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1. Prove: Let X be Poisson(s) and Y be Poisson(t) distributed. If X and Y are
independent, then X + Y is Poisson(t + s) distributed (t, s > 0). This means
that the property of a convolution semigroup of measures (P (t))t>0 holds:
P (s) ∗P (t) = P (t+ s), s, t > 0. Which measure P (0) is the neutral element of
such a convolution semigroup?

2. Let (Nt, t > 0) be a Poisson process of intensity λ > 0 and let (Yk)k>1 be a
sequence of i.i.d. random variables, independent of N . Then Xt :=

∑Nt
k=1 Yk is

called compound Poisson process (Xt := 0 if Nt = 0).

(a) Show that (Xt) has independent and stationary increments. Infer that
the laws P (t) = PXt define a convolution semigroup (as in (1)).

(b) Determine expectation and variance of Xt in the case Yk ∈ L2.

3. Flies and wasps land on your dinner plate in the manner of independent Pois-
son processes with respective intensities µ and λ. Show that the arrival of
flying beasts forms a Poisson process of intensity λ + µ (superposition). The
probability that an arriving fly is a blow-fly is p. Does the arrival of blow-flies
also form a Poisson process? (thinning)

4. The number of busses that arrive until time t at a bus stop follows a Poisson
process with intensity λ > 0 (in our model). Adam and Berta arrive together
at time t0 > 0 at the bus stop and discuss how long they have to wait in the
mean for the next bus.
Adam: Since the waiting times are Exp(λ)-distributed and the exponential
distribution is memoryless, the mean is λ−1.
Berta: The time between the arrival of two busses is Exp(λ)-distributed and
has mean λ−1. Since on average the same time elapses before our arrival and
after our arrival, we obtain the mean waiting time 1

2λ
−1 (at least assuming

that at least one bus had arrived before time t0).
What is the correct answer to this waiting time paradoxon?
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1. Let (P (t))t>0 be the transition matrices of a continuous-time, time-
homogeneous Markov chain with finite state space. Assume that the transition
probabilities pij(t) are differentiable for t > 0. Prove:

(a) The derivative satisfies p′ij(0) > 0 for i 6= j, p′ii(0) 6 0 and
∑

j p
′
ij(0) = 0.

(b) With the matrix (generator) A = (p′ij(0))i,j we obtain the forward and
backward equation:

P ′(t) = P (t)A, P ′(t) = AP (t), t > 0.

(c) The generator A defines uniquely P (t): P (t) = eAt :=
∑

k>0A
ktk/k!.

(d*) Find conditions to extend these results to general countable state space.

2. Let (Xn, n > 0) be a discrete-time, time-homogeneous Markov chain and let
(Nt, t > 0) be a Poisson process of intensity λ > 0, independent of X. Show
that Yt := XNt , t > 0, is a continuous-time, time-homogeneous Markov chain.
Determine its transition probabilities and its generator.
Remark: Under regularity conditions this gives all continuous-time, time-
homogeneous Markov chains.

3. Let C([0,∞)) be equipped with the topology of uniform convergence on com-
pacts using the metric d(f, g) :=

∑
k>1 2−k(supt∈[0,k]|f(t)− g(t)| ∧ 1). Prove:

(a) (C([0,∞)), d) is Polish.

(b) The Borel σ-algebra is the smallest σ-algebra such that all coordinate
projections πt : C([0,∞))→ R, t > 0, are measurable.

(c) For any continuous stochastic process (Xt, t > 0) on (Ω,F ,P) the map-
ping X̄ : Ω→ C([0,∞)) with X̄(ω)t := Xt(ω) is Borel-measurable.

(d) The law of X̄ is uniquely determined by the finite-dimensional distribu-
tions of X.

