
BRANCHED QUANTUM WAVE GUIDES WITH DIRICHLET

BOUNDARY CONDITIONS: THE DECOUPLING CASE

OLAF POST

Abstract. We consider a family of open sets Mε which shrinks with respect to
an appropriate parameter ε to a graph. Under the additional assumption that
the vertex neighbourhoods are small we show that the appropriately shifted
Dirichlet spectrum of Mε converges to the spectrum of the (differential) Lapla-
cian on the graph with Dirichlet boundary conditions at the vertices, i.e., a
graph operator without coupling between different edges. The smallness is ex-
pressed by a lower bound on the first eigenvalue of a mixed eigenvalue problem
on the vertex neighbourhood. The lower bound is given by the first transversal
mode of the edge neighbourhood. We also allow curved edges and show that
all bounded eigenvalues converge to the spectrum of a Laplacian acting on the
edge with an additional potential coming from the curvature.

1. Introduction

Graph models of quantum systems can often be used to describe in a simple
way some important aspects of the behaviour of a quantum system. Although
such models are simple enough to be solvable (because they are essentially 1-
dimensional) they still have enough structure to model real systems. Ruedenberg
and Scherr [RuS53] used this idea to calculate spectra of aromatic carbohydrate
molecules. Nowadays the rapid technical progress allows to fabricate structures
of electronic devices where quantum effects play a dominant role. Graph models
like quantum graphs (also called metric graphs) can often be viewed as a good
approximation of such structures. From the mathematical point of view these
models were analysed first thoroughly in [EŠ89] , for recent developments, bibli-
ography and further applications see [DE95], [KoS99], [Ku02] or [Ku04]; note that
[KaP88] also calculated the eigenvalue asymptotic of a tubular ε-neighbourhood
of a curve.

A quantum (or metric) graph is a graph where we associate a length to each
edge. A natural operator acting on such graphs is given by a self-adjoint extension
of −d2/dx2 on each edge. We will call such a self-adjoint extension a Laplacian on
the (quantum) graph. Note that the Laplacian on a discrete graph is a difference
operator on `2(K) rather than a differential operator acting in

⊕
j L2(ej). Here,

K labels the vertices and J the edges ej, j ∈ J , of the graph. A detailed overview
on this wide field can be found in [Ku04] or [KoS99].
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A natural question is in what mathematical sense a quantum graph M0 can be
approximated by a more smooth space Mε. One is interested what Laplacians
on M0 occur as limit operators from operators on Mε. More significantly, Mε

could be the ε-neighbourhood of an embedded graph M0 ⊂ R
n or a manifold

shrinking to M0 as ε → 0. We call such approximating spaces branched quantum
wave guides. Recently, spectral convergence in the case of a bounded open set
Mε with Neumann boundary condition has been established in [RSc01], [KuZ01]
and [KuZ03]; for an approximation by manifolds see [EP04]. All these examples
have in common, that the lowest eigenmode of the transversal direction is 0 with
constant eigenfunction. In this case, the limit operator is the Laplacian on the
graph with Kirchhoff boundary conditions, i.e., a function f in the domain of the
Kirchhoff Laplacian is continuous at each vertex and satisfies

∑

j∈Jk

f ′
j(vk) = 0, k ∈ K. (1.1)

In addition, the spectral convergence holds independently of a given embedding
of the graph. In particular, the convergence is independent of the curvature of
the embedded edges.

The case of an approximation by Dirichlet Laplacians on an open set Mε was
first treated heuristically in [RuS53]. This case is harder to analyse since the first
transversal eigenvalue equals λD

1
(Fε) = λ1/ε

2 (λ1 > 0), i.e., it is of the order ε−2

if ε denotes the radius of the cross section Fε = (−ε, ε) of the approximating set
Mε. A rescaling is necessary, and first order terms of the metric gε (cf. (4.3)) like
the curvature become important. In particular, the curvature of the (embedded)
edge enters in the limit operator as an additional potential.

