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Introduction (German)

Maschinelles/statistisches Lernen ist ein schnell wachsender wissenschaftlicher
Bereich mit vielen Verknüpfungen zur Mathematik, insbesondere zur mathema-
tischen Statistik. Ziel des Seminars ist das Verständnis statistischer Modelle und
Begriffe, die grundlegend sind fr die mathematische Analyse des maschinelles
Lernens. Im ersten Teil behandeln wir den Zusammenhang zwischen empirischer
Risikominimierung und empirischen Prozessen sowie den fundamentalen Begriff
der Regularisierung komplexer Modelle. Im zweiten Teil werden Methoden des
sogenannten Aktiv- und Online-Lernens studiert. Das Seminar strebt nicht eine
vollstndige Prsentation von Themen und Ergebnissen des maschinelles Lernens
an, sondern fokussiert auf besonders interessante Aspekte. Leitlinie ist die math-
ematisch fundierte Beschreibung und Analyse wichtiger Konzepte des modernen
statistischen Lernens.
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1. Batch Learning

1.1. Foundations of Empirical Risk Minimization (ERM) :
concentration and complexity

A very general and common theoretical objective in statistical learning is to
study the behaviour of empirical risk minimizers.

Let Dn = (D1, . . . , Dn) be a dataset of n points, generated in an i.i.d, fashion
according to a distribution µ∗. We will write µn for the empirical distribution
induced by Dn, i.e. for any µ∗-measurable set A, we set

µn(A) =
1

n

n∑
i=1

1{Di ∈ A}.

Let P be a class of models. These models can be anything : distributions,
classifiers, tests....

Let L(µ, θ) be a risk function, i.e. a function from the set of distributions
(whatever this means...) and P to R. We will be interested in the risk minimiser

L∗ = inf
θ∈P

L(µ∗, θ).

i.e. minimum of the loss function. In general the loss function is taken such that
it has values in R+, but not necessarily.

Examples : Classification and regression

Now in general one does not know µ∗ so this minimum is unreachable....

(Plug-in) Idea : use µn instead of µ∗.

So we will be interested in the empirical risk minimiser

Ln = min
θ∈P

L(µn, θ).

We then want to control the generalisation gap

Rn = sup
θ
|L(µn, θ)− L(µ∗, θ)|.

Note that in particular
|Ln − L∗| ≤ Rn.

Remark also that if we have a bound on that, we also have a bound on the
generalisation error of any model element selected by ERM, i.e. we have a
bound on how the chosen ERM would perform for a new data point.
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In order to do that, one should first remark that

Rn ≤ sup
θ∈P
|L(µn, θ)− L(µ∗, θ)|

≤ sup
θ∈P
|L(µn, θ)−EL(µn, θ)|+ sup

θ∈P
|EL(µn, θ)− L(µ∗, θ)|

= sup
θ∈P
|L(µn, θ)−EL(µn, θ)|+B(P, L, µ∗),

where B(P, µ∗) is fixed and depends only on P, L and µ∗ but not on the data
(it is often 0 for instance for summable losses). What remains to do is then to
bound with high probability the empirical process

sup
θ∈P
|L(µn, θ)−EL(µn, θ)| := sup

θ∈P
|Zθ|.

Hope : When n is large, L(µn, θ)−EL(µn, θ) = Zθ goes to 0 - so when n is
large, supθ∈P |L(µn, θ)−EL(µn, θ)| = supθ∈P |Zθ| goes to 0.

Indeed, if n is very large, then (under the LLN conditions)

Zθ = L(µn, θ)−EL(µn, θ)→a.s. 0.

So obviously if there is a finite number of elements in P

sup
θ∈P
|Zθ| →a.s. 0.

But is this always enough to consider asymptotics? And what if P is not finite?