4. Prove the regularity lemma: Let P be a probability measure on the Borel
σ-algebra B of any metric (or topological) space. Then

D :=
{
B ∈ B

∣∣∣P (B) = sup
K⊆B compact

P (K) = inf
O⊇B open

P (O)
}

is closed under set differences and countable unions (D is a σ-ring).
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1. A discrete-time Markov process with state space (S,S ) is specified by an
initial distribution µ0 on (S,S ) and a transition kernel P : S × S → [0, 1]
(i.e. B 7→ P (x,B) is a probability measure for all x ∈ S and x 7→ P (x,B) is
measurable for all B ∈ S ). Show:

(a) If we put iteratively Pn(x,B) :=
∫
S P

n−1(y,B)P (x, dy) for n > 2 and
P 1 := P , then each Pn is again a transition kernel.

(b) Put for all n > 1, A ∈ S ⊗n

Qn(A) :=

∫
Sn

1A(x0, x1, . . . , xn−1)µ
0(dx0)P (x0, dx1) · · ·P (xn−2, dxn−1).

Then (Qn)n>1 defines a projective family on SN.

(c) Let (S,S ) be Polish. Then for each initial distribution µ0 and each tran-
sition kernel P there exists a stochastic process (Xn, n > 0) satisfying
PX0 = µ0 and P(X0,...,Xn−1) = Qn, n > 1 (the Markov process).

2. A Gaussian process (Xt, t ∈ T ) is a process whose finite-dimensional distri-
butions are (generalized) Gaussian, i.e. (Xt1 , . . . , Xtn) ∼ N(µt1,...,tn ,Σt1,...,tn)
with Σt1,...,tn ∈ Rn×n positive semi-definite.

(a) Why are the finite-dimensional distributions of X uniquely determined by
the expectation function t 7→ E[Xt] and the covariance function (s, t) 7→
Cov(Xs, Xt)?

(b) Prove that for an arbitrary function µ : T → R and any symmetric,
positive (semi-)definite function C : T 2 → R, i.e. C(t, s) = C(s, t) and

∀n > 1; t1, . . . , tn ∈ T ; λ1, . . . , λn ∈ R :

n∑
i,j=1

C(ti, tj)λiλj > 0,

there is a Gaussian process with expectation function µ and covariance
function C.



3. Let (X,Y ) be a two-dimensional random vector with Lebesgue density fX,Y .

(a) For x ∈ R with fX(x) > 0 (fX(x) =
∫
fX,Y (x, η) dη) consider the condi-

tional density fY |X=x(y) := fX,Y (x, y)/fX(x). Which condition on fX,Y

ensures for any Borel set B

lim
h↓0

P(Y ∈ B |X ∈ [x, x+ h]) =

∫
B
fY |X=x(y) dy ?

(b) Show that for Y ∈ L2 (without any condition on fX,Y ) the function

ϕY (x) :=

{∫
yfY |X=x(y) dy, fX(x) > 0

0, otherwise

minimizes the L2-distance E[(Y − ϕ(X))2] over all measurable functions
ϕ. We write E[Y |X = x] := ϕY (x) and E[Y |X] := ϕY (X).

(c) Prove that ϕY is PX -a.s. uniquely (among all ϕ : R → R measurable)
characterized by solving

∀A ∈ BR : E[ϕ(X)1A(X)] = E[Y 1A(X)].

4. In the situation of exercise 3 prove the following properties:

(a) E[E[Y |X]] = E[Y ];

(b) if X and Y are independent, then E[Y |X] = E[Y ] holds a.s.;

(c) if Y > 0 a.s., then E[Y |X] > 0 a.s.;

(d) for all α, β ∈ R, α 6= 0 we have E[αY + β |X] = αE[Y |X] + β a.s.;

(e) if ϕ : R → R is such that (x, y) 7→ (x, yϕ(x)) is a diffeomorphism and
Y ϕ(X) ∈ L2, then E[Y ϕ(X) |X] = E[Y |X]ϕ(X) a.s.
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1. Let Ω =
⋃
n∈NBn, Bm ∩ Bn = ∅ for m 6= n, be a measurable, countable

partition for given (Ω,F ,P) and put B := σ(Bn, n ∈ N). Show:

(a) Every B-measurable random variable X can be written as X =∑
n αn1Bn with suitable αn ∈ R. For Y ∈ L1 we have E[Y | B] =∑
n:P(Bn)>0

(
1

P(Bn)
∫
Bn
Y dP

)
1Bn .