Main result. Assume that M0 ⊂ R
2 is a finite graph. Our aim in this note is to

show the spectral convergence of the Dirichlet Laplacian on an approximating
open set Mε ⊃ M0. We suppose that Mε can be decomposed into neighbour-
hoods Uε,j of the edges ej and into neighbourhoods Vε,k of the vertices vk of M0

(cf. Figure 1). We assume that Vε,k is ε-homothetic to a fixed set Vk. The precise
definition will be given in Section 2 and 4. Our basic assumption is that the
vertex neighbourhoods Vε,k are small, i.e., that

λDN

1
(Vk) > λD

1
(F ) = λ1 (1.2)

where λDN

1
(Vk) is the lowest eigenvalue of the Laplacian ∆DN

Vk
of Vk with Dirichlet

boundary conditions on ∂0Vk (i.e., on the boundary induced from the original
boundary of Mε) and Neumann boundary conditions on ∂jVk, j ∈ Jk, (i.e., on
the parts where the adjacent edge neighbourhoods labeled by j ∈ Jk emanate,
cf. Figure 2). Furthermore, F = (−1, 1) and therefore λ1 = π2/4. We comment
on this condition in Section 5.

Our main result is
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Vε,k
Uε,j

vk

ej

Figure 1. Decomposition of the graph neighbourhood Mε (grey)
of the graph M0 into edge and vertex neighbourhoods Uε,j and Vε,k.

∂jVk ∂0Vk

Figure 2. The scaled vertex neighbourhood Vk with the boundary
part ∂0Vk coming from the original boundary and the boundary
part ∂jVk where the edge ej emanates.

Theorem 1.1. Suppose that Mε is an open neighbourhood of a finite graph
M0 ⊂ R

2 satisfying the smallness assumption (1.2) on each vertex neighbour-
hood. Denote by λk(ε) the k-th eigenvalue of the Dirichlet-Laplacian ∆D

Mε
≥ 0

(counted with respect to multiplicity). Then

λk(ε) −
λ1

ε2
→ λk(0), ε → 0 (1.3)

where λk(0) denotes the k-th eigenvalue of

⊕

j∈J

(∆D

Ij
− κ2

j/4)
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with ∆D

ej
= −d2/dx2

j being the Dirichlet Laplacian on the edge ej
∼= Ij = (0, `j)

and κj being the curvature of the embedded edge ej ⊂ R
2 (cf. (4.2)).

Note that the smallness assumption at the junctions Vε,k implies that the limit
operator decouples, i.e., the limit operator is the direct sum of operators acting
on a single edge. In the case of the Neumann Laplacian on Mε decoupling occurs
if the area of the edge neighbourhood decays faster than the area of the vertex
neighbourhood; e.g., if the latter scales in each direction of the order εα with
0 ≤ α < 1/2; the vertex neighbourhoods are large obstacles seen from the edge
neighbourhoods (cf. [KuZ03] or [EP04]). In the case of Dirichlet boundary con-
ditions, in contrast, decoupling already occurs when the vertex neighbourhoods
scale with ε, i.e., even when the edge neighbourhood volume (which is of order
ε) decays slower than the vertex neighbourhood volume (of order ε2).

We also show in Section 5 that the usual ε-neighbourhood Mε := { z ∈
R

2 | d(z, M0) < ε } does not satisfy our hypothesis since the leading order of
the lowest eigenvalue is at most µ/ε2 with µ < λ1. Therefore, ∆D

Mε
− λ1/ε

2 has
a negative eigenvalue tending to −∞ (cf. also Lemma 2.1) and the conclusion
of Theorem 1.1 fails. In particular, there is no limit operator on the graph (us-
ing the simple shift λ → λ − λ1/ε

2), and the suggestion in [RuS53], that the
limit operator is the Kirchhoff Laplacian on M0, is false (cf. also [Ku02, Sec. 2.1
and 3.2]). Note that Ruedenberg and Scherr implicitly assumed that the lowest
eigenfunction does not concentrate around the vertex which is the case as we will
see in the last section.

The spectral convergence of a single curved quantum wave guide has already
been shown in [DE95] and [KaP88] using perturbation methods. Our proof only
uses variational methods and is a simple adaption of [EP04], [KuZ01, KuZ03] or
[RSc01], where one compares Rayleigh quotients.

The paper is structured as follows: In the next section we define the required
spaces and operators in the case of straight edges. Section 3 is devoted to the
proof of Theorem 1.1 in this case. In Section 4 we provide the necessary changes in
order to prove the result with curved edges. Section 5 contains some explanation
on the smallness condition (1.2), and examples where this condition holds or fails.