Example in the regression setting : Consider a function θ∗ that is defined
over a 1/n grid of [0, 1]. Assume that we observe noisy evaluation of f as Yi =
θ∗(Xi) + εi where the εi are i.i.d. and a white noise and the Xi are i.i.d. and
uniformly distributed over the grid. Here the data Di = (Yi, Xi) are i.i.d. and
distributed according to µ∗ which depends on θ∗ and the distribution of the
noise.

We want to estimate θ∗ and in this respect, we write the risk as

L(µ, θ) = E(X,Y )∼µ(Y − θ(X))2.

We have

L(µn, θ) =
1

n

∑
i

(Yi − θ(Xi))
2.
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So we have

Eµ∗ sup
θ∈P
|Zθ| ≥ Eµ∗ sup

θ∈P
Zθ

= Eµ∗ sup
θ∈P

(
L(µn, θ)−Eµ∗L(µn, θ)

)

= Eµ∗ sup
θ∈P

(
1

n

∑
i

((
θ∗(Xi)− θ(Xi) + εi

)2 − Eµ∗
(
θ∗(Xi)− θ(Xi) + εi

)2))

= Eµ∗ sup
θ∈P

2

n

n∑
i=1

εi(θ
∗(Xi)− θ(Xi)).

Consider the special case θ∗ = 0 and εi ∼ R. What is the order of magnitude
in the case where P contains just one element of {0, 1}n? What happens if P
contains all elements of {−1, 1}n?

So in other words, if P is complex, and if n is not “large enough” with respect
to the complexity of P, problems can occur...

Question : Can we take the complexity of P into account in the convergence
results?

In order to do that, we will try to develop convergence results that are non-
asymptotic and hold for any n. This theory is called concentration. We can then
try to apply these non-asymptotic results to all elements of P simultaneously.

Global objective : We want to bound with high probability the empirical
risk. In order to do that, we want to bound with high probability

sup
θ∈P
|L(µn, θ)−EL(µn, θ)| = sup

θ∈P
|Zθ|,

depending on n and on the complexity of P.

Project 1 : Concentration (and complexity)

Objectives : In order to bound
sup
θ∈P
|Zθ|,
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a first objective is to derive a high probability bound, for a finite n, and first a
fixed θ, on

|Zθ|.
The assumptions that are made on the loss function L so that concentration
happens should be discussed. Then the case of a finite set P will be discussed,
and a bound on

sup
θ∈P
|Zθ|,

will then be presented. This project shall focus in priority to the concentration
of measure phenomenon and slightly less on the measures of complexity - the
set P is assumed to be finite although potentially large and not necessarily
negligible with respect to n. The tasks are the following.

1. Present and provide a proof of Hoeffding’s inequality (this is done in
e.g. Chapter 1 in the book Gyorfi (2002)). Explain how this can help
for bounding Zθ in the case where the specific shape of the loss function
is

L(µn, θ) =
1

n

n∑
i=1

θ(Xi),

where θ is a function defined on the domain of µ∗ and is bounded by 1.
2. Present the proof of a general concentration inequality (like the bounded

difference concentration inequality or Mc Diarmid concentration inequal-
ity) that can be applied to a more general ERM function. This can be
found for instance in Chapter 1.3 in the book Gyorfi (2002). It is also
interesting to look at the book Boucheron et.al (2013) for a more global
perspective.

3. Consider the case where the cardinal of P is bounded by p, and present a
bound (union bound) on

sup
θ∈P
|Zθ|,

in order to highlight how p impacts the concentration bound.

General material at ERM can be found both in Chapter 1 in the book Gyorfi
(2002), and also in the two first chapters of the book Mohri et.al (2012).
References : Chapter 1 in the book Gyorfi (2002) (contains similar material but
formulated a bit differently). Optionally, one can take a look at the book Boucheron
et.al (2013).