(b) Specify Ω = [0, 1) with Borel σ-algebra and P = U([0, 1)), the uni-
form distribution. For Y (ω) := ω, ω ∈ [0, 1), determine E[Y |σ([(k −
1)/n, k/n), k = 1, . . . , n)]. For n = 1, 3, 5, 10 plot the conditional expec-
tations and Y itself as functions on Ω.

2. Let (X,Y ) be a two-dimensional N(µ,Σ)-random vector.

(a) For which α ∈ R are X and Y − αX uncorrelated?

(b) Conclude that X and Y − (αX + β) are independent for these values α
and for arbitrary β ∈ R such that E[Y |X] = αX+β with suitable β ∈ R.

3. For Y ∈ L2 define the conditional variance of Y given X by

Var(Y |X) := E[(Y − E[Y |X])2 |X].

(a) Why is Var(Y |X) well defined?

(b) Show Var(Y ) = Var(E[Y |X]) + E[Var(Y |X)].

(c) Use (b) to prove for independent random variables (Zk)k>1 and N in L2

with (Zk) identically distributed and N N-valued:

Var
( N∑
k=1

Zk

)
= E[Z1]

2 Var(N) + E[N ] Var(Z1).



4. For a convex function ϕ : R→ R (i.e. ϕ(αx+(1−α)y) 6 αϕ(x)+(1−α)ϕ(y))
for x, y ∈ R, α ∈ (0, 1)) show:

(a) D(x, y) := ϕ(y)−ϕ(x)
y−x , x 6= y, is non-decreasing in x and y, which implies

that ϕ is differentiable from the right and from the left and that ϕ is
continuous.

(b) Using the right-derivative ϕ′+, we have:

∀x, y ∈ R : ϕ(y) > ϕ(x) + ϕ′+(x)(y − x),

∀ y ∈ R : ϕ(y) = sup
x∈Q

(
ϕ(x) + ϕ′+(x)(y − x)

)
.

(c) Assume Y, ϕ(Y ) ∈ L1. Then E[ϕ(Y ) | G] > ϕ(x) + ϕ′+(x)(E[Y | G] − x)
holds for all x ∈ R. Infer Jensen’s inequality: E[ϕ(Y ) | G] > ϕ(E[Y | G]).

Submit before the first lecture on 21 November 2013
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1. Let
(
Ω,F ,P

)
be a probability space and G ⊆ F a σ-algebra. Recall the defi-

nition of conditional probability:

P
(
A|G

)
= E [1A|G] .

Prove that

(a) For all A ∈ F , B ∈ G: P(A ∩B) =
∫
B P(A|G) dP.

(b) For all A ∈ F : 0 6 P(A|G) 6 1 almost surely.

(c) P(∅|G) = 0 and P(Ω|G) = 1 almost surely.

(d) For disjoint sets A1, A2, . . . ∈ F , we have almost surely:

P
(
A1 ∪A2 ∪ . . . |G

)
= P(A1|G) + P(A2|G) + . . . .

Why does this not necessarily mean that A 7→ P(A|G)(ω) is a probability
measure for P-almost all ω ∈ Ω?

2. Doubling strategy: In each round a fair coin is tossed, for heads the player
receives his double stake, for tails he loses his stake. His initial capital isK0 = 0.
At game n > 1 his strategy is as follows: if heads has appeared before, his stake
is zero (he stops playing); otherwise his stake is 2n−1 Euro.

(a) Argue why his capital Kn after game n can be modeled with independent
(Xi) such that P(Xi = 1) = P(Xi = −1) = 1/2 via

Kn =

{
−(2n − 1), X1 = · · · = Xn = −1,

1, otherwise.

(b) Represent Kn as martingale transform.

(c) Prove limn→∞Kn = 1 a.s. although E[Kn] = 0 for all n > 0 holds.

