖νσ ,n−νσ‖H−1 = OP
(
h1/2 + n−1/2Mh

)
.
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In the worst case (i.e., if σ > 0 and the characteristic function has Gaussian
tails), we have Mh ∼ exp(ch−2) for some c> 0 and the choice h = c̃/

√
logn with

c̃ >
√

2c yields the universal rate OP((logn)−1/4). If a pure compound Poisson
process is observed with a jump measure satisfying

∫
x2ν(dx) < ∞, then Mh

is uniformly bounded in h because ψ,ψ ′ and ψ ′′ are uniformly bounded.
In that case we may choose h = n−1/2 and νσ ,n converges with parametric

rate OP(n−1/2) to νσ . Note, however, that this convergence is measured in
the weak H−1-norm and much finer results can be obtained, e.g. uniform
central limit theorems in a Donsker-type fashion as in Nickl and Reiß [49].
All other convergence rates between logarithmic and parametric occur indeed
and the choice of the bandwidth h depends heavily on the unknown (to the
statistician) size Mh of the statistical error. We refer to Comte and Genon-
Catalot [20] for a data-driven choice based on a model selection approach (in
the finite variation case

∫
|x|ν(dx)<∞ and for L2-loss). Nonparametric testing

based on this general approach via νσ is discussed in Reiß [50].

7 Estimating the Blumenthal-Getoor index

In this section we consider the problem of estimating the Blumenthal-Getoor
index of a Lévy process observed at low frequency. The results are mainly
based on Belomestny [12]. An extension to more general models can be found
in Belomestny and Panov [13, 14]. In the case of high-frequency data the
problem was studied in Aı̈t-Sahalia and Jacod [2].

7.1 Setup

For a one-dimensional Lévy process X = (Xt)t≥0 with a Lévy measure ν , the
Blumenthal-Getoor (BG) index of X is defined as

BG(X) = inf
{

r > 0 :
∫
|x|≤1
|x|rν(dx) < ∞

}
.

The Blumenthal-Getoor index is a fundamental characteristic of the Lévy
process X that determines the activity of jumps of X . If ν([−ε,ε]) < ∞, then
the process X has finite activity of jumps and BG(X) = 0. If the Lévy measure
ν((−∞,−ε]∪ [ε,∞)) diverges near ε = 0 at a rate ε−α for some α > 0, then
the BG index of X is equal to α. From a practical point of view, the im-
portance of the Blumenthal-Getoor index lies in the fact that it determines
the smoothness properties of the marginal density of X and has significant
impact on the convergence of different approximation algorithms for X (see,
e.g., Dereich, [24]). Recently, the problem of estimation of the BG index from
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discrete observations of a Lévy process X or some other processes based on
X has drawn much attention in the literature. Aı̈t-Sahalia and Jacod, [2] (see
also [4]) studied the problem of estimating the so-called jump activity index,
that is defined for any Itô semimartingale Y via

JAI(Y ) = inf

{
r > 0 : ∑

0≤s≤T
|∆Ys|r < ∞

}
,

where ∆Ys = Ys−Ys− is the size of the jump at time s and T is a fixed time
horizon. Note that, in general, JAI(Y ) is a random quantity, which is to be
determined pathwise. In the case of a Lévy process Y, JAI(Y ) is deterministic
and coincides with the Blumenthal-Getoor index of Y . Obviously, one can
compute JAI(Y ) if the whole path of the process Y up to time T is observed.
In a more realistic situation when the process Y is observed on a discrete grid
{0,∆ , . . . ,∆n} with ∆n = T and ∆ → 0 as n→ ∞ (high-frequency data), Aı̈t-
Sahalia and Jacod proposed a method which is able to consistently estimate
JAI(Y ) and is based on a statistics that counts the “big” increments of the
process Y. Turning to the case of low-frequency data, i.e., the case of fixed
∆ > 0 and T → ∞, one may wonder if any kind of statistical inference is
possible in this situation at all. The first results showing that a consistent
estimation of the BG index based on the low-frequency data is possible, were
obtained in Belomestny, [12] for the case of a Lévy process X . The inference
in [12] relied on the kind of Abelian theorem which characterises the decay
of the characteristic function of X . Such Abelian theorems are well known in
the literature: Bismut [15] showed that the tail integral ν

(
(−∞,−x)∪(x,+∞)

)
behaves asymptotically like x−α as x→ +0 for some α ∈ [0,2) if and only if
the characteristic exponent of the corresponding Lévy process X with σ = 0,
γ = 0 and Lévy measure ν is of order −|u|α for large |u|. In [12] the following
deeper result was proved.

Proposition 7.1. Let the Lévy density ν(x) of a one-dimensional Lévy pro-
cess X satisfy for η > 0, α ∈ (0,2)∫

R
(eixu−1−ixu1(|x| ≤ 1))ν(dx) =−η |u|α τ(u), u ∈ R, (7.1)

where the function τ fulfills

τ(u) = 1 + D±|u|−κ + o(|u|−κ), u→±∞ (7.2)

with some constants κ ∈ (0,1), D+ and D−. Then∫
|x|<ε

x2
ν(x)dx = cε

2−α
ϑ(ε), (7.3)

where c> 0 is a constant depending on η and α and the function ϑ(ε) satisfies
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|ϑ(ε)−1|. |ε|κ , ε → 0.

It is clear that the parameter α in (7.3) coincides with the BG index of X .
Thus the asymptotic behaviour of ψ(u) for large u is connected to the BG
index of X . This fact can be used to infer on α using the spectral approach
of Section 4. Consider a Lévy process X with

ψ(u) = iγu + ϑ(u), γ ∈ R, (7.4)

where the function ϑ is of the form

ϑ(u) =−η |u|α τ(u) (7.5)

with Re[τ(u)] > 0 for u ∈ R\{0} and τ(u)→ 1 as |u| → ∞. The formula

Y (u) := log(− log(|ϕ(u)|2)) (7.6)

= log(2η∆)+ α log(u)+ log(Reτ(u)), u > 0,

with ϕ(u) = exp(∆ψ(u)) suggests now how to estimate α from ϕ. Indeed, in
terms of the new “data” Y we have a linear semiparametric problem with
the non-parametric part log(Reτ(u)) which can be viewed as a “nuisance”
parameter. Since log(Reτ(u))→ 0 as |u|→∞, we can get rid of this component
by using frequencies u with large |u|. On the other hand, if we plug-in an
estimate ϕn instead of ϕ, the variance of Yn(u) := log(− log(|ϕn(u)|2)) will
increase exponentially with |u| (because of the exponential decay of ϕ(u))
and we have to regularize the problem by damping (or cutting off) high
frequencies. An appropriate weighting scheme would allow to take both effects
into account. Let

w̃Un(u) := (1/Un) w̃(u/Un)

with a bounded non-constant function w̃(u) supported on the interval [0,1],
such that w̃(u) > 0 on (0,1) and

∫
|w̃(u)| log2(u)du < ∞. Consider the optimi-

sation problem

(µn,αn) := argmin
(µ,α)

∫
∞

0
w̃Un(u)(Yn(u)−α log(u)−µ)2 du. (7.7)

As can be easily seen, the solution αn of (7.7) is equal to

αn =
∫

∞

0
wUn

α (u)Yn(u)du, (7.8)

where

wUn
α (u) := w̃Un(u)

∫
∞

0 w̃Un(s) log(s) ds−
(∫

∞

0 w̃Un(s) ds
)

log(u)

(
∫

∞

0 w̃Un(s) log(s) ds)2−
∫

∞

0 w̃Un(s) log2(s) ds •
∫

∞

0 w̃Un(s) ds
.
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As a result wUn
α (u) satisfies∫ Un

0
log(u)wUn

α (u)du = 1,
∫ Un

0
wUn

α (u)du = 0. (7.9)

In the next section we discuss the convergence of the estimate αn.

7.2 Minimax upper bounds

To state minimax upper bounds we first need to specify a class of Lévy
processes.

Definition 7.2. Let A (ᾱ,η−,η+,κ,cτ) denote the class of Lévy processes
with characteristic exponents of the form

ψ(u) = iγu + ϑ(u), ϑ(u) =−η |u|α τ(u), u ∈ R, (7.10)

where 0 < α ≤ ᾱ ≤ 2,
0 < η− ≤ η ≤ η+ < ∞ (7.11)

and
|1− τ(u)| ≤ cτ

|u|κ
, |u| → ∞ (7.12)

for some 0 < κ ≤ α and cτ > 0.

We will write
(α,η ,τ) ∈A (ᾱ,η−,η+,κ,cτ)

to indicate that the Lévy process with characteristics (α,η ,τ) is in the class
A . The following theorem shows that the uniform convergence rates of αn
over the class A are of order logκ/ᾱ(n).

Theorem 7.3. Choosing for β = 1 +κ/ᾱ

Un =

[
1

2η+∆
log
(

n log−β (n)
)]1/ᾱ

,

we obtain for the risk of αn the uniform convergence rate

αn−α = OP,A
(
(∆/ log(n))κ/ᾱ

)
. (7.13)

Remark 7.4.

(a) The convergence rates depend on ᾱ, the prior upper bound for α. If there
is no prior information on ᾱ one may take ᾱ = 2.

(b) The case of Lévy processes X with σ > 0 can be handled in a similar way.
Indeed, consider a Lévy process X with the characteristic exponent of the
form



Estimation and calibration of Lévy models via Fourier methods 37

ψ(u) = iγu−σ
2u2/2 + ϑ(u), µ ∈ R, σ

2 > 0. (7.14)

Fixe some ξ > 2 and introduce the function

ϑξ (u) := ξ
2 Re(ψ(u))−Re(ψ(ξ u)),

then we have
ϑξ (u) =−cξ (α)|u|α τξ (u),

where cξ (α) = η(ξ 2−ξ α) and τξ (u) fulfills

|1− τξ (u)|. 1
|u|κ

, |u| → ∞. (7.15)

Thus ϑξ (u) has a structure similar to the structure of ϑ(u) in (7.10) and
we can carry over the results of the previous section to a class of Lévy
models with σ2 > 0.