Project 2 : Complexity (and concentration)
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Objective : We can decompose the target in a bias plus a variation term as

sup
θ
|Zθ|

≤ E sup
θ
|L(µn, θ)− EL(µn, θ)|+

∣∣∣ sup
θ
|L(µn, θ)− EL(µn, θ)| − E sup

θ
|L(µn, θ)− EL(µn, θ)|

∣∣∣
= B +D.

One then wants to bound these terms separately. Here the accent will be put
more on understanding how to bound the non-stochastic quantity

B = E sup
θ
|L(µn, θ)− EL(µn, θ)|,

and how the complexity of P will express itself. But bounds on the variation
term

V =
∣∣∣ sup
θ
|L(µn, θ)− EL(µn, θ)| − E sup

θ
|L(µn, θ)− EL(µn, θ)|

∣∣∣
will also be presented - no proofs will be provided.

The whole project will be done in the binary classification setting. The data
Dn are of the form Dn = (Di)i = (Xi, Yi)i where Xi are the points and the Yi
are the binary labels. P is a set of binary classifiers, and the loss function L is

L(µ, θ) = E(X,Y )∼µ(1θ(X)=Y ).

One has for the empirical loss

L(µn, θ) =
1

n

∑
i

1θ(Xi)=Yi
).

See e.g. Chapter 1 in the book Gyorfi (2002).
The tasks are the following.

1. Use the expected Rademacher complexity to bound B. This can be found
in the book Gyorfi (2002), Chapter 1.4, and also in the book Mohri et.al
(2012), chapters 3.1 and 3.2 and 3.3.

2. One then has to bound the expected Rademacher complexity.

• First it will be assumed that P has a finite Vapnik Chervonenkis
dimension. This can be found in the book Gyorfi (2002), Chapter
1.4, and also in the book Mohri et.al (2012), chapters 3.1 and 3.2
and 3.3.

• Then in a more general case one might want to apply chaining to
bound expected Rademacher complexity (see the book Massart (2007),
P184).

3. Understand how concentration inequalities like Talagrand’s inequality can
be used to bound the deviation term V - no proofs needed.
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References : The book Mohri et.al (2012), chapters 3.1, 3.2 and 3.3. Also Chapter
1 in the book Gyorfi (2002) (contains similar material but formulated a bit
differently) and the book Massart (2007), P184.

1.2. Specific examples of learning problems and the notion of
penalisation

As we have seen, the complexity of the model P impacts empirical risk min-
imisation, and the generalisation error through the generalisation gap. For this
reason, one would like to take P as small as possible but also such that L∗ is
small - i.e. the risk minimiser would still have a good performance on it.

Quite often, one cannot assume that the “smallest possible but good” model
P is known before hand - one does not have enough prior knowledge and there-
fore one does not want to make too many model assumptions. As seen before, the
complexity of the model will appear in ERM, and be a problem for estimation.

In many cases however, it is not absurd to assume that there is a nested class
of model P(k) - where P(k) ⊂ P(k′) for k ≤ k′, and the smallest model is very
small, while the largest model is huge. For each model, one can do ERM and
obtain an estimator. Now the question is the following.

Question : How can we choose among all estimators computed on the nested
models P(k)?

This question aims in some sense at trying to learn the model k which is the
smallest, and where the data still “fits” well. Imagine that we have a high
probability bound Vn(k) on the generalisation gap on each model P(k), then
the generalisation error of the ERM is bounded as

L∗(k) + Vn(k),

where L∗(k) is the risk minimizer on P(k). So a “smallest possible but good”
model therefore minimises L∗(k)+Vn(k) : one wants to penalise for the complex-
ity of the model k - keeping in mind that the larger k, the worst the deviations
V (k), but the smaller the “distance” to the model L∗(k).