2. Preliminaries

In this section we define the limit space and the approximating space together
with the associated operators. We first consider straight edges without curvature,
i.e., κj = 0. In Section 4 we also allow curved edges.

Definition of the limit space. Let M0 be a finite connected graph with (metric)
edges ej, j ∈ J (ej being isometric to an open interval Ij = (0, `j)) and vertices
vk, k ∈ K. We denote the set of all j ∈ J such that ej emanates from the vertex
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vk by Jk. The Hilbert space associated to such a graph is

H := L2(M0) =
⊕

j∈J

L2(Ij)

which consists of all functions f with finite norm

‖f‖2

0
= ‖f‖2

M0
=

∑

j∈J

‖fj‖
2

Ij
=

∑

j∈J

∫

Ij

|fj(x)|2 dx.

Definition of the limit operator. We define the limit operator Q0 via the quadratic
form

q0(f) :=
∑

j∈J

‖f ′
j‖

2

Ij
=

∑

j∈J

∫

Ij

|f ′
j(x)|2dx

for functions f ∈ C∞
c

(M0) =
⊕

j C∞
c

(Ij) (with compact support). The form

closure of q0 (also denoted by q0) is the extension of q0 to the closure of the space
of all such functions in the norm

‖f‖2

0,1 := ‖f‖2

0
+ q0(f)

(see [K66, Chapter VI], [RS80] or [Da96] for details on quadratic forms). Note
that

dom q0 =
⊕

j∈J

◦

H1(Ij).

Remember that
◦

H1(I) is the closure of C∞
c

(I) w.r.t. the norm (‖f‖2 + ‖f ′‖2)1/2.
The associated self-adjoint, non-negative operator Q0 is given by

Q0 =
⊕

j∈J

∆D

Ij
(2.1)

where ∆D

Ij
≥ 0 denotes the self-adjoint operator −d2/dx2 on Ij with Dirichlet

boundary conditions. The spectrum of Q0 is purely discrete and will be denoted
by λk(0), written in ascending order and repeated according to multiplicity.

Definition of the approximating space. We now describe the family of open sets
(Mε)ε, 0 < ε ≤ ε0, approximating the graph M0 as ε → 0. For convenience
only, suppose that M0 is embedded in R

2 (an abstract definition of Mε in the
general case will be given soon). Assume that we can decompose Mε into open
sets Uε,j containing those points x ∈ ej with d(x, ∂ej) > ajε/2 for some real
number aj < 1/ε0 and Vε,k 3 vk such that the union of their closures equals
Mε. Here, the edge neighbourhood Uε,j is isometric to Iε,j × Fε (both equipped
with the Euclidean metric) where Iε,j := (0, (1 − ajε)`j) and Fε = (−ε, ε) is the
scaled cross section. Furthermore, we assume that the vertex neighbourhood Vε,k

is ε-homothetic to a fixed open set Vk. Using a simple coordinate transform we
have therefore the isometries

(Uε,j, geucl) ∼= (Ij × F, gε) and (Vε,k, geucl) ∼= (Vk, gε) (2.2)
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where

gε = (1 − εaj)
2dx2 + ε2dy2 and gε = ε2g (2.3)

are the metrics on the edge resp. vertex neighbourhood. Here, F = (−1, 1) and
g is the Euclidean metric on Vk. In the sequel we use this change of coordinate
transform without mentioning. Note that the slightly shortened edge neighbour-
hood is necessary in order to have an embedding for the edge and the vertex
neighbourhood.

Although we are mainly interested in the embedded situation as described
above, we prefer the following abstract setting in order to keep the notation
of [EP04] and recognise the important geometric objects (not depending on any
embedding). For each j ∈ J we let Uε,j be the Riemannian manifold (Ij × F, gε)
where gε is given as in (2.3). Here F is the interior of a compact, connected m-
dimensional manifold (m ≥ 1) with metric denoted by dy2 having purely discrete
Dirichlet spectrum with first eigenvalue λ1 > 0.

