11. Prove that the group T_n of upper triangular matrices is solvable.

12. Show that \mathbb{G}_a and \mathbb{G}_m are not isomorphic as affine algebraic groups.

13. Let $\varphi: X \to Y$ be a morphism of affine varieties. Show that φ is dominant (i.e. the image of X is dense in Y) if and only if $\varphi^*: A(Y) \to A(X)$ is injective.

14. Let $H \subset \text{GL}_n$ be an arbitrary subgroup. Show that the Zariski-closure \overline{H} is a linear algebraic group. Moreover, prove that closure preserves the following properties: H commutative; H solvable; H unipotent.

15. Show that none of the following implications among properties of linear algebraic groups can be reversed:

\[
\begin{array}{cccc}
\text{unipotent} & \downarrow \\
\text{torus} & \iff & \text{diagonalisable} & \iff & \text{abelian} & \iff & \text{nilpotent} & \iff & \text{solvable}
\end{array}
\]