3. Let T be an N0-valued random variable and Sn := 1{n>T}, n > 0. Show:

(a) The natural filtration satisfies FSn = σ({T = k}, k = 0, . . . , n).

(b) (Sn) is a submartingale with respect to (FSn ) and

E[Sn+1 | FSn ] = 1{Sn=1} + P(T = n+ 1 |T > n+ 1)1{Sn=0} P-a.s.

(c) Determine the Doob decomposition of (Sn). Sketch for geometrically dis-
tributed T (P(T = k) = (1− p)pk) the sample paths of (Sn), its compen-
sator and their difference.

Submit before the first lecture on 21 November 2013
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1. Let (FXn )n>0 be the natural filtration of a process (Xn)n>0 and consider a
finite stopping time τ with respect to (FXn ).

(a) Prove Fτ = σ(τ, Xτ∧n, n > 0).
Hint: for ’⊆’ write A ∈ Fτ as A =

⋃
nA ∩ {τ = n}.

(b*) Do we even have Fτ = σ(Xτ∧n, n > 0)?

2. Let (Xn)n>0 be an (Fn)-adapted family of random variables in L1. Show that
(Xn)n>0 is a martingale if and only if for all bounded (Fn)-stopping times τ
the identity E[Xτ ] = E[X0] holds.

3. Let (Sn)n>0 be a simple random walk with P(Sn − Sn−1 = 1) = p, P(Sn −
Sn−1 = −1) = q = 1− p, p ∈ (0, 1). Prove:

(a) Put M(λ) = peλ + qe−λ, λ ∈ R. Then the process

Y λ
n := exp

(
λSn − n log(M(λ))

)
, n > 0,

is a martingale (w.r.t. its natural filtration).

(b) For a, b ∈ Z with a < 0 < b and the stopping time(!) τ := inf{n > 0 |Sn ∈
{a, b}} we have

eaλ E[M(λ)−τ1{Sτ=a}] + ebλ E[M(λ)−τ1{Sτ=b}] = 1 if M(λ) > 1.

(c) This implies for all s ∈ (0, 1] (put s = M(λ)−1)

E[sτ1{Sτ=a}] =
λ+(s)b − λ−(s)b

λ+(s)bλ−(s)a − λ+(s)aλ−(s)b
,

E[sτ1{Sτ=b}] =
λ−(s)a − λ+(s)a

λ+(s)bλ−(s)a − λ+(s)aλ−(s)b

with λ±(s) = (1±
√

1− 4pqs2)/(2ps).

(d) Now let a ↓ −∞ and infer that the generating function of the first passage
time τb := inf{n > 0 |Sn = b} is given by

ϕτb(s) := E[sτb1{τb<∞}] =
(1−

√
1− 4pqs2

2qs

)b
, s ∈ (0, 1].

In particular, we have P(τb <∞) = ϕτb(1) = min(1, p/q)b.



4. Your winnings per unit stake on game n are εn, where (εn) are independent
random variables with P(εn = 1) = p, P(εn = −1) = 1 − p for p > 1/2. Your
stake Xn on game n must lie between zero and Cn−1, your capital at time
n−1. For some N ∈ N and C0 > 0 your objective is to maximize the expected
interest rate E[log(CN/C0)].
Show that for any predictable strategy X the process log(Cn)−nα is a super-
martingale with respect to Fn := σ(ε1, . . . , εn) where

α := p log p+ (1− p) log(1− p) + log 2 (entropy).

Hence, E[log(CN/C0)] 6 Nα always holds. Find an optimal strategy such that
log(Cn)− nα is even a martingale.
Remark: This is the martingale approach to optimal control.

Submit before the first lecture on Tuesday, 28 November 2013
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1. Prove that a family (Xi)i∈I of random variables is uniformly integrable if and
only if supi∈I‖Xi‖L1 <∞ holds as well as

∀ ε > 0 ∃ δ > 0 : P(A) < δ ⇒ sup
i∈I

E[|Xi|1A] < ε.