Since L∗(k) is unknown, a good idea is to penalise the ERM in k namely
Ln(k) as

Ln(k) + pen(k),

where pen(k) is a penalty for using model k - and this penalty is an increasing
function of the complexity k - typically we would like it to be of order Vn(k).
This penalty term penalises the use of a more complex model and prevents its
use if the gains of using it are not compensating the penalty, roughly speaking.
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1.2.1. Classification

A specific example of ERM is the binary classification setting. Here the data Dn
are of the form (Xi, Yi)i where the Xi are the points sampled in an i.i.d. fashion
on the domain, and the

Yi ∼ B(θ∗(Xi)),

are independent Bernoulli random variables and where θ∗ is a function between
0 and 1 defined on the domain of the X. P is a set of binary classifiers, and the
loss function L is

L(µ, θ) = E(X,Y )∼µ(1θ(X)=Y ).

One has for the empirical loss

L(µn, θ) =
1

n

∑
i

1θ(Xi)=Yi
).

This setting is an ERM setting as posed before.The main question is on :
indeed, one minimises the empirical risk often in order to determine a suitable
model element θ with respect to the data. In many cases, there are many such
θ that minimise the risk.

Question : How can we decide between many parameters that minimise, or
approximately minimise, the empirical risk which one is the most appropriate?

This will be linked to the penalisation idea introduced earlier.

Project 3 :Classification with Support Vector Machines (SVM)

Objective : A natural set of classifiers that one can want to consider are linear
classifiers, i.e.

P = {θ = (w, b) ∈ Rn × R, θ(x) = sign(〈w, x〉+ b)}.

Now in many cases, there are many elements of P that minimize the empirical
risk. Then one wants to have a good rule for finding the most adequate separator.
A good rule for doing so in the separable case (i.e. when the two classes can be
perfectly separated) is to choose the classifier that corresponds to an hyperplan
that maximizes the margin, i.e. the distance of the two classes to the hyperplan
- this defines an interesting optimisation problem. In the non-separable case,
one has to relax the margin assumption and define what is called a soft margin
condition - this is an implicit form of penalisation. Imposing these conditions
allows to select a good candidate in the model that will hopefully have a low
generalisation error - and this candidate will be defined by an optimisation
program and what is called Support Vector Machines or SVM. There are three
main tasks in this project.
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1. Present the problem in the separable and non separable case, and intro-
duce the margin and soft margin conditions. What can be said about the
respective optimisation problems?

2. Present and prove the margin bound for binary classification (Theorem
4.4 in Mohri et.al (2012)).

3. Implement SVM for distinguishing handwritten 0 and 1.

References : The book Mohri et.al (2012), Chapter 4.

1.2.2. Regression

A problem that is quite related to classification is non-parametric regression.
Here the data Dn are of the form (Xi, Yi)i where the Xi are the points that are
sampled in an i.i.d. fashion, and the

Yi = θ∗(Xi) + εi,

are noisy evaluations of the function where εi is a i.i.d. white noise. P is a set
of functions, and the loss function L is

L(µ, θ) = E(X,Y )∼µ(θ(X)− Y )2.

One has for the empirical loss

L(µn, θ) =
1

n

∑
i

(Yi − θ(Xi))
2.

Linear regression in high dimension : the lasso We are first going to
consider a linear regression setting. Here the data are of the form (Xi, Yi)i≤n,
where

Yi = 〈Xi, β〉+ εi,

where Yi and εi are n-dimensional vectors (and ε is a noise such that ‖ε‖2 ≤ η),
where β is the p dimensional unknown parameter, and the design Xi are p
dimensional vectors.

We will assume here that n � p. Therefore, the problem is ill-posed and
nothing can be done on the mode Rp.

Question : How can we deal with this ill posed problem and penalise for
finding a good model for this linear regression problem?
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Project 4 : The Lasso, a specific example of regularisation

Objective : In this project, we will consider a specific example of regularisation,
the lasso for. We will assume here that n � p. Therefore, the problem is ill-
posed and nothing can be done on the mode Rp : one has to restrict the model.
A classical restriction is to consider models

P(k) = {θ ∈ Rp : ‖θ‖0 ≤ k},

and to consider the regression loss on these nested models. On each model,
one can (in theory) compute an estimator. It is assumed that the parameter
θ is sparse itself, so there is one of the P(k) that is a good model for it with
relatively small k - but one does not know k. The objectives of this project are
first to understand how one can penalise in this case in order to select the right
model. Then one wants to understand how one can compute these estimates in
practice. This will be done in the following tasks.