Let us describe the main steps in the proof of Theorem 7.3. We replace Yn
by Y in (7.8) and introduce

ᾱn :=
∫

∞

0
wUn

α (u)Y (u)du. (7.16)

First one can get by (7.12) the following bound for the “model bias” ᾱn−α :

|ᾱn−α|=
∣∣∣∣∫ ∞

0
wUn

α (u) log(Reτ(u))du
∣∣∣∣≤CU−κn

with some constant C > 0 depending on cτ . Next using the Taylor expansion
of the function log(− log(x)), we get for the statistical error αn− ᾱn :

P
{
|αn− ᾱn|>C1

εn

cτUα
n

}
≤C2n−1−δ ,

with some δ > 0, provided

εn :=
logn√

n
e2η∆Uα

n → 0, Un→ ∞, n→ ∞.

Finally choosing Un in a proper way, that balances the deterministic and
stochastic errors (bias-variance trade-off), we arrive at (7.13).

Example 7.5. Let us consider the generalized hyperbolic (GH) Lévy model
which was introduced in [27]. The characteristic function ΦGH of increments
in the GH Lévy model with parameters (κ,β ,δ ,λ ) is given by
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Fig. 4 Box plots of the estimate αn in the GH Lévy model with (right) and without
(left) the Brownian component in dependence on n.

ΦGH(u) =

(√
κ2 + β 2

)λ

(√
κ2− (β +iu)2

)λ

Kλ

(
δ
√

κ2− (β +iu)2
)

Kλ

(
δ
√

κ2 + β 2
) ,

where Kλ is the modified Bessel function of the second kind. ΦGH has the
Lévy-Khintchine representation

ΦGH(u) = exp
(
−σ

2u2/2 +
∫

∞

−∞

(eiux−1−iux)g(x)dx
)
.

The function g(x), the density of the corresponding Lévy measure ν , can
be represented in an integral form. From this representation the following
expansion for ḡ(x) = x2g(x) can be obtained

ḡ(x) =
δ

π
+

λ + 1
2

2
|x|+ δβ

π
x + o(|x|), x→ 0.

A direct consequence of this expansion is that∫
|x|>ε

g(x)dx� 1/ε, ε → 0

and hence the BG index of the GH Lévy model is equal to 1. In our simulation
study we simulate the GH Lévy process X with parameters β = 0, λ = 1, κ = 1
and δ = 5 at n + 1 equidistant points {0, . . . ,n}. The results of the BG index
estimation are presented in Figure 4, where 1000 samples of the length n are
used to construct the box plots. The left side of Figure 4 corresponds to the
GH Lévy model with no diffusion part and the right side deals with the case
of a non-zero diffusion part (σ = 0.5).
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7.3 Minimax lower bounds

In this section we address the question of optimality of the rates in (7.13).

Theorem 7.6. We have

lim
K→∞

limsup
n→∞

inf
αn

sup
(α,η ,τ)∈A

P(α,η ,τ)

(
|αn−α|> K(∆/ log(n))κ/ᾱ

)
> 0. (7.17)

Proof. The proof is based on Theorem 5.6. First we turn to the construction
of models f0 and f1. Let us consider a symmetric stable Lévy process with

ψ(u) = iµu + ϑ(u), ϑ(u) =−η+|u|α , 0 < α ≤ 1, u ∈ R

Now for any δ satisfying 0 < δ < α and M > 0 define

ψδ (u) := iµu + ϑδ (u),

where

ϑδ (u) :=−η+|u|α
(

1(|u| ≤M)+
Mδ (1 + c|u|−κ)

|u|δ (1 + cM−κ)
1(|u|> M)

)
.

Then ϕδ (u) := exp(iµu + ϑδ (u)) is the characteristic function of some Lévy
process and

ϕδ (u) = ϕ(u), |u| ≤M,

where ϕ(u) = exp(iµu + ϑ(u)). Indeed, the function ϑδ (u) is a continuous,
non-positive, symmetric function which is convex on R+ for large enough M
and small enough c > 0. According to the well known Pólya criteria (see e.g.
[61], Theorem 1.3.8), the function exp(ξ ϑδ (u)) is a characteristic function of
some absolutely continuous distribution for any ξ > 0. In particular, for any
natural q the function exp(ϑδ (u)/q) is a characteristic function of some abso-
lutely continuous distribution. Hence, exp(ϑδ (u)) is a characteristic function
of some infinitely divisible distribution. Define

f0 = (α,η+,1), f1 = (α−δ ,η+,τδ ,M) (7.18)

and ϕ f0(u) = ϕ(u), ϕ f1(u) = ϕδ (u) with

τδ ,M(u) := |u|δ 1(|u| ≤M)+
Mδ

(1 + cM−κ)
(1 + c|u|−κ)1(|u|> M).

If Mδ = 1 + cM−κ, i.e.

δ = log(1 + cM−κ)/ logM � cM−κ/ logM, M→ ∞, (7.19)

then
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|τδ ,M(u)−1|. |u|−κ, |u| → ∞

and hence f1 ∈Θ = A (ᾱ,η−,η+,κ). Furthermore one can show that

χ
2(p⊗n

f0
, p⊗n

f1
) = nχ

2(p f0 , p f1) . M7−α+δ e−2ηMα−δ

and the choice M �
[

1
2η+

log
(

n log−β (n)
)]1/(α−δ )

with β ≥ 7−(α−δ )
2(α−δ ) yields

χ
2(p⊗n

f0
, p⊗n

f1
) < 1

for large enough n. ut

8 Spectral estimation of time-changed Lévy processes

In this section we are going to study the problem of estimating the charac-
teristics of a multidimensional Lévy process X from the low-frequency ob-
servations Y0,Y∆ , . . . ,Yn∆ of the time changed Lévy process Yt = XT (t). The
presentation follows Belomestny [9].

8.1 Setting

The main difficulty in constructing nonparametric estimates for the Lévy
density ν of X lies in the fact that the jumps are unobservable variables since
in practice only discrete observations of the process Y are available. The more
high-frequent the observations are, the more relevant information about the
jumps of the underlying process are contained in the sample. Such a high-
frequency based statistical approach has played a central role in the recent
literature on nonparametric estimation for Lévy-type processes. For instance,
under discrete observations of a pure Lévy process Xt at times t j = j∆ , j =
0, . . . ,n, [62] proposed the quantity

β̂ ( f ) =
1

n∆

n

∑
k=1

f (Xtk −Xtk−1)

as a consistent estimator for the functional

β ( f ) =
∫

f (x)ν(x)dx,

where f is a given bounded “test function”. Turning back to the time-changed
Lévy processes, it was shown in [30] that in the case where the rate process
ρ in
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T (t) =
∫ t

0
ρ(s−)ds,

is a positive ergodic diffusion independent of the Lévy process X , β̂ ( f ) is still
a consistent estimator for β ( f ) up to a constant, provided the time horizon
n∆ and the sampling frequency ∆−1 converge to infinity at suitable rates. In
the case of low-frequency data (∆ is fixed) we cannot be sure to what extent
the increment Xtk−Xtk−1 is due to one or several jumps or just to the diffusion
part of the Lévy process, so that at first sight it may appear surprising that
some kind of inference in this situation is possible at all. Suppose that the
sequence T ( j∆)−T (( j− 1)∆), j = 1, . . . ,n, is stationary and ergodic with
the invariant stationary distribution π, then for any bounded “test function”
f

1
n

n

∑
j=1

f
(

XT (t j)−XT (t j−1)

)
→ Eπ [ f (XT (∆))], n→ ∞. (8.1)

The limiting expectation in (8.1) is then given by

Eπ [ f (XT (∆))] =
∫

∞

0
E[ f (Xs)]π(ds).

Taking f (z) = exp(i〈u,z〉) for some u ∈ Rd we arrive at the following repre-
sentation for the characteristic function of XT (s):

E
[
exp
(
i〈u,XT (∆)〉

)]
=
∫

∞

0
exp(tψ(u))dπ(dt) = L∆ (−ψ(u)), (8.2)

where ψ(u) is the characteristic exponent of the Lévy process X and L∆ is
the Laplace transform of π. In fact, the most difficult part of the estimation
procedure consists in reconstructing the characteristics of the underlying Lévy
process X from an estimate for L∆ (−ψ(u)). Taking into account (2.3), we
can reformulate our problem as a problem of semi-parametric estimation of
the characteristic exponent ψ under the structural assumption (2.3) from an
empirical estimate of (8.2) based on the observations of Y. The formula (8.2)
shows that the characteristic function

ϕY (u|∆) = E
[
exp
(
i〈u,XT (∆)〉

)]
can be viewed as a composite function and our statistical problem is hence
closely related to the problem of statistical inference on the components of
a composite function. The latter type of problems in a regression setup has
attracted much attention recently (see, e.g., [36] and [39]). Our problem has,
however, some features not reflected in that literature. First, the unknown
link function L∆ is a completely monotone function, since it is the Laplace
transform of the time change T (∆). Second, the complex-valued function ψ

is of the form (2.3) implying, for example, a certain asymptotic behaviour of
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ψ(u) as u→ ∞. Finally, we are not in a regression setup and ϕY (u|∆) needs
to be estimated from its empirical counterpart

ϕ̂(u) =
1
n

n

∑
j=1

ei〈u,Y∆ j−Y∆( j−1)〉.

8.2 Specification analysis

It is clear that without further restrictions on the class of time-changed Lévy
processes our problem of estimating ν is not well defined because even in the
case of a perfectly known distribution of the process Y the parameters of the
Lévy process X are in general not identifiable. Moreover, the corresponding
statistical procedure will suffer from the “curse of dimensionality” as the di-
mension d increases. In order to avoid these undesirable features, we have to
impose additional restrictions on the structure of the time-changed process
Y. In the statistical literature one can find basically two types of restricted
composite models: additive models and single-index models. While the latter
class of models is too restrictive in our situation, the former one naturally
appears if one assumes the independence of the components of Xt . Here, we
study the class of time-changed Lévy processes satisfying the following two
assumptions.

Assumption 8.1
(AXI) The Lévy process Xt has independent components such that at least two
of them are non-zero, i.e.,

ϕY (u|∆) = Lt(−ψ1(u1)− . . .−ψd(ud)), (8.3)

where ψk, k = 1, . . . ,d, are the characteristic exponents of the components of
Xt of the form

ψk(u) = iµku−σ
2
k u2/2 +

∫
R

(
eiux−1−iux•1{|x|≤1}

)
νk(dx), (8.4)

for k = 1, . . . ,d, and

|µl |+ σ
2
l +

∫
R

x2
νl(dx) 6= 0 (8.5)

for at least two different indices l.
(ATI) The time change process T is normalised to E[T (t)] = t.