2. Show for an Lp-bounded martingale (Mn) (i.e. supn E[|Mn|p] < ∞) with p ∈
(1,∞):

(a) (Mn) converges a.s. and in L1 to some M∞ ∈ L1.

(b) Use |M∞| 6 supn>0|Mn| (why?) and Doob’s inequality to infer M∞ ∈ Lp.
(c) Prove with dominated convergence that (Mn) converges to M∞ in Lp.

3. Give a martingale proof of Kolmogorov’s 0-1 law:

(a) Let (Fn) be a filtration and F∞ = σ(Fn, n > 0). Then for A ∈ F∞ we
have limn→∞ E[1A |Fn] = 1A a.s.

(b) For a sequence (Xk)k>1 of independent random variables consider the
natural filtration (Fn) and the terminal σ-algebra T :=

⋂
n>1 σ(Xk, k >

n). Then for A ∈ T we deduce P(A) = E[1A |Fn] → 1A a.s. such that
P (A) ∈ {0, 1} holds.

4. A monkey types at random the 26 capital letters of the Latin alphabet.
Let τ be the first time by which the monkey has completed the sequence
ABRACADABRA. Prove that τ is almost surely finite and satisfies

E[τ ] = 2611 + 264 + 26.

How much time does it take on average if one letter is typed every second?
Hint: You may look at a fair game with gamblers Gn arriving before times
n = 1, 2, . . . Gn bets 1 Euro on ’A’ for letter n; if he wins, he puts 26 Euro on
’B’ for letter n+ 1, otherwise he stops. If he wins again, he puts 262 Euro on
’R’, otherwise he stops etc.

Submit before the first lecture on Thursday, 5 December 2009
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1. Suppose P0, P1, P2 are probability measures on (Ω,F ). Show:

(a) If P2 � P1 � P0 holds, then dP2
dP0

= dP2
dP1

dP1
dP0

holds P0-a.s.

(b) P0 and P1 are equivalent if and only if P1 � P0 and dP1
dP0

> 0 holds P0-a.s.

In that case we have dP0
dP1

=
(
dP1
dP0

)−1 P0-a.s. and P1-a.s.

2. Prove in detail for Q � P, Z = dQ
dP and Y ∈ L1(Q) the identity EQ[Y ] =

EP[Y Z]. Give an example where Y ∈ L1(Q), but not Y ∈ L1(P) holds.

3. Let (Xk)k>1 be a sequence of i.i.d. {−1,+1}-valued random variables. Under
the null hypothesis H0 we have P0(Xk = +1) = p0 with p0 ∈ (0, 1), while
under the alternative H1 we have P1(Xk = +1) = p1 with p1 6= p0.

(a) Explain why the likelihood quotient
d(⊗ni=1 P

Xi
1 )

d(⊗ni=1 P
Xi
0 )

after n observations

X1, . . . , Xn is given by

Ln =
p
(n+Sn)/2
1 (1−p1)(n−Sn)/2

p
(n+Sn)/2
0 (1−p0)(n−Sn)/2

with Sn =
∑n

k=1Xk.

(b) Show that the likelihood process (Ln)n>0 (put L0 := 1) forms a non-
negative martingale under the hypothesis H0 (i.e. under P0) w.r.t. its
natural filtration.

(c) A sequential likelihood-quotient test, based on 0 < A < B and the stopping
time

τA,B := inf{n > 1 |Ln > B or Ln 6 A},

rejects H0 if LτA,B > B, and accepts H0 if LτA,B 6 A. Determine the
probability for errors of the first and second kind (i.e., P0(LτA,B > B) and
P1(LτA,B 6 A)) in the case p0 = 0.4, p1 = 0.6, A = (2/3)5, B = (3/2)5.
Calculate E[τA,B].



4. Let Zn(x) = (3/2)n
∑

k∈{0,2}n 1I(k,n)(x), x ∈ [0, 1], with intervals I(k, n) :=

[
∑n

i=1 ki3
−i,
∑n

i=1 ki3
−i + 3−n]. Show:

(a) (Zn)n>0 with Z0 = 1 forms a martingale on ([0, 1],B[0,1], λ, (Fn)) with
Lebesgue measure λ on [0, 1] and Fn := σ(I(k, n), k ∈ {0, 1, 2}n).

