51. Find Borel subgroups in SO_4, Sp_4, T_4 and U_4.

52. Find all parabolic subgroups P with $T_4 \subseteq P \subseteq \text{GL}_4$.

53. Let the connected linear algebraic group G act on a quasi-projective variety X with finitely many orbits. Show that every irreducible closed G-invariant subset in X is the closure of a G-orbit. Find a counterexample for an action with infinitely many orbits.

54. Find a connected linear algebraic group G and a maximal solvable subgroup $U \subset G$ such that U is disconnected.

55. Classify all root systems in the Euclidean plane $E := \mathbb{R}^2$.

(Note: A root system in an Euclidean space $(E, (-,-))$ is a subset $\Phi \subset E$ such that

(RS1) Φ is finite, spans E and $0 \notin \Phi$;
(RS2) for any $\alpha \in \Phi$, $\mathbb{R} \alpha \cap \Phi = \{\alpha, -\alpha\}$;
(RS3) for any $\alpha \in \Phi$, the reflection $s_\alpha: E \to E, x \mapsto x - \frac{2(x, \alpha)}{(\alpha, \alpha)} x$ preserves Φ;
(RS4) for any $\alpha, \beta \in \Phi$: $\langle \beta, \alpha \rangle := \frac{2(\beta, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z}$.)

Contact: David Ploog, room 1.002, dploog@uni-bonn.de

Lectures: Monday, 12.15, large lecture hall Wegelerstraße 10
Thursday, 14.15, small lecture hall Wegelerstraße 10

Tutorials: Wednesday, 16.15 (Orlando); Friday, 12.30 (Tomasz)