Furthermore, we denote by Vε,k the Riemannian manifold (Vk, gε) with gε = ε2g
where g is a metric on Vk. We assume that

∂Vk = ∂0Vk ∪
⋃

j∈Jk

∂jVk, (2.4)

i.e., the boundary of Vk has as many boundary parts ∂jVk isometric to F as
edges emanate from vk and ∂0Vk is the closure of ∂Vk \

⋃
j ∂jVk (cf. Figure 2).

Furthermore, we assume that the metric on Vk has product structure g = dx2+dy2

near ∂jVk.
We can define an abstract manifold Mε by identifying the appropriate boundary

parts according to the graph M0. Note that a smooth structure on Mε and also
a smooth metric gε of the form (2.3) in the respective charts exist since Mε is
diffeomorphic to a product (0, 1) × F in a neighbourhood of each ∂jVk on both
sides of ∂jVk, i.e., on Vk and Uj. Strictly speaking we should introduce another
chart for each j ∈ Jk and k ∈ K covering ∂jVk in order to define the smooth
structure properly. But since we only use integrals over Mε, a cover up to sets
of measure 0 is enough. The resulting manifold has dimension d = m + 1. Note
that Mε need not to be embedded in any space, but the embedded case described
above is also covered by this setting.

The associated Hilbert space is

L2(Mε) =
⊕

j∈J

L2(Uε,j) ⊕
⊕

k∈K

L2(Vε,k)
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which consists of all functions u with finite norm

‖u‖2

ε = ‖u‖2

Mε
=

∑

j∈J

‖u‖2

Uε,j
+

∑

k∈K

‖u‖2

Vε,k

=
∑

j∈J

∫

Ij×F

|u|2(1 − ajε)ε
m dx dy +

∑

k∈K

∫

Vk

|u|2εddz

where dy and dz represent the natural measures on F and Vk, respectively.

Definition of the operator on the manifold. The operator on the thickened space
we are considering will be the Dirichlet Laplacian on Mε, i.e., Hε = ∆D

Mε
≥ 0.

The corresponding quadratic form hε is given by

hε(u) =
∑

j∈J

‖du‖2

Uε,j
+

∑

k∈K

‖du‖2

Vε,k

=
∑

j∈J

∫

Ij×F

[ 1

(1 − ajε)2
|∂xu|

2+
1

ε2
|dyu|

2

]
(1−ajε)ε

m dx dy+
∑

k∈K

∫

Vk

|du|2εd−2dz

for functions u ∈ dom hε =
◦

H1(Mε) where
◦

H1(Mε) is the closure of C∞
c

(Mε)
in the norm (‖u‖2 + hε(u))1/2. Here, |dyu|

2 and |du|2 are evaluated in the (ε-
independent) metric of the exterior derivative of u(x, ·) and u on T ∗F and T ∗Vk,
respectively.

The spectrum of Hε is again purely discrete (since Mε is compact) and will be
denoted by λk(ε), written in ascending order and repeated according to multi-
plicity. By the the min-max principle we have

λk(ε) = inf
Lk

sup
u∈Lk\{0}

hε(u)

‖u‖2
ε

, (2.5)

where the infimum is taken over all k-dimensional subspaces Lk of dom hε,
cf. e.g. [Da96].

We denote by Fε the manifold F with metric ε2dy2 and the first Dirichlet
eigenvalue of F by λ1 = λD

1
(F ) > 0. Since the lowest eigenvalue of Fε is λ1/ε

2,
we need a rescaling of the operator Hε in order to expect convergence to an
ε-independent limit operator. Therefore we set

Qε := Hε −
λ1

ε2
(2.6)

and denote by qε the associated quadratic form.
We first note that the operator Qε is positive:

Lemma 2.1. Suppose the smallness condition (1.2) is fulfilled, then Qε ≥ 0.
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Proof. For u ∈ dom qε = dom hε we have

qε(u) =
∑

j∈J

∫

Ij

[ 1

(1 − ajε)2
‖∂xu(x, ·)‖2

F

+
1

ε2

(
‖dyu(x, ·)‖2

F − λ1‖u(x, ·)‖2

F

)]
(1 − ajε)ε

m dx

+ εd−2
∑

k∈K

[
‖du‖2

Vk
− λ1‖u‖

2

Vk

]
.