(b) (Zn) converges λ-a.s., but not in L1([0, 1],B[0,1], λ) (Sketch!).

(c) Interpret Zn as the density of a probability measure Pn with respect to
λ. Then (Pn) converges weakly to some probability measure P∞ (P∞ is
called Cantor measure). There is a Borel set C ⊆ [0, 1] with P∞(C) = 1,
λ(C) = 0.
Hint: Show that the distribution functions converge to a limit distribution
function, which is λ-a.e. constant.

Submit before the first lecture on Thursday, 12 December 2013
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1. Let (Xn)n∈N0
be a Markov chain with arbitrary initial distribution µ and

transition matrix

P =



1/3 0 0 1/3 1/3 0 0
0 1/2 0 1/2 0 0 0
0 0 1 0 0 0 0

1/2 0 0 1/2 0 0 0
1/2 0 0 1/2 0 0 0
0 0 0 0 0 1 0
0 1/3 1/3 0 1/3 0 0


.

Draw a graph representing the transition probabilities with states as vertices
and edges for transitions to clarify the structure of the Markov chain. Find all
recurrent, transient, closed and irreducible sets of states.

2. Let S = N0 and define the transition probabilities

i ≥ 1 : pi,i+1 = pi > 0, pi,i−1 = qi > 0, pi,i = si,

i = 0 : p0,1 = p0 > 0, p0,0 = s0 = 1− p0

for some birth and death probabilities pi, qi > 0, as well as si = 1 − pi − qi
for i ≥ 1. This defines a so called birth and death process X with transition
probabilities pi,j as given above and arbitrary initial distribution µ. Our goal

is to prove that the process X is recurrent if and only if
∑∞

l=1

∏l−1
k=1

qk
pk

=∞.

(a) Observe (i.e. prove) that X is irreducible.

(b) Show that irreducible Markov chains on discrete state spaces are either
transient or recurrent.

(c) Conclude that it is enough to show that 0 is recurrent if and only
if
∑∞

l=1

∏l−1
k=1

qk
pk

= ∞. Moreover, it is enough to prove that r1,0 =
P1 (T0 <∞) = 1 with Ty = inf {n > 0 : Xn = y}.

(d) Find a function ϕ : N0 → R such that (ϕ (XT0∧n))n≥0 is a martingale
with respect to the natural filtration of X under Pi for i > 0.

(e) Let 0 < i < b be integers and observe that (ϕ (XT0∧Tb∧n))n≥0 is a bounded
martingale under Pi for i > 0.

(f) Conclude by the stopping theorem and the martingale convergence theo-
rem that T0∧Tb <∞ Pi-almost surely for i > 0 and that Ei [ϕ (XT0∧Tb)] =
ϕ (i).



(g) Obtain the claim that X is recurrent if and only if
∑∞

l=1

∏l−1
k=1

qk
pk

=∞.

Discuss different choices of (pi)i≥0 , (qi)i≥0 for which the condition∑∞
l=1

∏l−1
k=1

qk
pk

=∞ is satisfied.

3. (∗) Prove that if the two families (Xi)i∈I , (Yj)j∈J of random variables are
uniformly integrable, then also the family {Xi + Yj : i ∈ I, j ∈ J} is uniformly
integrable.

Hint: Review problem 1 of exercise sheet 7.

4. (∗) Let
{
X

(n)
k : n, k ≥ 1

}
be an iid family of Z+-valued random variables. We

define a branching process (Zn)n≥0 by Z0 = 1 and

Zn+1 = X
(n+1)
1 + · · ·+X

(n+1)
Zn

(n ≥ 0) ,

recursively. Assume that if X denotes any of X
(n)
k , then µ := E [X] < ∞ and

0 < σ2 := V ar (X) <∞.

(a) Read about branching processes and, in particular, about Galton-Watson
processes on Wikipedia and describe briefly how they are used in appli-
cations.