1. Present the l0 minimisation problem in Theorem 3.6 of Fornasier and
Rauhut (2008) and the associated Null Space Property (NSP). Write the
Lagrangien of the minimisation problem and explain why this is penalisa-
tion. Explain why this solution is impractical (see Fornasier and Rauhut
(2008)).

2. Present the Restricted Isometry Property (RIP) (definition 3.2 in Fornasier
and Rauhut (2008)) and present the link with the NSP. Present Theorem
3.6 in Fornasier and Rauhut (2008) (without proof) and explain what this
theorem means.

3. Present Theorem 3.5 in Fornasier and Rauhut (2008) and its proof, see
also Shah (2013). Write the Lagrangien of the minimisation problem and
explain why this is penalisation. Explain why this solution is this time
practical. The Lagrangien is the Lasso estimator, see Section 10.3.4 in Mohri
et.al (2012).

References : The book Fornasier and Rauhut (2008) and Section 10.3.4 in Mohri
et.al (2012).

Non linear regression Linear regression is the most basic example of re-
gression, that is very common in econometrics. But quite often, this is not rich
enough for representing complex data and one then wants to find more sophisti-
cated representations for the data. The general idea of most non linear regression
method is to project the data points X in a richer and larger space and per-
form a penalised linear regression in this new space for choosing an appropriate
representation by penalisation.
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Question : What are desirable properties of good representation spaces, and
suitable penalties?

Project 5 : Kernel regression and RKHS

Objective : A possible choice of richer space is done through a Kernel, i.e. a
bilinear form K(X,X ′), and the convolutions of this linear form with the data.
There are three main tasks in this project.

1. Present the concept of Kernel and RKHS (Chapter 5 in Mohri et.al (2012)).
2. Present and prove the generalisation bounds for RKHS (Chapter 10 in Mohri

et.al (2012)).
3. Implement a RKHS on synthetic data.

References : The book Mohri et.al (2012), Chapter 5 and 10.

1.3. Dimension reduction

When the data are very high dimensional, it is not always very convenient to
do ERM. Indeed, the computational complexity of ERM often scales with the
dimension of the data and not always only with the size of P. So it is often
desirable to try to find techniques that allow to reduce the dimension of the
data, in order to diminish the computational complexity. Such techniques are
called dimension reduction techniques.

Question : How can we in general reduce the dimension of the data without
losing something about them?

Project 6 : Random projections and the Johnson Lindenstrauss Lemma

Objective : Consider n points X1, . . . , Xn that are in dimension p and assume
that p� n. In some sense, given the fact that there are n only points, one does
not need for most application to be in dimension p if p is much larger than n :
intuitively, there should be a space of much smaller dimension than p where the
n points are well represented, i.e. there should be a sub-space V of Rp where
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the projection on V of the points X1, . . . , Xn gives a good idea of the respective
relations (distance) of the Xi.

In more technical terms, these spaces V should satisfy, if we note ΠV for the
projection on V , and for any (i, j) ∈ {1, ..., n}2

‖Xi −Xj‖2 ≈ ‖ΠV (Xi)−ΠV (Xj)‖2.

A very interesting question is the following.

Question : How can we construct such spaces that are of dimension as small
as possible?

Then one can project the points in a such space V and do ERM in V : since the
distances in a such space are preserved, one does not loose much by projecting
in it.

The objective of this project is to provide a simple construction of a good
projection space V trough random projections.