The advantage of the modeling framework (8.3) is twofold. On the one hand,
models of this type are rather flexible: the distribution of Yt for a fixed t is in
general determined by d +1 non-parametric components and 2×d parametric
ones. On the other hand, these models remain parsimonious and, as we will
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see later, admit statistical inference not suffering from the “curse of dimen-
sionality” as d becomes large. The latter feature of our model is in accordance
with the well documented behaviour of additive models in the regression set-
ting and may become particularly important if one is going to use it, for
instance, to model large portfolios of assets. The non-degeneracy assumption
(8.5) basically excludes one-dimensional models and is not restrictive since it
can be always checked prior to estimation by testing that

−∂ulul ϕn(u)|u=0 =
1
n

n

∑
j=1

(
Y∆ j,l−Y∆( j−1),l

)2
> 0

for at least two different indices l.

Remark 8.2. Note that the condition (ATI) ensures the identifiability in
our model and is often used in financial literature to guarantee the unbiased
reflection of calendar time.

Let us make a few remarks on the one-dimensional case, where

ϕY (u|t) = Lt(−ψ1(u)), t ≥ 0. (8.6)

If L∆ is known, i.e., the distribution of the random variable T (∆) is known,
we can consistently estimate the Lévy measure ν1 by inverting L∆ . In the case
when the function L∆ is unknown, one needs rather restrictive assumptions
to ensure identifiability. Indeed, consider the class of one-dimensional Lévy
processes of the so-called compound exponential type with the characteristic
exponent of the form

ψ(u) = log
[

1
1− ψ̃(u)

]
,

where ψ̃(u) is the characteristic exponent of another one-dimensional Lévy
process L̃t . It is well known (see, e.g., Section 3 in Chapter 4 of [56]) that
exp(ψ(u)) is the characteristic function of some infinitely divisible distribution
if exp(ψ̃(u)) is. Introduce

L̃∆ (z) = L∆ (log(1 + z)).

As can be easily seen, the function L̃∆ is completely monotone with L̃∆ (0) = 1
and L̃ ′

∆
(0) = L ′

∆
(0). Moreover, it fulfills L̃∆ (−ψ̃(u)) = L∆ (−ψ(u)) for all

u ∈ R. The existence of the time change (increasing) process T with the
given marginal T (∆) can be derived from the general theory of stochastic
partial ordering (see, [40]). The above construction shows that even under the
assumption E[T (t)] = t, t ≥ 0, one cannot, in general, consistently estimate
the parameters of the one-dimensional time-changed Lévy process Yt from the
low-frequency observations.
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8.3 Main ideas

Assume that the Lévy measures of the component processes X1
t , . . . ,X

d
t are

absolutely continuous with densities ν1(x), . . . ,νd(x) that satisfy∫
R

x2
νk(x)dx < ∞, k = 1, . . . ,d.

Consider the functions (see also Section 6.2)

ν̄k(x) := x2
νk(x), k = 1, . . . ,d.

By differentiating ψk two times, we get

ψ
′′
k (u) =−σ

2
k −

∫
R

eiux
ν̄k(x)dx.

For the sake of simplicity, we will assume in the sequel that the (σk) are
known. Otherwise one should consider the derivatives of higher order, e.g.

ψ
(4)
k (u) =

∫
R

eiuxx4
νk(x)dx,

provided
∫
R x4νk(x)dx < ∞. Alternatively one can first estimate σk via the

weighted least-squares approach using the asymptotic identity

ψ
′′
k (u)→−σ

2
k , u→ ∞.

Introduce the functions ψ̄k(u) = ψk(u)+ σ2
k u2/2 to get

F [ν̄k](u) =−ψ̄
′′
k (u) =−σ

2
k −ψ

′′
k (u). (8.7)

Denote Z = Y∆ , ϕk(u) = ∂uk ϕZ(u), ϕkl(u) = ∂ukul ϕZ(u) and ϕ jkl(u) = ∂u jukul ϕZ(u)
for j,k, l ∈ {1, . . . ,d} with

ϕZ(u) = E [exp(i〈u,Z〉)] = L∆ (−ψ1(u1)− . . .−ψd(ud)). (8.8)

Fix some k ∈ {1, . . . ,d} and for any real number u introduce a vector u(k) =
(0, . . . ,0,u,0, . . . ,0) ∈ Rd , with u being placed at the kth coordinate of the
vector u(k). Choose some l 6= k, such that the component X l

t is not degenerated.
Then we get from (8.8)

ϕk(u(k))

ϕl(u(k))
=

ψ ′k(u)

ψ ′l (0)
(8.9)

if µl 6= 0 and
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ϕk(u(k))

ϕll(u(k))
=

ψ ′k(u)

ψ ′′l (0)
(8.10)

in the case µl = 0. The identities ϕl(0) = −ψ ′l (0)L ′
∆

(0) and ϕll(0) =
[ψ ′l (0)]2L ′′

∆
(0)−ψ ′′l (0)L ′

∆
(0) imply ψ ′l (0) =−[L ′

∆
(0)]−1ϕl(0) = ∆−1ϕl(0) and

ψ ′′l (0) =−[L ′
∆

(0)]−1ϕll(0) = ∆−1ϕll(0) if ψ ′l (0) = 0 since L ′
∆

(0) =−E[T (∆)] =
−∆ . Combining this with (8.9) and (8.10), we derive

ψ
′′
k (u) = ∆

−1
ϕl(0)

ϕkk(u(k))ϕl(u(k))−ϕk(u(k))ϕlk(u(k))

ϕ2
l (u(k))

, µl 6= 0 (8.11)

ψ
′′
k (u) = ∆

−1
ϕll(0)

ϕkk(u(k))ϕll(u(k))−ϕk(u(k))ϕllk(u(k))

ϕ2
ll(u(k))

, µl = 0. (8.12)

Note that in the above derivations we have repeatedly used the assumption
(ATI), that turns out to be crucial for the identifiability. The basic idea of the
algorithm, we shall develop in Section 8.4, is to estimate ν̄k by applying the
regularised Fourier inversion formula to an estimate of ψ̄ ′′k (u). As indicated
by formulas (8.11) and (8.12), one could, for example, estimate ψ̄ ′′k (u), if some
estimates for the functions ϕk(u), ϕlk(u) and ϕllk(u) are available.

8.4 Algorithm

The estimation procedure consists of three steps.

Step 1 First, we are interested in estimating partial derivatives of the func-
tion ϕZ(u) up to the third order. To this end define

ϕ̂k(u) :=
i

n

n

∑
j=1

∆ jY k exp(i〈u,∆ jY 〉), (8.13)

ϕ̂lk(u) := −1
n

n

∑
j=1

∆ jY l
∆ jY k exp(i〈u,∆ jY 〉), (8.14)

ϕ̂llk(u) := −i
n

n

∑
j=1

(∆ jY l)2
∆ jY k exp(i〈u,∆ jY 〉). (8.15)

with ∆ jY := Y∆ j−Y∆( j−1), j = 1, . . . ,n.
Step 2 In a second step we estimate the second derivative of the character-

istic exponent ψk(u). Put

ψ̂k,2(u) := ∆
−1

ϕ̂l(0)
ϕ̂kk(u(k))ϕ̂l(u(k))− ϕ̂k(u(k))ϕ̂lk(u(k))

[ϕ̂l(u(k))]2
, |ϕ̂l(0)|> κ/

√
n,

ψ̂k,2(u) := ∆
−1

ϕ̂ll(0)
ϕ̂kk(u(k))ϕ̂ll(u(k))− ϕ̂k(u(k))ϕ̂llk(u(k))

[ϕ̂ll(u(k))]2
, |ϕ̂l(0)| ≤ κ/

√
n,
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where κ is a positive number.
Step 3 Finally, we construct an estimator for ν̄k(x) by applying the Fourier

inversion formula combined with a regularization to ψ̂k,2(u):

ν̂k(x) :=− 1
2π

∫
R

e−iux[ψ̂k,2(u)+ σ
2
k ]wν(uhn)du, (8.16)

where wν is a regularizing kernel supported on [−1,1] and hn is a sequence
of bandwidths which tends to 0 as n→ ∞. The choice of the sequence hn
will be discussed below.

Remark 8.3. The parameter κ determines the testing error for the hypoth-
esis H : µl > 0. Indeed, if µl = 0, then ϕl(0) = 0 and by the central limit
theorem

P
(
|ϕ̂l(0)|> κ/

√
n
)

= P
(√

n|ϕ̂l(0)−ϕl(0)|> κ
)
→ P

(
|ξ |> κ/

√
Var[Y (l)

∆
]

)
,

for n→ ∞ where ξ ∼N (0,1).

8.5 Asymptotic analysis

In this section we are going to study the asymptotic properties of the esti-
mates ν̂k(x), k = 1, . . . ,d. In particular, we consider almost sure uniform as
well as pointwise convergence rates for ν̂k(x).

8.5.1 Global vs. local smoothness of Lévy densities

Let Lt be a one-dimensional Lévy process with a Lévy density ν . Denote
ν̄(x) := x2ν(x) and assume that

∫
ν̄(x)dx < ∞. For β > 0 and γ ∈ [0,2] consider

the two following classes of Lévy densities ν :

Sβ :=
{

ν :
∫
R

(1 + |u|β )|F [ν̄ ](u)|du < ∞

}
(8.17)

and

Bγ :=
{

ν :
∫
|y|>ε

ν(y)dy� Π(ε)

εγ
, ε →+0

}
, (8.18)

where Π is some positive function on R+ satisfying 0 < Π(0+) < ∞. The
parameter β measures the smoothness of ν̄ while γ is the Blumenthal-Geetor
index of Lt .

Let us now investigate the connection between classes Sβ and Bγ . First,
consider an example. Let Lt be a tempered stable Lévy process with a Lévy



Estimation and calibration of Lévy models via Fourier methods 47

density

ν(x) =
2γ •γ

Γ (1− γ)
x−(γ+1) exp

(
− x

2

)
1(0,∞)(x),

where γ ∈ (0,1). It is clear that ν ∈Bγ , but what is about Sβ ? Since

ν̄(x) =
2γ •γ

Γ (1− γ)
x1−γ exp

(
− x

2

)
1(0,∞)(x),

we derive

F [ν̄ ](u) =
∫

∞

0
eiux

ν̄(x)dx� 2γ
γ(1− γ)eiπ(1−γ/2)u−2+γ , u→+∞

by the Erdélyi lemma (see [28]). Hence, ν cannot belong to Sβ as long as
β > 1− γ. The message of this example is that given the activity index γ,
the parameter β determining the smoothness of ν̄ , cannot be taken arbitrary
large. The above example can be straight-forwardly generalized to a class
of Lévy densities supported on R+. It turns out that if the Lévy density ν

is supported on [0,∞), is infinitely smooth in (0,∞) and ν ∈ Bγ for some
γ ∈ (0,1), then ν ∈ Sβ for all β satisfying 0 ≤ β < 1− γ and ν 6∈ Sβ for
β > 1− γ. As a matter of fact, in the case γ = 0 (finite activity case) the
situation is different and β can be arbitrary large.