(b) If possible, read (or at least skim through) Chapter 0 of David Williams’
book Probability with martingales in order to understand why they are
interesting as mathematical objects.

(c) Prove that Mn := Zn/µ
n defines a martingale M relative to the filtration

Fn = σ (Z0, Z1, . . . , Zn). Show that

E
[
Z2
n+1

∣∣Fn

]
= µ2Z2

n + σ2Zn

and deduce that M is bounded in L2 if and only if µ > 1. Show that
when µ > 1,

V ar (M∞) = σ2 (µ (µ− 1))−1 ,

where M∞ is the almost-sure limit of Mn.

Exercises without (∗) are regular exercises. Submit them before the first lecture on
Thursday, 19 December 2013.
Exercises with (∗) are extra. You can use them to get additional homework points.
Submit those before the first lecture on Thursday, 9 January 2014.
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1. Prove von Neumann’s ergodic theorem: For measure-preserving T and X ∈ Lp,
p > 1, we have that An := 1

n

∑n−1
i=0 X ◦ T i converges to E[X |IT ] in Lp.

Hint: Show that |An|p is uniformly integrable.

2. Show that a measure-preserving map T on (Ω,F ,P) is ergodic if and only if
for all A,B ∈ F

lim
n→∞

1

n

n−1∑
k=0

P(A ∩ T−kB) = P(A)P(B).

Hint: For one direction apply an ergodic theorem to 1B.
(*) Extension: If even limn→∞ P(A ∩ T−nB) = P(A)P(B) holds, then T is
called mixing. Show that T mixing implies T ergodic, but not conversely (e.g.,
consider rotation by an irrational angle).

3. Gelfand’s Problem: Does the decimal representation of 2n ever start with the
initial digit 7? Study this as follows:

(a) Determine the relative frequencies of the initial digits of (2n)16n630.

(b) Let A ∼ U([0, 1]). Prove that the initial digit k in (10A2n)16n6m converges
as m → ∞ a.s. to log10(k + 1) − log10(k) (consider Xn = A + n log10(2)
mod 1!).

(c) Prove that the convergence in (b) even holds everywhere. In particular,
the relative frequency of the initial digit 7 in the powers of 2 converges
to log10(8/7) ≈ 0, 058.
Hint: Show for trigonometric polynomials p(a) =

∑
|m|6M cme

2πima that
1
n

∑n−1
k=0 p(a+kη)→

∫ 1
0 p(x)dx holds for all η ∈ R \Q, a ∈ [0, 1] (calculate

explicitly for monomials!) and approximate.

4. Consider the Ehrenfest model, i.e. a Markov chain on S = {0, 1, . . . , N} with
transition probabilities pi,i+1 = (N − i)/N , pi,i−1 = i/N .

(a) Show that µ({i}) =
(
N
i

)
2−N , i ∈ S, is an invariant initial distribution.

(b) Is the Markov chain starting in µ ergodic?

(*c) Simulate the Ehrenfest model with initial value i0 ∈ {N/2;N}, N = 100
for T ∈ {100; 100, 000} time steps. Plot the relative frequencies of visits
to each state in S and compare with µ. Explain what you see!

Submit before the first lecture on Thursday, 16 January 2010
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1. Let (Xn)n>1 be a real stationary process and define Sn =
∑n

k=1Xk. The range
of S is defined as Rn := #{S1, . . . , Sn}. Then with the invariant σ-algebra I
and A := {∀n > 1 : Sn 6= 0} prove limn→∞

1
nRn = P(A | I) a.s.

2. For probability measures P and Q on a measurable space (Ω,F) their total
variation distance is given by

‖P−Q‖TV = sup
A∈F
|P(A)−Q(A)|.

Decide whether for n → ∞ the probabilities Pn with the following Lebesgue
densities fn on R converge in total variation distance, weakly or not at all:

fn(x) = ne−nx1[0,∞)(x), fn(x) = n+1
n x1/n1[0,1](x), fn(x) = 1

n1[0,n](x).