1. Give a lower bound on the dimension of such a space for n points.
2. Prove Johnson Lindenstrauss Lemma for random projections.
3. Implement random projections and compute the distances. Use it to per-

form classification.

References : The paper Dagstupa (2003)

2. Online and Active learning

Until now, we have been considering settings where all data are available before
hand. But this is not always the case and in many applications, the data become
available gradually - this is the online learning setting. Sometimes, the learner
does even have an impact on how the data is collected - this is a specific case
of the online learning setting, which is called active learning. We are going
to investigate the classical theory of active learning and a specific and simple
example of active learning, which is called the bandit problem.

2.1. Online learning and prediction with expert advice

The classical online learning setting is also called “prediction with expert ad-
vices”. The idea is the following. There are K experts and at each time t, each
expert k makes a prediction fk,t according to some internal mechanism. At each
time t,
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and based on the data (Xk,t)k, the learner
has to make a prediction pt. Then the en-
vironment reveals the “truth” ft, and the
learner incurs a loss

lt = l(ft, pt).

The performance of the learner at time T is
measured by the cumulative loss

Ln =
∑
t≤T

lt,

and the objective is to make the regret with
respect to the best expert

Rn =
∑
t

lt −min
k

∑
t

l(ft, fk,t),

as small as possible (in expectation or with
high probability), with respect to the pre-
diction (pt)t of the learner.

Game 1: The online learning
game.

Unknown data: (fk,u)k,u
Known parameters: K
for t = 1, . . . , do

The experts make their pre-
dictions (fk,t)k

The player makes predic-
tion pt

The environment reveals ft
The player incurs a loss lt

end for
Objectives : Minimize over

(pt)t the regret Rn

Global objective : Propose good strategies for solving Game 1.

Project 7 : Prediction with expert advices

Objective : Here we make the assumption that the “truth” ft revealed by the
environment is bounded by 1, and that although the sequence (ft)t is fixed before
the start of the game, it can be arbitrary. But otherwise it can be anything, and
in fact the environment can even be what is called “adversarial”, which means
that since it is oblivious to the strategy of the learner for predicting the (pt)t, it
can even choose the (ft)t in a “mean” way with respect to the learner strategy.
For this reason, the strategies here cannot be deterministic, in order to surprise
the environment so that it cannot adapt to the player’s strategy by choosing
the (ft)t in a too “mean” way before the beginning of the game.

The objective of this project will be to present bounds on the regret of an
online learning strategy, called Exponential Weights, or Weighted Majority. The
tasks are the following.

1. Assume first that there is an expert that is “perfect”, i.e. there exists k
such that for any t, fk,t = ft. Can you propose a strategy for solving this
case and bounding the regret of this strategy?
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2. Second, we will want to present the Exponential Weights algorithm and
an upper bound on its expected regret. This can be found in the lecture
notes Rakhlin (2014) (and also in Cesa-Bianchi et.al (2006) for a more
extended reference). Try to provide intuition on the mechanism of the
algorithm and on the proof.

3. Implement the algorithm Exponential Weights on synthetic data. Try to
illustrate the bound.

References : The lecture notes Rakhlin (2014) and also the book Cesa-Bianchi
et.al (2006) for a more extended reference.

2.2. The bandit problem

The bandit setting is also an online learning setting, but now the learner cannot
observe all “expert advices” at the same time ; at each time t it can only observe
one of the “advices”.

Now let us say this in a more specific way. The learner can sample K data
sources (the “experts” of before) which are often referred to as “arms”. At each
time t, the data source k outputs a sample Xk,t according to some internal
mechanism. At each time t, the
learner does not observe the output, but can
choose one of the systems kt ∈ {1, . . . ,K} it
wants to observe. This decision is not based
on the data emitted by the system at time
t (which the learner does not observe) but
on the data observed in the past (Xku,u)u<t.
After choosing kt, it receives Xkt,t. At the
end of the game at time n (the game is said
to be of horizon n), the performance of the
learner is measured by

Ln =
∑
t

Xkt,t,

and the objective is to make the regret with
respect to the best arm

Rn = max
k

∑
t

Xk,t −
∑
t

Xkt,t,

as small as possible (in expectation of in
high probability), with respect to the arm
selection (kt)t of the learner.