The above discussion indicates that in the case ν ∈Bγ with some γ > 0 it
is reasonable to look at the local smoothness of the transformed Lévy density
ν̄k instead of the global one. To this end fix a point x0 ∈ R and a positive
integer number s≥ 1. Consider a class Hs(x0,δ ) of Lévy densities ν such that
ν̄(x) ∈Cs(]x0−δ ,x0 + δ [) and

sup
x∈]x0−δ ,x0+δ [

|ν̄(l)(x)| ≤ L (8.19)

for 1≤ l ≤ s and some constant L > 0.

8.5.2 Assumptions

In order to prove the convergence of ν̂k(x) we need the assumptions listed
below.

Assumption 8.4
(AL1) The Lévy densities ν1, . . . ,νd are in the class Bγ for some γ > 0.
(AL2) For some p > 2, the Lévy densities νk, k = 1, . . . ,d, have finite absolute
moments of the order p:∫

R
|x|pνk(x)dx < ∞, k = 1, . . . ,d.
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(AT1) The sequence Tk = T (∆k)−T (∆(k− 1)), k ∈ N, is strictly stationary,
α-mixing with the mixing coefficients (αT ( j)) j∈N satisfying

αT ( j)≤ ᾱ0 exp(−ᾱ1 j), j ∈ N,

for some positive constants ᾱ0 and ᾱ1. Moreover, assume that

E
[
T −2/γ(∆)

]
< ∞, E

[
T 2p(∆)

]
< ∞

with γ and p being from the assumptions (AL1) and (AL2), respectively.
(AT2) The Laplace transform Lt(z) of T (t) fulfills

L ′
t (z) = o(1), L ′′

t (z)/L ′
t (z) = O(1), |z| → ∞, Rez > 0.

(AK) The regularizing kernel wν is uniformly bounded, is supported on [−1,1]
and satisfies

wν(u) = 1, u ∈ [−aK ,aK ]

with some 0 < aK < 1.
(AH) The sequence of bandwidths hn is assumed to satisfy

h−1
n = O(n1−δ ), Mn

√
logn

n

√
1
hn

log
1
hn

= o(1), n→ ∞

for some positive number δ fulfilling 2/p < δ ≤ 1, where

Mn = max
l 6=k

sup
{|u|≤1/hn}

|ϕ−1
l (u(k))|.

Remark 8.5. By requiring νk ∈Bγ , k = 1, . . . ,d, with some γ > 0, we exclude
from our analysis pure compound Poisson processes and some infinite activity
Lévy processes with γ = 0. This is mainly done for the sake of brevity: we
would like to avoid additional technical calculations related to the fact that
the distribution of Yt is not in general absolutely continuous in the case of a
compound Poisson process Lt .

Remark 8.6. Assumption (AT1) is satisfied if, for example, the process T (t)
is of the form (2.11), where the rate process ρ(u) is strictly stationary, geo-
metrically α-mixing and fulfills

E[ρ2p(u)] < ∞, u ∈ [0,∆ ], E
(∫

∆

0
ρ(u)du

)−2/γ

< ∞. (8.20)

In the case of the square-root process (Cox-Ingersoll-Ross process) ρ, the
assumptions (8.20) are satisfied for any p > 0 and any γ > 0.
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8.5.3 Uniform rates of convergence

Fix some k from the set {1,2, . . . ,d}. Define a weighting function w(x) :=
log−1/2(e + |x|) and denote

‖ν̄k− ν̂k‖L∞(R,w) := sup
x∈R

[w(|x|)|ν̄k(x)− ν̂k(x)|].

Let ξn be a sequence of positive r.v. and qn be a sequence of positive real
numbers. We shall write ξn = Oa.s.(qn) if there is a constant D > 0 such that
P(limsupn→∞ q−1

n ξn ≤D) = 1. In the case P(limsupn→∞ q−1
n ξn = 0) = 1 we shall

write ξn = oa.s.(qn).

Theorem 8.7. Suppose that the assumptions (AL1), (AL2), (AT1), (AT2),
(AK) and (AH) are fulfilled. Let ν̂k(x) be the estimate for ν̄k(x) defined in
Section 8.4. If νk ∈Sβ for some β > 0, then

‖ν̄k− ν̂k‖L∞(R,w) = Oa.s.

√ log3+ε n
n

∫ 1/hn

−1/hn

R2
k(u)du + hβ

n

 ,

for arbitrary small ε > 0, where

Rk(u) =
(1 + |ψ ′k(u)|)2

|L ′
∆

(−ψk(u))|
.

Corollary 8.8. Suppose that σk = 0, γ ∈ (0,1] in the assumption (AL1) and

|L ′
∆ (z)|& exp(−a|z|η), |z| → ∞, Rez≥ 0

for some a > 0 and η > 0. If µk > 0, then

‖ν̄k− ν̂k‖L∞(R,w) = Oa.s.

√ log3+ε n
n

exp
(
ach−η

n
)

+ hβ
n

 (8.21)

with some constant c > 0. In the case µk = 0 we have

‖ν̄k− ν̂k‖L∞(R,w) = Oa.s.

√ log3+ε n
n

exp
(
ach−γη

n
)

+ hβ
n

 . (8.22)

Choosing hn in such a way that the right-hand sides of (8.21)-(8.22) are
minimized, we obtain the rates shown on the right side of Table 1. Table 2
(right) shows the rates for the case σk > 0.

Corollary 8.9. If γ ∈ (0,1] in the assumption (AL1) and

|L ′
∆ (z)|& |z|−α , |z| → ∞, Rez≥ 0
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|L ′
∆

(z)|& |z|−α |L ′
∆

(z)|& exp(−a|z|η )

µk > 0 µk = 0 µk > 0 µk = 0

n−
β

(2α+2β+1) log
(3+ε)β

(2α+2β+1) (n) n−
β

(2αγ+2β+1) log
(3+ε)β

(2αγ+2β+1) (n) log−β/η n log−β/γη n

Table 1 Theorem 8.7: uniform convergence rates for the estimates ν̂k, k = 1, . . . ,d, in
the case σk = 0.

|L ′
∆

(z)|& |z|−α |L ′
∆

(z)|& exp(−a|z|η )

n−
β

(4α+2β+1) log
(3+ε)β

(4α+2β+1) (n) log−β/2η n

Table 2 Theorem 8.7: uniform convergence rates for the estimates ν̂k, k = 1, . . . ,d, in
the case σk > 0.

for some α > 0, then

‖ν̄k− ν̂k‖L∞(R,w) = Oa.s.

√ log3+ε n
n

h−1/2−α
n + hβ

n

 ,

provided µk > 0. In the case µk = 0 one has

‖ν̄k− ν̂k‖L∞(R,w) = Oa.s.

√ log3+ε n
n

h−1/2−αγ
n + hβ

n

 .

The choices hn = n−1/(2(α+β )+1) log(3+ε)/(2(α+β )+1)(n) and

hn = n−1/(2(αγ+β )+1) log(3+ε)/(2(αγ+β )+1)(n)

for the cases µk > 0 and µk = 0, respectively, lead to the bounds shown in
Table 1 on the left side. In the case σk > 0 the rates of convergence are given
in Table 2 on the left side.

Remark 8.10. As one can see, the assumption (AH) is always fulfilled for
the optimal choices of hn given in Corollary 8.9, provided αγ + β > 0 and
p > 2 + 1/(αγ + β ).

The proof of Theorem 8.7 can be found in [9] and is based on the following
representation:
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ψ
′′
k (u)− ψ̂k,2(u) =

ψ ′′k (u)

ψ ′l (0)
(ϕl(0)− ϕ̂l(0))+R0(u)+R1(u)+R2(u) (8.23)

with

R0(u) =
[
V1(u)ψ

′′
k (u)−V2(u)ψ

′
k(u)

](
ϕl(u(k))− ϕ̂l(u(k))

)
+V2(u)

(
ϕk(u(k))− ϕ̂k(u(k))

)
−V1(u)

(
ϕkk(u(k))− ϕ̂kk(u(k))

)
+V1(u)ψ

′
k(u)

(
ϕlk(u(k))− ϕ̂lk(u(k))

)
,

R1(u) =
[
Ṽ1(u)ψ

′′
k (u)−Ṽ2(u)ψ

′
k(u)

](
ϕl(u(k))− ϕ̂l(u(k))

)
+Ṽ2(u)

(
ϕk(u(k))− ϕ̂k(u(k))

)
−Ṽ1(u)

(
ϕkk(u(k))− ϕ̂kk(u(k))

)
+Ṽ1(u)ψ

′
k(u)

(
ϕlk(u(k))− ϕ̂lk(u(k))

)
,

R2(u) = Γ
2(u)

ϕl(0)
(

ϕlk(u(k))− ϕ̂lk(u(k))
)

[
ϕl(u(k))

]2 [(
ϕl(u(k))− ϕ̂l(u(k))

)
ψ
′
k(u)−

−
(

ϕk(u(k))− ϕ̂k(u(k))
)]

+
(ϕ̂l(0)−ϕl(0))

ϕl(u(k))

[
R0 +R1

ϕl(0)

]
with

V1(u) =
ϕl(0)

∆ϕl(u(k))
=− 1

L ′
∆

(−ψk(u))
,

V2(u) =
ϕl(0)ϕlk(u(k))

∆
[
ϕl(u(k))

]2 =−V1(u)ψ
′
k(u)

L ′′
∆

(−ψk(u))

L ′
∆

(−ψk(u))
,

Ṽ1(u) = (Γ (u)−1)V1(u), Ṽ2(u) = (Γ 2(u)−1)V2(u)

and

Γ (u) =

[
1− 1

ϕl(u(k))

(
ϕl(u(k))− ϕ̂l(u(k))

)]−1

.