3. We say that a family of real-valued random variables (Xi)i∈I is stochastically
bounded, notation Xi = OP(1), if

lim
R→∞

sup
i∈I

P(|Xi| > R) = 0.

(a) Show Xi = OP(1) if and only if the laws (PXi)i∈I are uniformly tight.

(b) Prove that any Lp-bounded family of random variables is stochastically
bounded, hence has uniformly tight laws.

(c) If Xn
P−→ 0 holds, then we write Xn = oP(1). Check the symbolic rules

OP(1) + oP(1) = OP(1) and OP(1)oP(1) = oP(1).

4. Prove: Every relatively (weakly) compact family (Pi)i∈I of probability measu-
res on a Polish space (S,BS) is uniformly tight. Proceed as follows (cf. proof
of Ulam’s Theorem):

(a) For k > 1 consider open balls (Ak,m)m>1 of radius 1/k that

cover S. If lim supM→∞ infi Pi(
⋃M
m=1Ak,m) < 1 were true, then

by assumption and by the Portmanteau Theorem we would have
lim supM→∞Q(

⋃M
m=1Ak,m) < 1 for some limiting probability measure

Q, which is contradictory.

(b) Conclude that for any ε > 0, k > 1 there are indices Mk,ε > 1 such that

infi Pi(K) > 1 − ε holds with K :=
⋂
k>1

⋃Mk,ε

m=1 Ak,m. Moreover, K is
relatively compact in S, which suffices.

Submit before the first lecture on Thursday, 23 January 2014
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1. Show for a sequence (Pn) of probability measures on C([0, T ]):

∀ε > 0 : lim
δ→0

lim sup
n→∞

sup
t∈[0,T−δ]

δ−1 Pn( max
s∈[t,t+δ]

|f(s)− f(t)| > ε) = 0

implies for the modulus of continuity ωδ(f)

∀ε > 0 : lim
δ→0

lim sup
n→∞

Pn(ωδ(f) > ε) = 0.

2. Let the random vectors Xn ∈ Rd1 be independent of the random vec-

tors Yn ∈ Rd2 for all n > 1 and Xn
d−→ X, Yn

d−→ Y . Deduce that

(Xn, Yn)
d−→ PX ⊗PY on Rd1+d2 , the law of (X,Y ) for independent X and Y .

Hint: Check that (Xn, Yn)n>1 has tight laws and identify the limiting laws on
cartesian products.

3. Let (S,S ) be a measurable space, T an uncountable set.

(a) Show that for each B ∈ S ⊗T there is a countable set I ⊆ T such that

∀x ∈ ST , y ∈ B : (x(t) = y(t) for all t ∈ I)⇒ x ∈ B.

Hint: Check first that sets B with this property form a σ-algebra.

(b) Conclude for a metric space S with at least two elements that the set
C := {f : [0, 1] → S | f continuous} is not product-measurable, i.e. C /∈
S ⊗[0,1].

4. The Brownian bridge (Xt, t ∈ [0, 1]) is a centered and continuous Gaussian
process with Cov(Xs, Xt) = s(1 − t) for 0 6 s 6 t 6 1. Show that it has the
same law on C([0, 1]) as (Bt − tB1, t ∈ [0, 1]), B a Brownian motion.
Optional: Simulate 100 trajectories of a Brownian bridge. Use conditional den-
sities to show that X is the process obtained from (Bt, t ∈ [0, 1]) conditioned
on {B1 = 0}.

Submit before the first lecture on Thursday, 23 January 2014
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1. Use Kolmogorov’s criterion to give a simple tightness proof for Donsker’s in-
variance principle in the case of Sn =

∑n
k=1Xk with (Xk)k>1 i.i.d., Xk ∈ L4,

E[Xk] = 0, Var(Xk) = 1.

2. Let (Bt, t > 0) be a Brownian motion. Show that for a > 0 also Xt = a−1/2Bat,
t > 0, (scaling) and Y0 = 0, Yt = tB1/t, t > 0, (time reversal) are Brownian
motions.

Submit before the first lecture on Thursday, 6 February 2014