Game 2: The bandit game.

Unknown data: (Xk,u)k,u≤n
Known parameters:K and

n
for t = 1, . . . , n do

The player chooses kt ∈
{1, . . .K}

The system kt reveals the
reward Xkt,t

end for
Objectives : Minimize over

(kt)t the regret Rn
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Global objective : Propose good strategies for solving Game 2.

Project 8 : The stochastic bandit problem - upper bounds

Objective : We will consider in this project the case of a stochastic bandit, i.e. a
bandit problem where each arm k output data that are i.i.d. according to a
distribution νk, i.e.

∀k, ∀t,Xk,t ∼i.i.d. νk.

We will assume that all νk are positive and bounded by 1.
The objective of this project will be to present tight (in the sense of next

project...) bounds on the regret of a bandit strategy, UCB. There are two kind
of bounds that exist for bandit strategies : problem dependent and problem
independent bounds. The problem dependent bounds make the parameters of
the problem appear - typically the mean of the arms. The problem indepen-
dent bounds do not make these problem dependent quantities appear - and are
therefore valid for all bandit problems. The objective of this project will be to
present these two kinds of bounds. The tasks are the following.

1. We will first want to present the problem dependent upper bound for
UCB (Theorem 2.1 in the survey Cesa-Bianchi et.al (2006)). A sketch of
the proof has to be highlighted.

2. Second, we will want to present the problem independent bound for UCB
(Section 2.4.3 in the survey Cesa-Bianchi et.al (2006)). Again a sketch of
the proof has to be presented.

3. Implement the algorithm UCB on synthetic data. Both bounds have to be
illustrated on the synthetic experiments.

References : All references for this project can be found in Bubeck et.al (2012),
and also in Cesa-Bianchi et.al (2006) for a broader perspective.

Project 9 : The stochastic bandit problem - problem independent
lower bound

Objective : We will consider in this project the case of a stochastic bandit, i.e. a
bandit problem where each arm k output data that are i.i.d. according to a
distribution νk, i.e.

∀k, ∀t,Xk,t ∼i.i.d. νk.
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We will assume that all νk are positive and bounded by 1. Let us call Cn,K for
the class of all such bandit problems.

The objective of this project will be to present what is called a lower bound on
the regret of any bandit strategy. In other word, the objective is to find ρn,k ≥ 0
such that for any bandit strategy of the learner, there exists always a “worst
case” bandit problem in Cn,K such that the expected regret of the strategy is
larger than ρn,k, i.e. we want to find ρn,k such that

inf
bandit algo

sup
bandit problem in Cn,K

Rn ≥ ρn,k.

This approach is called minimax. The tasks are the following.

1. Present in a more precise fashion the minimax framework.
2. Present Pinsker’s inequality and discuss its meaning
3. Present the problem independent lower bound for the stochastic bandit

problem (Theorem 3.5 in the survey Cesa-Bianchi et.al (2006)).

References : All references for this project can be found in Bubeck et.al (2012),
and also in Cesa-Bianchi et.al (2006) for a broader perspective.

Project 10 : The adversarial bandit problem

Objective : We will consider in this project the case of a adversarial bandit,
i.e. a bandit problem where the only assumption on the distribution is that all
samples are such that |Xk,t| ≤ 1 - but note that all (Xk,t)k,t are fixed before the
beginning of the game by the arms. This setting is called adversarial because the
sequences (Xk,t)k,t can be taken in a “mean” way with respect to the learner
strategy (the environment is supposed oblivious of the learner strategy). For
this reason, the strategies here cannot be deterministic so that it surprises the
arms.