The representation (8.23) and the Fourier inversion formula imply the repre-
sentation for the deviation ν̄k− ν̂k:
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ν̂k(x)− ν̄k(x) =
1

2π

(ϕl(0)− ϕ̂l(0))

ψ ′l (0)

∫
R

e−iux
ψ
′′
k (u)wν(uhn)du

+
1

2π

∫
R

e−iuxR0(u)wν(uhn)du

+
1

2π

∫
R

e−iuxR1(u)wν(uhn)du

+
1

2π

∫
R

e−iuxR2(u)wν(uhn)du

+
1

2π

∫
R

e−iux(1−wν(uhn))(ψ
′′
k (u)+ σ

2
k )du,

where each summand can be bounded above in terms of a uniform bound for
the deviation between the derivatives of the empirical characteristic function
ϕ̂ and the ones of the original characteristic function ϕ. Such a bound can
be obtained in a way similar to Theorem 3.4 (see [9] for details).

8.5.4 Pointwise rates of convergence

Since the transformed Lévy density ν̄k is usually not smooth at 0 (see Sec-
tion 8.5.1), pointwise rates of convergence might be more informative than
the uniform ones if νk ∈Bγ for some γ > 0. It is remarkable that the same
estimate ν̂k as before will achieve the optimal pointwise convergence rates in
the class Hs(x0,δ ), provided the kernel wν satisfies (AK) and is sufficiently
smooth.

Theorem 8.11. Suppose that the assumptions (AL1), (AL2), (AT1), (AT2),
(AK) and (AH) are fulfilled. If νk ∈ Hs(x0,δ ) for some s≥ 1,δ > 0 and wν ∈
Cm(R) for some m≥ s, then

|ν̂k(x0)− ν̄k(x0)|= Oa.s.

√ log3+ε n
n

∫ 1/hn

−1/hn

R2
k(u)du + hs

n

 (8.24)

with Rk(u) as in Theorem 8.7. As a result, the pointwise rates of convergence
for different asymptotic behaviours of the Laplace transform Lt coincide with
those given in Table 1 and Table 2, replacing β by s.

The proof of Theorem 8.11 can be found in [9]

Remark 8.12. If the kernel wν is infinitely smooth, then it is suitable for any
pointwise smoothness of ν̄k, i.e., (8.24) will hold for arbitrarily large s ≥ 1,
provided νk ∈ Hs(x0,δ ). An example of infinitely smooth kernels satisfying
(AK) is given by the so called flat-top kernels.
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8.6 Simulation study

We consider a model based on time-changed normal inverse Gaussian (NIG)
Lévy processes. NIG Lévy processes form a relatively new class of processes
introduced in [5] as a model for log returns of stock prices. They are char-
acterised by the property that their increments have an NIG distribution.
Barndorff-Nielsen [5] considered classes of normal variance-mean mixtures
and defined the NIG distribution as the case when the mixing distribution is
inverse Gaussian. Shortly after its introduction it was shown that the NIG
distribution fits very well the log returns on German stock market data,
making the NIG Lévy processes of great interest for practioneers. A NIG dis-
tribution has in general four parameters: α ∈ R+, β ∈ R, δ ∈ R+ and µ ∈ R
with |β | < α. The NIG distribution is infinitely divisible with characteristic
function

ϕ(u) = exp
{

δ

(√
α2−β 2−

√
α2− (β +iu)2 +iµu

)}
.

Each parameter in the NIG(α,β ,δ ,µ) distribution can be interpreted as hav-
ing a different effect on the shape of the distribution: α is responsible for the
tail heaviness or steepness, β has to do with symmetry, δ scales the distribu-
tion and µ determines its mean value. One can define the NIG Lévy process
(Lt)t≥0 which starts at zero and has independent and stationary increments
such that each increment Lt+∆ −Lt has a NIG(α,β ,∆δ ,∆ µ) distribution. The
NIG process has no diffusion component making it a pure jump process with
the Lévy density

ν(x) =
2αδ

π

exp(βx)K1(α|x|)
|x|

(8.25)

where Kλ (z) is the modified Bessel function of the third kind. Taking into
account the asymptotic relations

K1(z)� 2/z, z→+0 and K1(z)�
√

π

2z
e−z, z→+∞,

we conclude that ν ∈B1 and ν ∈ Hs(x0,δ ) for arbitrary large s > 0 if x0 6= 0.
Moreover, Assumption (AL2) is fulfilled for any p > 0 and the identity

d2

du2 logϕ(u) =−α
2/
(
α

2− (β +iu)2)3/2

implies ν ∈S2−δ for arbitrary small δ > 0.
One way to construct a time-changed Lévy process from the NIG Lévy

process Lt is to use a time change of the form (2.11) with some rate process
ρ(t). A possible candidate for the rate of the time change is given by the
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Cox-Ingersoll-Ross process (CIR process). The CIR process is defined as a
solution of the following SDE:

dZt = κ(η−Zt)dt + ζ
√

Zt dWt , Z0 = 1

where Wt is a Wiener process. This process is mean reverting with κ > 0 being
the speed of mean reversion, η > 0 being the long-run mean rate and ζ > 0
controlling the volatility of Zt . Additionally, if 2κη > ζ 2 then Zt is stationary
and exponentially α-mixing. The time change T is then defined as

T (t) =
∫ t

0
Zt dt.

Simple calculations show that the Laplace transform of T (t) is given by

Lt(z) =
exp(κ2ηt/ζ 2)exp(−2z/(κ + γ(z)coth(γ(z)t/2)))

(cosh(γ(z)t/2)+ κ sinh(γ(z)t/2)/γ(z))2κη/ζ 2

with γ(z) =
√

κ2 + 2ζ 2z. It is easy to see that Lt(z)� exp
(
−
√

2z
ζ

[1 + tκη ]
)

as

|z| → ∞ with Rez ≥ 0. Moreover E|T (t)|p < ∞ for any p > 0 and any fixed
t > 0 since Lt(z) is finite for real z satisfying z >−κ2/2ζ 2.

Let Lt be a three-dimensional NIG Lévy process with independent
components distributed as NIG(1,−0.05,1,−0.5), NIG(3,−0.05,1,−1) and
NIG(1,−0.03,1,2), respectively. Construct the time-changed process Yt =
LT (t). Note that the process Yt is not any longer a Lévy process and has
in general dependent increments. Let us estimate ν̄1, the transformed Lévy
density of the first component of Lt . First note that according to Theorem 8.7
the estimate ν̂1 from Section 8.4 has the following logarithmic convergence
rates

‖ν̄1− ν̂1‖L∞(R,w) = Oa.s.

(
log−2(2−δ )(n)

)
, n→ ∞

for arbitrary small δ > 0, provided the bandwidth sequence is chosen in the
optimal way. We construct an estimate ν̂1 as described before. In particular,
we first estimate the derivatives ϕ1, ϕ2, ϕ11 and ϕ12 by means of (8.13) and
(8.14). Then we estimate ψ ′′1 (u). Finally, we get ν̂1 from (8.16) where the
kernel wν is chosen to be the kernel of the form

wν(x) =


1, |x| ≤ 0.05,

exp
(
− e−1/(|x|−0.05)

1−|x|

)
, 0.05 < |x|< 1,

0, |x| ≥ 1.

The kernel wν obviously satisfies the assumption (AK). Let us turn to the
finite sample performance of the estimate ν̂1. It turns out that the choice
of the sequence hn is crucial for a good performance of ν1. For this choice
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Fig. 5 Left hand-side: objective function f (l) for the“quasi-optimality”approach ver-
sus the corresponding bandwidths hl . Right hand-side: adaptive estimate ν̃1 (dashed
line) together with the true function ν̄1 (solid line).

we adopt the so called “quasi-optimality” approach proposed in [7]. This ap-
proach is aimed to perform a model selection in inverse problems without
taking into account the noise level. Although one can prove the optimality
of this criterion on average only, it leads in many situations to quite reason-
able results. In order to implement the “quasi-optimality” algorithm in our
situation, we first fix a sequence of bandwidths h1, . . . ,hL and construct the

estimates ν
(1)
1 , . . . ,ν

(L)
1 using the formula (8.16) with bandwidths h1, . . . ,hL,

respectively. Then one finds l? = argminl f (l) with

f (l) = ‖ν̂(l+1)
1 − ν̂

(l)
1 ‖L1(R), l = 1, . . . ,L.

Denote by ν̃1 = ν̂ l∗
1 a new adaptive estimate for ν̄1. In our implementation of

the “quasi-optimality” approach we take hl = 0.5 + 0.1× l, l = 1, . . . ,40. The
parameters of the used CIR process are κ = 1, η = 1 and ζ = 0.1. Finite
sample performance of ν̂1 is illustrated in Figure 5, where the sequence of

estimates ν̂
(1)
1 , . . . , ν̂

(L)
1 was constructed from the time series Y∆ , . . . ,Yn∆ with

n = 5000 and ∆ = 0.1. We can compute some functionals of ν̃1. We have,
for example, the following estimates for the integral and for the mean of
ν̄1:

∫
ν̃1(x)dx = 1.081376 (

∫
ν̄1(x)dx = 1.015189) and

∫
x̃ν1(x)dx =−0.4772505

(
∫

xν̄1(x)dx =−0.3057733).
Figure 6 (left) shows the boxplots of the resulting error ‖ν̄1− ν̃1‖L∞(R,w)

computed using 100 trajectories each of the length n = 5000, where the time
span between observations is ∆ = 0.1.
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Fig. 6 Boxplots of the error ‖ν̄1− ν̃1‖L∞(R,w) for different values of the mean reversion
speed parameter κ (left) and different numbers of observations n (right).

9 Spectral calibration from option data

Statistical estimators based on historical data yield parameters of the model
under the so-called physical or real-world probability measure P. By con-
trast, option pricing and calibration refers to expectations relative to some
risk-neutral measure Q. Here, we present a calibration method for exponential
Lévy models from European option prices. This type of indirect observation
is closely related to the direct low-frequency observation setting. The presen-
tation is mainly based on Belomestny and Reiß [10], where also all the proofs
can be found.

9.1 The exponential Lévy model and option prices

A European call option with maturity T and strike K for an underlying asset
grants the holder the right to buy the asset at the future time T for the price
K. A risk neutral price at time t = 0 for this option is given by

C(K,T ) = e−rTEQ[(ST −K)+], (9.1)

where (A)+ := max(A,0), ST is the (random) asset price at time T and Q is a
martingale measure equivalent to the real world probability P. By considering
option prices we immediately draw inference on this pricing measure Q. The
measure Q is assumed to be settled by the market and to be identical for all
options traded.

