1. Let N be the set of all matrices in $\text{GL}_n(K)$ with exactly one non-zero entry in every row and every column. Show that N is a closed subgroup of $\text{GL}_n(K)$, that its identity component $N^o = D_n$ is the subgroup of diagonal matrices, that N has $n!$ connected components and that N is the normaliser of D_n.

2. Give examples of non-closed subgroups of $\text{GL}_2(\mathbb{C})$ and compute their closures.

3. Describe the Hopf algebra structures on the coordinate rings of \mathbb{G}_a and GL_n.

4. Prove that a T_0 topological group is already T_2. Show that an infinite linear algebraic group is always T_0 but never T_2. Explain the discrepancy!

5. Show that the product of irreducible affine K-varieties is again irreducible. This fails for non-algebraically closed fields K: exhibit zero divisors in $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$.