The objective of this project will be to present bounds on the regret of an
adversarial bandit strategy, EXP3. The tasks are the following.

1. Explain what is the difference between adversarial and stochastic bandit
setting, and why UCB cannot be expected to provide good results here
(Sections 1 and 2 in the survey Cesa-Bianchi et.al (2006)).

2. Second, we will want to present the regret bound for EXP3 (Theorem 3.1
in the survey Cesa-Bianchi et.al (2006)). A sketch of the proof has to be
presented.

3. Implement the algorithm EXP3 on synthetic data, and construct synthetic
data examples that are as “difficult” as possible for EXP3.
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References : All references for this project can be found in Bubeck et.al (2012),
and also in Cesa-Bianchi et.al (2006) for a broader perspective.

2.3. Infinitely many armed bandits

In the previous bandit problems presented, it was assumed that the number of
arms K is small with respect to the time horizon n. This is not always the case in
application of course, and then it is an interesting question to try to understand
what it is possible to achieve. Here we will consider even infinitely many armed
bandits (which can be a valid approximation for bandits with very many arms).
We will consider a stochastic bandit, i.e. a bandit problem where each arm x ∈
X (where X is a continuous set) output data that are i.i.d. according to a
distribution νx, i.e.

∀x ∈ X ,∀t,Xx,t ∼i.i.d. νx.

We will assume that all νk are positive and bounded by 1.
There are roughly two possibilities in this setting : either the arms are com-

pletely unstructured (this is the same setting as presented before, but with many
arms), or there is some structure on the arms - and in this case, we will assume
that the index x of the arms provide information on them. Depending on this,
on can achieve different outcomes.

Project 11 : Infinitely many armed bandits without structure

Objective : In this project, we will assume that the arms are completely unstruc-
tured, and that we can sample randomly among them according to a probability
on X . Let µx be the mean of distribution νx, and let P be the distribution of
µx when x is chosen at random according to the probability on X . Let

µ∗ = sup
x∈X

µx.

What we will assume is that we have a lower bound on the proportion of near
optimal arms, i.e.

P(|µ∗ − µx| ≤ ε) ≥ Cεβ ,

where C > 0, β > 0 are two constants.
The objective of this project is to present UCB-AIR, an algorithm for this

setting, and an upper bound on its regret (see Paper Wang et.al (2008)). This
will be done in two tasks.

1. Present and discuss the algorithm UCB-AIR. Discuss the parameter β.
Compare UCB-AIR with UCB.
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2. Present a sketch of the proof of the regret bound for UCB-AIR.
3. Implement the algorithm UCB-AIR, for various values of β.

References : A survey on this is to be found in Section 1.2.1 of the survey Munos
(2014) and UB-AIR is investigated in the paper Wang et.al (2008).

Project 12 : Infinitely many armed bandits with structure - Optimi-
sation using bandits

Objective : In this project, we will assume a functional structure on the arms
and in fact the bandit formalism will be used to solve non-convex optimisation
problems. Let µx be the mean of distribution νx. We will assume that µx = f(x),
and that f is s-Hölder smooth. In this setting, aiming at minimising the regret
is equivalent to aiming at solving a cumulative optimisation task - since the aim
is in fact to sample as often as possible close to the optimum of f .

The objective of this project is to present the algorithm HOO that is aim-
ing at this setting, as well as an upper bound its regret (see Section 3 of the
survey Munos (2014) and the paper Bubeck et.al (2009)). This will be done in
three tasks.

1. Present and discuss the hierarchical partitioning of the space and the
local smoothness assumptions that are assumed for HOO, and discuss the
algorithm HOO.

2. Present a sketch of the proof of the upper bound on the regret of HOO.
3. Implement the algorithm HOO and run it on some classical smooth func-

tions. When is HOO performing well? Badly?

References : A survey on this is to be found in Section 3 of the survey Munos
(2014) and in the paper Bubeck et.al (2009).
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