From now on we suppose that S follows an exponential Lévy model
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St = Sert+Xt with a Lévy process Xt for t > 0, (9.2)

under Q where S > 0 is the present value of the asset and r > 0 is the riskless
interest rate, which is assumed to be known and constant. Risk neutral pricing
requires that the discounted price process e−rtSt is a martingale on the filtered
probability space (Ω ,F,Q,(Ft)), fixed throughout.

An excellent reference for this and similar Lévy-based models in finance
is the monograph by Cont and Tankov [21]. Here we shall mainly consider
Lévy processes X with a jump component of finite variation and absolutely
continuous jump distribution. Its characteristic function is given by the Lévy-
Khintchine representation

ϕT (u) := E[exp(iuXT )] = exp
(

T
(
−σ2

2
u2 + iγu +

∫
∞

−∞

(eiux−1)ν(x) dx
))

. (9.3)

The corresponding characteristic triplet is denoted by T := (σ2,γ,ν).
By the independence of increments in X the martingale condition may be

explicitly stated as

∀ t > 0 : E[eXt ] = 1 ⇐⇒ σ2

2
+ γ +

∫
∞

−∞

(ex−1)ν(x)dx = 0, (9.4)

where here and below expectations are always taken with respect to Q.
Observe that we have imposed implicitly the exponential moment condi-
tion

∫
∞

0 (ex− 1)ν(x)dx < ∞ to ensure the existence of E[St ]. Another conse-
quence is that the characteristic function ϕT is defined on the whole strip
{z ∈ C | Im(z) ∈ [−1,0]} in the complex plane, which will be important later.
We reduce the number of parameters by introducing the negative log-forward
moneyness

x := log(K/S)− rT,

such that the call price in terms of x is given by

C (x,T ) = SE[(eXT − ex)+].

The analogous formula for the price of a put option, which gives the owner the
right to sell an asset at time T for the price K, is P(x,T ) = SE[(ex− eXT )+].
Then the well-known put-call parity is easily established:

C (x,T )−P(x,T ) = SE[eXT − ex] = S(1− ex). (9.5)

9.2 The observations

We focus on the calibration from options with a fixed maturity T > 0. We
observe the prices of N call options (or by the put-call parity alternatively
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put options) at different strikes K j, j = 1, . . . ,N, corrupted by noise

Yj = C(K j,T )+ σ jε j, j = 1, . . . ,N. (9.6)

We assume the observational noise (ε j) to consist of independent centred
random variables with E[ε2

j ] = 1 and sup j E[ε4
j ] < ∞. The noise levels (σ j) are

assumed to be positive and known. This random observation model reflects
the bid-ask spread and other frictions at the market.

As we want to employ Fourier techniques, we introduce the function

O(x) :=

{
S−1C (x,T ), x > 0,
S−1P(x,T ), x < 0

(9.7)

in the spirit of [19]. O records normalised call prices for x > 0 and normalised
put prices for x 6 0. The following properties of O are important.

Proposition 9.1.

(a) We have O(x) = S−1C (x,T )− (1− ex)+ for all x ∈ R.
(b) O(x) ∈ [0,1∧ ex] holds for all x ∈ R.
(c) If Cα := E[eαXT ] is finite for some α > 1, then O(x) 6Cα e(1−α)x holds for

all x > 0.
(d) At any x∈R\{0}, respectively x∈R\{0,γT} in the case σ = 0 and λ < ∞,

the function O is twice differentiable with∫
R\{0,γT}

|O ′′(x)|dx 6 3.

The first derivative O ′ has a jump of height −1 at zero and, in the case
σ = 0 and λ < ∞, a jump of height +eT (γ−λ ) occurs in O ′ at γT .

(e) The Fourier transform of O satisfies

FO(v) =
1−ϕT (v− i)

v(v− i)
, v ∈ R. (9.8)

This identity extends to all complex values v with Im(v) ∈ [0,1]. Note the
properties ϕT (0) = 1 and ϕT (−i) = 1 derived from the general property of
characteristic functions and the martingale condition (9.4), respectively.

We transform our observations (Yj) and predictors (K j) to

O j := Yj/S− (1−K je−rT/S)+ = O(x j)+ δ jε j, (9.9)

x j := log(K j/S)− rT, (9.10)

where δ j = S−1σ j. In practice, the design (x j) will be rather dense around
x = 0 (at the money) and sparse for options further out of the money or in
the money.



Estimation and calibration of Lévy models via Fourier methods 59

In order to facilitate the subsequent analysis we make a mild moment
assumption on the price process, which guarantees by Proposition 9.1(b,c)
the exponential decay of O.

Assumption 9.2 We assume that C2 := E[e2XT ] is finite. This is equivalent
to postulating for the asset price a finite second moment: E[S2

T ] < ∞.

9.3 The estimation method

Let us assume here that the Lévy process has finite intensity λ . Later we
shall impose also a certain regularity on the jump density ν . We make use of
the exact inversion formula, that is the mapping from the option prices to the
parameters derived in equation (9.11) below. This has the advantage that no
numerical minimisation technique needs to be employed and the propagation
of errors is more transparent. Moreover, the method and the proofs are closely
related to the basic spectral estimation procedure from Section 4.

Since our asset follows an exponential Lévy model, the jumps in the Lévy
process appear exponentially transformed in the asset prices and it is intuitive
that inference on the exponentially weighted jump measure

µ(x) := ex
ν(x), x ∈ R,

will lead to spatially more homogeneous properties of the estimator than for
ν itself. Our calibration procedure relies essentially upon the formula

ψ(v) :=
1
T

log
(

1 + iv(1 + iv)FO(v)
)

=
1
T

log(ϕT (v− i))

=−σ2v2

2
+ i(σ

2 + γ)v +(σ
2/2 + γ−λ )+F µ(v), (9.11)

which is a simple consequence of the formulae (9.3) and (9.8). Note that
the function ψ is up to a shift in the argument the cumulant-generating
function of the Lévy process and a continuous version of the logarithm must
be taken such that ψ(0) = 0, which is implied by the martingale condition.
Formula (9.11) shows that the Lévy triplet is uniquely identifiable given the
observation of the whole option price function O without noise: F µ(v) tends
to zero as |v| → ∞ due to the Riemann-Lebesgue Lemma and σ2, γ, λ are
identifiable as coefficients in the polynomial, which in turn yields the function
F µ(v). A properly refined application of this approach will equip us with
estimators for the whole triplet T = (σ2,γ,µ) (we parametrize Lévy triplets
equivalently with µ or ν).

Let us formulate the basic algorithm to be used when a certain smoothness
property is imposed on µ, that is under the prior knowledge µ ∈ G , where
G is a smoothness class. The procedure consists of four steps: (a) we build
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an approximation Õ of O from the data; (b) we obtain an approximation
ψ̃ of ψ by formula (9.11); (c) we estimate the coefficients of the quadratic
polynomial on the right-hand side in (9.11) from ψ̃ under the presence of a
noise component and the nonparametric nuisance part F µ; (d) we obtain an
estimator for F µ by considering the remainder.

The model (9.11) has a similar structure as partial linear models, well
known in statistics, but in fact there is one substantial difference: the func-
tion F µ is not supposed to be smooth, but instead it is decaying for high
frequencies because we work in the spectral domain. This is also why we
shall regularise the problem by cutting off frequencies |v| higher than a cer-
tain threshold level U , which depends on the noise level and the smoothness
assumptions in G .

We now give a detailed description of the different steps in the procedure.

(a) We approximate the function O by building Õ from the observations (O j)
in the form

Õ(x) = β0(x)+
N

∑
j=1

O jb j(x), x ∈ R,

and consequently FO by

FÕ(u) = Fβ0(u)+
N

∑
j=1

O jFb j(u), u ∈ R,

where (b j) are some basis functions to be chosen and the function β0 is
added to take care of the jump in the derivative of O at zero: β ′0(0+)−
β ′0(0−) =−1. Taking into account the decay properties of O, we interpolate
the data by specifying

∀x ∈ R : bk(x) ∈ [0,1], ∀ j,k = 1, ...,N : bk(x j) = δ jk, lim
|u|→∞

bk(u) = 0.

We stress here that step (a) should not be understood as a smoothing
step, but rather as a means to find a reasonable approximation of FO
based on discrete data. As can be seen in the theoretical analysis and
the numerical simulations below, it suffices to use simple linear B-splines
as basis functions. A B-spline consists of polynomial pieces, connected
in a special way. For example, a linear B-spline consists of 2 polynomial
peaces that joint at one inner knot in such a way that at the joining point
the function is continuous. Moreover, any linear B-spline is positive on a
domain spanned by 3 knots; everywhere else it is zero.

(b) For κ(v) ∈ (0,1), specified later, we calculate

ψ̃(v) :=
1
T

log>κ(v)

(
1 + iv(1 + iv)FÕ(v)

)
, v ∈ R, (9.12)

where the function log>κ : C\{0}→ C is given by
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log>κ(z) :=

{
log(z), |z| ≥ κ

log(κ z/|z|), |z|< κ
(9.13)

and log(•) is taken in such a way that ψ̃(v) is continuous with ψ̃(0) = 0
(almost surely the argument of the logarithm in (9.12) does not vanish
because zero is a polar set of the process, see [53] for the fine result). If
we observe option prices for different maturities Tk, we perform the steps
(a) and (b) for each Tk separately and aggregate at this point the different
estimators for ψ to obtain one estimator with less variance.

(c) With an estimate ψ̃ of ψ at hand, we obtain estimators for the para-
metric part (σ2,γ,λ ) by an averaging procedure taking into account the
polynomial structure in (9.11). Upon fixing the spectral cut-off value
U = U(G ,(δ j),(x j)), we set

σ̂
2 :=

∫ U

−U
Re(ψ̃(u))wU

σ (u)du, (9.14)

γ̂ :=−σ̂
2+
∫ U

−U
Im(ψ̃(u))wU

γ (u)du, (9.15)

λ̂ :=
σ̂2

2
+ γ̂−

∫ U

−U
Re(ψ̃(u))wU

λ
(u)du, (9.16)

where the weight functions wU
σ , wU

γ and wU
λ

satisfy

∫ U

−U
wU

σ (u)du = 0,
∫ U

−U
u2wU

σ (u)du =−2;
∫ U

−U
uwU

γ (u)du = 1; (9.17)∫ U

−U
u2wU

λ
(u)du = 0,

∫ U

−U
wU

λ
(u)du = 1. (9.18)

For the construction of weighting functions satisfying the above conditions
see Section 4. The estimate of the coefficients can be understood as an or-
thogonal projection estimate with respect to an L2-scalar product weighted
according to the supposed decay property of F µ.