Applying the min-max principle for the first eigenvalue of the manifold F and
Vk, respectively, we conclude

‖dyu(x, ·)‖2

F ≥ λ1‖u(x, ·)‖2

F and ‖du‖2

Vk
≥ λDN

1
(Vk)‖u‖

2

Vk
. (2.7)

Note that u�Vk
lies in the quadratic form domain of ∆DN

Vk
. Using Assumption (1.2)

we see that qε(u) ≥ 0. �

We set

‖u‖2

ε,1 := ‖u‖2

ε + qε(u) = ‖u‖2

ε + (hε(u) −
λ1

ε2
‖u‖2

ε).

Let us now formulate a simple consequence of the min-max principle (2.5) which
will be crucial in order to compare eigenvalues of operators acting in different
Hilbert spaces (for a proof, see e.g. [EP04, Lemma 2.1]. Suppose that H, H′ are
two separable Hilbert spaces with the norms ‖·‖ and ‖·‖′. We need to compare
eigenvalues λk and λ′

k of self-adjoint operators Q and Q′ where Q ≥ −Λ for some
constant Λ ≥ 0, with purely discrete spectra defined via quadratic forms q and
q′ on D ⊂ H and D′ ⊂ H′. We set ‖u‖2

1
:= (1 + Λ)‖u‖2 + q(u).

Lemma 2.2. Suppose that J : D −→ D′ is a linear map such that there exist
constants δ1, δ2 ≥ 0 with δ1 < 1/(1 + Λ + λk) and

‖u‖2 ≤ ‖Ju‖′
2
+ δ1‖u‖

2

1
(2.8)

q(u) ≥ q′(Ju) − δ2‖u‖
2

1
(2.9)

for all u ∈ D. Then

λk ≥ λ′
k − ηk

where ηk is a positive function given by

ηk = η(λk, δ1, δ2) :=
(λkδ1 + δ2)(1 + Λ + λk)

1 − (1 + Λ + λk)δ1

. (2.10)

In particular, ηk → 0 as δ1, δ2 → 0.
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3. Convergence of the eigenvalues: small vertex neighbourhoods

In this section we consider a graph with straight edges approximated by an
open set Mε as defined in the previous section (the case of curved edges will be
treated in the next section). We apply the abstract comparison result Lemma 2.2
to our concrete problem in order to show an upper and a lower bound on λk(Qε) =
λk(∆

D

Mε
) − λ1/ε

2 = λk(ε) − λ1/ε
2.

Upper bound. We define the linear map J0 : dom q0 −→ dom qε transmitting
(eigen-)functions on the graph to functions on Mε by

(J0f)(z) := ε−m/2

{
f(x)ϕ(y), z = (x, y) ∈ Uj

0, z ∈ Vk

(3.1)

where ϕ is the first normalised Dirichlet eigenfunction on the transversal direction
F , i.e.,

∆D

F ϕ = λ1ϕ.

Note that f�∂Ij
vanishes and therefore J0f ∈ dom qε =

◦

H1(Mε). We begin with

the verification of (2.8) and (2.9). We have

‖f‖2

0
− ‖J0f‖

2

ε = ε
∑

j∈J

aj

∫

Ij

|f(x)|2 dx = O(ε)‖f‖2

0
(3.2)

since ‖ϕ‖F = 1. Furthermore,

qε(J0f) − q0(f)

=
∑

j∈J

[ ajε

1 − ajε

∫

Ij

|f ′|2 dx +
1

ε2

∫

Ij

∫

F

(
|dyϕ|

2 − λ1|ϕ|
2
)
dy |f |2(1 − ajε) dx

]
.

(3.3)

Since ϕ is the eigenfunction with eigenvalue λ1 the latter integral vanishes and
therefore

qε(J0f) − q0(f) =
∑

j∈J

ajε

1 − ajε
‖f ′‖2

Ij
= O(ε)q0(f). (3.4)

Applying Lemma 2.2 with Λ = 0 we obtain

λk(ε) −
λ1

ε2
≤ λk(0) + O(ε). (3.5)

Lower bound. For the lower bound we have to work a little bit harder. We define
Jε : dom qε −→ dom q0 by

(Jεu)j(x) := εm/2
(
Nu(x) − ρ(x)Nu(x0)