(d) Finally, we define the estimate for µ as the inverse Fourier transform of
the remainder:

µ̂(u) := F−1
[(

ψ̃(•)+ σ̂2

2 (•− i)2− iγ̂(•− i)+ λ̂

)
1[−U,U ](•)

]
(u), u ∈ R.

(9.19)

Note that the computational complexity of this basic estimation procedure
is very low. The only time consuming steps are the three integrations in step
(c) and the inverse Fourier transform (inverse FFT) in step (d). In step (a)
we just take a data-dependent linear combination of the functions Fbk and
the function Fβ0, which with our choice as linear B-splines can be computed
explicitly:
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Fig. 7 Kou model. Left: Sample (O j) and true function O (dashed line). Center:
True µ (dashed) and estimated µ̂ (black) modified Lévy densities. Right: Box plot
for the L2-loss of the data-driven and the basic procedure based on 1000 Monte-Carlo
simulations.

Fbk(u) := u−2
(eiuxk − eiuxk−1

xk− xk−1
− eiuxk+1 − eiuxk

xk+1− xk

)
,

Fβ0(u) = u−2
(

1 +
eiux j0 x j0−1− eiux j0−1x j0

x j0 − x j0−1

)
with k = 1, . . . ,N, some extrapolated design points x0 and xN+1, where we set
Õ(x0) = Õ(xN+1) = 0, and with the index j0 ∈ {1, . . . ,N} defined by x j0−1 <
0 6 x j0 .

9.4 A numerical example

Two empirical findings (stylized facts) in financial data have attracted atten-
tion recently: the leptokurtic return distribution of assets with a higher peak
and two (asymmetric) heavier tails than those of the normal distribution,
and the implied volatility smile. To incorporate these features, the double
exponential jump diffusion model was proposed by Kou [45]. In his model
the Lévy triplet is specified by the jump density

ν(x) = λ

(
pλ+e−λ+x1[0,∞)(x)+(1− p)λ−eλ−x1(−∞,0)(x)

)
, x ∈ R,

and the parameters σ , λ , λ+, λ− > 0 and p ∈ [0,1], while γ is uniquely de-
termined by the martingale condition. We simulate the Kou model with pa-
rameters σ = 0.1,λ = 5,λ− = 4,λ+ = 8, p = 1/3 and apply the nonparametric
estimation procedure given the observation of noisy European option data
with T = 0.25, N = 50, r = 0.06 and δ j = O(x j)/10.

In Figure 7 (left) the simulated observations (O j) and the true curve O
are depicted as functions of the log-forward moneyness. The estimated trans-
formed Lévy density µ in the center is obtained using the basic procedure,
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as specified in the mathematical analysis, with a human-driven choice of
the cut-off parameter U . The parameters were estimated as σ̂ = 0.035, λ̂ =
7.56, γ̂ = 0.556(γ = 0.423). We observe that the estimated transformed Lévy
density recovers the main features of the Kou model like the mode at zero
and the skewness. From the functional form of the estimator we can easily
derive estimates for other important quantities, e.g. for the proportion of
negative jumps by calculating λ̂−1 ∫ 0

−∞
ν̂(x)dx = λ̂−1 ∫ 0

−∞
e−xµ̂(x)dx, which in

the simulation example evaluates to 0.72 (true value: 1− p = 2/3).
In the right part of Figure 7 we compare the performance of the completely

data-driven estimator, as described in Bauer and Reiß [7], with the oracle es-
timator (i.e, choosing the best possible U) obtained from the basic procedure
in terms of the empirical L2-loss. A box plot is shown for 1000 Monte-Carlo
replications.

9.5 Real data: DAX options

This part is mainly based on the work by Söhl and Trabs [55]. The calibration
methods are applied to a data set from the Deutsche Börse database Eurex1.
It consists of settlement prices of European put and call options on the DAX
index from May 2008. Therefore, the prices are observed before the latest
financial crises and thus the market activity is relatively stable. The interest
rate r is chosen for each maturity separately according to the put–call parity
at the respective strike prices. The expiry months of the options are between
July and December, 2008, and thus the time to maturity T , measured in
years, ranges from two to seven months. The number of observations N is
between 50 to 100 different strikes for each maturity and trading day.

In addition to applying the calibration method for Lévy processes with
finite jump activity, as described above, we shall also report the estimation
results for a pure-jump exponential Lévy model of self-decomposable type
where the Lévy measure has a density

ν(dx) =
k(x)

|x|
dx with k : R→ R+ increasing on (−∞,0), decreasing on (0,∞).

The class of self-decomposable distributions has nice probabilistic character-
isations, e.g. as invariant measures of all Lévy-Ornstein-Uhlenbeck process,
see Sato [52], and they include infinite activity jump process of small inten-
sity like the important class of Gamma processes. The main parameter that
measures the (usually infinite) small jump intensity is

α := k(0−)+ k(0+) ∈ [0,∞).

1 provided through the SFB 649 “Economic Risk”, Humboldt-Universität zu Berlin
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T=0.136, N=61 T=0.564, N=106

FA
σ̂ 0.110 (0.0021) 0.124 (0.0013)

λ̂ 3.392 (0.2015) 0.637 (0.0181)
SD α̂ 8.662 (0.1534) 5.181 (1.0030)

Table 3 Estimated parameters ϑ and estimated standard deviation ŝϑ (in brackets)
for ϑ ∈ {σ ,λ ,α} using option prices from May 29, 2008, with N observed strikes for
each maturity T .

For statistical estimation of the function k or the parameter α a spectral cali-
bration method works, if adapted in a clever way, similar to the one presented
here, see Trabs [59] for the details. In view of the discussions about the right
model world for financial data (ranging from continuous semi-martingales to
pure-jump processes) it is very reasonable to check the model validity by
estimators for these two structurally different Lévy classes, but see also the
discussion in Section 6 for the behaviour of the finite activity estimator under
infinite jump activity models.

In addition to including a second estimator, estimated standard deviations
are presented, which are, of course, of major interest as a quantification of the
statistical uncertainty. Here, we follow the construction by Söhl [54], which
provides asymptotically honest joint confidence intervals for the real triplet
parameters and the Lévy density evaluated at prescribed points and reveals
very interesting interdependencies. The numerical results are described in full
detail in Söhl and Trabs [55].

9.5.1 Finite activity versus self-decomposable Lévy models

Let us first focus on option prices of May 29, 2008, an arbitrarily chosen
day, where options are calibrated to both, the finite activity (FA) and the
self-decomposable (SD) exponential Lévy model. The results are summarized
in Table 3 and Figure 8. Using the complete estimation of the models, we
generate the corresponding option functions Ô. They are graphically com-
pared to the given data points. Both methods yield good fits to the data. For
the longer maturity, however, some problems occur in the SD calibration.
Although the sample size is larger, the estimated standard deviation is larger
for longer maturities in the SD scenario, too. The calibration at other trading
days confirms this weakness of the SD method for larger T . This coincides
with the asymptotic analysis of Trabs [59] where longer durations lead to
slower convergence rates of the risk.

Moreover, Figure 8 shows that the estimated option function Ô which
results from the SD calibration does not exactly recover the tails of O. At
all maturities and in both models the Lévy density has more weight on the
negative half line and thus there are more negative jumps than positive ones
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Fig. 8 Estimated jump densities (top), k–functions (center) with pointwise 95%
confidence intervals as well as calibrated option functions in the FA (bottom, solid)
and SD (bottom, dashed) setting and given DAX option data from May 29, 2008
(bottom, points). The times to maturity are T = 0.136 years (left) and T = 0.564 years
(right).

priced into the options. This coincides with the empirical findings in the
literature, see e.g. Cont and Tankov [22].
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Fig. 9 Estimation of ν for maturity in September (left) and December (right).

9.5.2 Estimation across trading days

By considering more than one day the stability of the finite activity estimation
procedure is studied. Moreover, calibrating the model across the trading days
in May, 2008, shows the development of the model along the time line and
with small changes in the maturities. To profit from the higher observation
number, the calibration procedure is applied to options with maturity in
September and December.

The estimated volatility σ̂ fluctuates around 0.1 and 0.12. Figure 9 dis-
plays the estimated jump densities. All jump measures have a similar shape.
In contrast to Cont and Tankov [22] the densities are unimodal or have only
minor additional modes in the tails, which may be artifacts of the spectral cal-
ibration method. The tails of ν̂ do not differ significantly, while the different
heights reflect the development of the jump activities λ̂ . There is an obvious
trend to small negative jumps in all data sets, which is in line with the styl-
ized facts of option pricing models. The calibration is stable for consecutive
market days.

9.6 Risk bounds

9.6.1 The main results

In order to assess the quality of the estimators introduced in Section 9.3, we
quantify their risks under a smoothness condition of order s on the trans-
formed jump density µ.

Definition 9.3. For s ∈ N and R, σmax > 0 let Gs(R,σmax) denote the set of
all Lévy triplets T = (σ2,γ,µ), satisfying the martingale condition and As-
sumption 9.2 with C2 6 R, such that µ is s-times (weakly) differentiable and
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σ2 γ λ µ

σmax > 0 | log(ε)|−(s+3)/2 | log(ε)|−(s+2)/2 | log(ε)|−(s+1)/2 | log(ε)|−s/2

σmax = 0 0 ε(2s+4)/(2s+5) ε(2s+2)/(2s+5) ε2s/(2s+5)

Table 4 The minimax rates vq,σmax for the different parameters q ∈ {σ2,γ,λ ,µ}.

σ ∈ [0,σmax], |γ|, λ ∈ [0,R], max
06k6s

‖µ(k)‖L2(R) 6 R, ‖µ(s)‖L∞(R) 6 R.

Since the underlying Lévy triplet is only identifiable if O(x) is known for
all x ∈ R, we consider the asymptotics of a growing number of observations
with

∆ := max
j=2,...,N

(x j− x j−1)→ 0 and A := min(xN ,−x1)→ ∞. (9.20)

In contrast to standard regression estimates we shall always track explicitly
the dependence on the level (δk) of the noise in the observations, which is
usually rather small for observed option prices. The subsequent analysis can
certainly be improved for a concrete design (x j) and concrete noise levels (δ j),
but for revealing the main features it is more transparent and concise to state
the results in terms of the abstract noise level

ε := ∆
3/2 + ∆

1/2‖δ‖l∞ , (9.21)

comprising the level of the numerical interpolation error and of the stochastic
error simultaneously. Here we use the norms ‖δ‖l∞ := supk δk and ‖δ‖2

l2 :=
∑k δ 2

k .
We now state the main results about the risk upper bounds of the estima-

tors obtained by the basic procedure.

Theorem 9.4. Assume e−A . ∆ 2 and ∆‖δ‖2
l2 . ‖δ‖2

l∞ . For any σ̄ > σmax we
choose

Uσ̄ := σ̄
−1(2log(ε

−1)/T
)1/2

, U0 := ε
−2/(2s+5), (9.22)

in the cases σmax > 0 and σmax = 0, respectively. Then every estimator q̂ ∈
{σ̂2, γ̂, λ̂ , µ̂} for the corresponding parameter q satisfies the following asymp-
totic risk bound:

sup
T ∈Gs(R,σmax)

ET [‖q̂−q‖2]1/2 . vq,σmax ,

where ‖•‖ denotes the absolute value for q ∈ {σ2,γ,λ} and the L2(R)-norm
for q = µ and the rate vq,σmax is given in Table 4.

The two assumptions in the theorem are not very severe: because of the
exponential decay of O the width A of the design only needs to grow log-
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arithmically and the error levels (δk) need only be square summable after
renormalisation. The latter condition can certainly be further relaxed since
this term is caused by a rough bound on the quadratic remainder term.

For the lower bounds we refer to the equivalence between the regression
and the Gaussian white noise model, as established by [16], and consider
merely the idealized observation model

dZ(x) = O(x)dx + ε dW (x), x ∈ R, (9.23)

with the noise level asymptotics ε → 0, a two-sided Brownian motion W and
with O = OT denoting the option price function from (9.7) for the given
triplet T . Here, the noise level ε corresponds exactly to the regression error
∆ 1/2‖δ‖l∞ . Due to Assumption 1 the option price functions O decrease expo-
nentially and the results by Brown and Low [16] remain valid for unbounded
intervals. This simplification avoids tedious numerical approximations in the
proofs that can be found in [10].

Theorem 9.5. Let s ∈ N, R > 0 and σmax > 0 be given. For the observation
model (9.23) and any quantity q ∈ {σ2,γ,λ ,µ} the following asymptotic risk
lower bounds hold:

inf
q̂

sup
T ∈Gs(R,σmax)

ET [‖q̂−q‖2]1/2 & vq,σmax ,

where ‖•‖ denotes the absolute value for q ∈ {σ2,γ,λ} and the L2(R)-norm
for q = µ, the infimum is always taken over all estimators and the rate vq,σmax

is as in Table 4.

Compared to Theorem 5.7 on lower bounds for i.i.d. observations of a
Lévy process, here the choice of alternatives is more restricted because the
martingale condition needs to remain fulfilled, see Belomestny and Reiß [10],
but the proof itself becomes easier since in this regression-type setting it
suffices to bound directly the L2-distance of the densities p0, p1, avoiding the
problem of a density in the denominator.

9.6.2 Discussion of the results

As we want to identify the Lévy triplet exactly in the limit, we have to assume
the asymptotics ∆ → 0 and A→ ∞ in the upper bound result. The numerical
interpolation error term ∆ 3/2 contained in ε can be made smaller by using
higher-order schemes. On the other hand, the statistical error term ∆ 1/2‖δ‖l∞

cannot be avoided as proved by the lower bound. Another way to study the
calibration problem is to keep the number N of observations fixed and just
to consider the asymptotics ‖δ‖l∞ → 0. In this case the original Lévy triplet
is not identifiable and the triplet of interest has to be properly defined in
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the set of triplets giving rise to the uncorrupted option prices, cf. Cont and
Tankov [22] for a minimum relative entropy approach.

Recall that the severe ill-posedness in the case σ > 0 is due to an underlying
deconvolution problem with the Gaussian kernel of variance σ2: the law of
the diffusion part of XT is convolved with that of the compound Poisson
part to give the density of XT . For small values of σ and finite samples the
performance is not so bad, compare the simulations in Section 9.4; it just
needs a lot more observations to improve on that.

At first sight the rates for the parametric estimation part are astonishing.
They are worse than in usual semi-parametric problems which also indicates
that misspecified parametric models will give unreliable estimates for the
volatility and jump intensity. In the case σ = 0, however, these rates are
easily understood when employing the language of distributions. With δ0
denoting the Dirac distribution in zero and δ ′0 its derivative we have

log(ϕT (u)) = TF
(
γδ
′
0 + ν−λδ0

)
(u).

Estimating the density of XT and similarly its characteristic function from
the noisy observations of O amounts roughly to differentiate the observed
function twice, cf. Ait-Sahalia and Duarte [1]. This gives the minimax rate
for ν and µ as that of estimating the second derivative of a regression function
of regularity s+2. For the parameter λ it suffices to estimate the jump in the
antiderivative of F−1(log(ϕT )), which corresponds to a pointwise estimation
problem in the first derivative of a regression function, while for γ the analogy
is the estimation of the regression function itself at zero. This explains also
why in the class Gs we have measured the regularity not only in L2, but also
uniformly. In fact, if we only assume an L2-Sobolev condition, then the same
lower bound techniques will yield slower rates for the parameters, as is typical
for pointwise estimation problems.

Observe that the estimation of the jump density at zero is only possible
by imposing a certain regularity there, otherwise it is clearly not possible to
detect jumps of height zero.

10 Open ends

Finally, let us point out two important, but yet unresolved topics where we
see a high potential for future research.
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10.1 Multi- and high-dimensional spectral inference

So far, the main research focus was on observations of one-dimensional pro-
cesses with the notable exception of the time-changed Lévy case. The ex-
tension of the spectral estimation method to the multidimensional case is in
principle mostly straight-forward. In the finite intensity Lévy case the char-
acteristic exponent is the sum of a polynomial of degree 2 in the frequency
variables plus the Fourier transform of the jump measure ν on Rd . The same
weighted least squares approach as in Section 4 can then be used to estimate
σ ∈Rd×d , b∈Rd and λ ∈R+. In the general case, however, an analogue of the
measure νσ from Section 6 that naturally (from a topological point of view)
incorporates both, the diffusion and the jump part of the Lévy process, is
to be found. One candidate is derived from the Hessian of the characteristic
exponent

−∇
2
ψ(u) = F ν̄σ with ν̄σ (dx) = σ

2
δ0(dx)+(x⊗ x)ν(dx).

Note that ν̄σ is an Rd×d-valued finite measure on Rd , assuming a second
finite moment for the Lévy process. A probabilistic question is then to derive
a continuity result like Proposition 6.2 also for ν̄σ . For the statistical analysis
then a much finer result is needed to derive optimal results of convergence,
which basically depends on a quantification of the modulus of continuity.

From a statistical perspective a multivariate problem generates completely
new questions, particularly on the dependence between the marginal pro-
cesses. Main features of multivariate jump processes are not covered by the
linear correlation structure. To this end, the copula concept has been trans-
ferred to Lévy processes and one key inference question is to test whether a
certain copula structure should be rejected or not based on empirical data,
which has been addressed by Bücher and Vetter [17] in the high-frequency
case. For low-frequency observations this is still a completely open question.
In particular in view of financial applications, high interest lies in particular
in the quantification of the tail dependence, which can describe how different
assets react together on larger shocks and thus how well diversified the risk
of a portfolio is in times of crises.

In mathematical statistics the problem of high-dimensional inference has
been attracting major interest recently, assuming that the dimension d tends
to infinity as the sample size n tends to infinity. These asymptotics cover
features of real data better where the dimension is not small relative to the
sample size. Moreover, interesting probabilistic and statistical questions turn
up. In particular, it is shown that under sparsity or low rank assumptions a
high-dimensional covariance matrix can be estimated much more accurately
than for general models of dimension d, see e.g. Cai et al. [18] and the refer-
ences therein. It seems that similar results can be obtained for the diffusion
matrix σ ∈ Rd×d of a Lévy process from low or high frequency observations.
In the latter case, however, the nuisance of the jump part may interfere and
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worse rates might result as in dimension one, see Jacod and Reiß [37]. The
corresponding estimation problem for the jump measure ν on Rd is equally
interesting. In particular, important subclasses of multidimensional Lévy pro-
cesses have been introduced, e.g. extensions of stable or self-decomposable
processes (cf. Sato [52]), and the construction of asymptotically optimal esti-
mators for these subclasses remains a challenging problem, both theoretically
and for applications.

10.2 Spectral estimation of affine processes

Let X be a regular affine process. The formulas (2.6) and (2.7) imply

e−i〈u,x〉
∂ϕ(u|t,x)

∂ t

∣∣∣∣
t=0

= F0(u)+ 〈x,F1(u)〉. (10.1)

So the right hand side of (10.1) is a linear function of x with the functions
F0(u) and F1(u) of Lévy-Khintchine form (see Theorem 2.6). Hence, the spec-
tral estimation principle of Section 4 can be applied to estimate the parame-

ters of X provided a consistent estimate for the derivative e−i〈u,x〉 ∂ϕ(u|t,x)
∂ t

∣∣∣
t=0

is available for all u ∈ Rd . Assume that the process X is observed on a time
grid 0,∆ ,2∆ , . . . ,n∆ with ∆ → 0 and T := n∆ →∞. Now one can estimate the
vector (F0,F1) by solving the least-squares problem

(F̂0, F̂1) = arginf
(a,b)∈R×Rd

n

∑
k=1

[
ei〈u,Xk∆−X(k−1)∆ 〉−1

∆
−a−〈X(k−1)∆ ,b〉

]2

. (10.2)

Based on the estimates (F̂0(u), F̂1(u)), we can estimate the parameters of X .
There are several open questions, in particular:

• Does the estimate (F̂0, F̂1) converge to (F0,F1) and at which rate?
• How can the parameters of the affine process X be estimated based on

(F̂0, F̂1) and how large are the errors?
• Are the convergence rates optimal?

For a different approach towards the estimation of affine models see Be-
lomestny [8]. This approach is based on blockwise local polynomial smoothing
in time and space.
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Estimation and calibration of Lévy models via Fourier methods 73

19. Carr, P. and Madan, D. (1999). Option valuation using the fast fourier trans-
form. Journal of Computational Finance 2 (4), 61–73.

20. Comte, F. and Genon-Catalot, V. (2011). Estimation for lévy processes from
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