)
(3.6)

where

Nu(x) := 〈u(x, ·), ϕ〉 =

∫

F

u(x, y)ϕ(y) dy (3.7)
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is the expectation value of u(x, ·) ∈ L2(F ) corresponding to the lowest transversal
eigenfunction ϕ. Here, x0 depends on x and denotes the left resp. right endpoint
of Ij if x is in the left resp. right half of Ij. Furthermore, ρ is a smooth function
with 0 ≤ ρ(x) ≤ 1, ρ(x) = 0 near the mid point of Ij and ρ(x) = 1 near the
boundary of Ij. Abusing the notation a little bit, x0 also represents an element
of ∂Ij . Since Jεu(x0) = 0, we have Jεu ∈ dom q0.

Again, we begin with the verification of (2.8). First, we show the following
estimate on higher transversal modes.

Lemma 3.1. We have

‖v‖2 − |〈v, ϕ〉|2 ≤
1

λ2 − λ1

(
‖dv‖2 − λ1‖v‖

2
)

for v ∈
◦

H1(F ) where λi are the Dirichlet eigenvalues of F .

Proof. Since v−〈v, ϕ〉ϕ is the projection onto ϕ⊥, the min-max principle implies

‖v‖2 − |〈v, ϕ〉|2 = ‖v − 〈v, ϕ〉ϕ‖2 ≤
1

λ2

‖d(v − 〈v, ϕ〉ϕ)‖2

=
1

λ2

(
‖dv‖2 − λ1|〈v, ϕ〉|2

)
=

1

λ2

(
‖dv‖2 − λ1‖v‖

2
)

+
λ1

λ2

(
‖v‖2 − |〈v, ϕ〉|2

)
.

Since F is connected, λ1/λ2 < 1 and we can bring the last difference on the LHS,
divide by (1 − λ1/λ2) and obtain the desired estimate. �

The next lemma shows that under our main assumption, eigenfunctions do not
concentrate at the vertex neighbourhoods:

Lemma 3.2. Assume (1.2) then

‖u‖2

Vε,k
≤

ε2

λDN
1

(Vk) − λ1

[
‖du‖2

Vε,k
−

λ1

ε2
‖u‖2

Vε,k

]

for all u ∈
◦

H1(Mε) ∩ H1(Vε,k).

Proof. Using the second estimate in (2.7) and the scaling of the metric (2.3) we
have

‖u‖2

Vε,k
≤

ε2

λDN
1

(Vk)
‖du‖2

Vε,k
=

ε2

λDN
1

(Vk)

[
‖du‖2

Vε,k
−

λ1

ε2
‖u‖2

Vε,k

]
+

λ1

λDN
1

(Vk)
‖u‖2

Vε,k
.

By our main assumption (1.2), λ1/λ
DN

1
(Vk) < 1 and the result follows as before.

�

Finally, we need the following lemma.

Lemma 3.3. We have

εm|Nu(x0)|2 ≤ O(ε)
[
‖du‖2

Vε,k
−

λ1

ε2
‖u‖2

Vε,k

]

for all u ∈
◦

H1(Mε) ∩ H1(Vε,k) and x0 ∈ ∂Ij, if ej emanates from vk.
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Proof. A standard Sobolev embedding theorem gives

|Nu(x0)|2 ≤

∫

F

|u(x0, y)|2dy ≤ c1

[
‖du‖2

Vk
+ ‖u‖2

Vk

]

for some constant c1 > 0 (note that F = ∂jVk). Now by the scaling of the metric
on Vk

‖du‖2

Vk
+ ‖u‖2

Vk
= ε−m

[
ε
(
‖du‖2

Vε,k
−

λ1

ε2
‖u‖2

Vε,k

)
+

1

ε
(1 + λ1)‖u‖

2

Vε,k

]

and the result follows from the preceeding lemma. �

Now, we want to consider the norm difference

‖u‖2

ε − ‖Jεu‖
2

0

=
∑

k∈K

‖u‖2

Vε,k
+

∑

j∈J

[
‖u‖2

Uε,j
−

∫

Ij

|Nu(x) − ρ(x)Nu(x0)|2εmdx
]
.

The first sum can be estimated by O(ε2)qε(u) using Lemma 3.2. For the second,
we use

(a + b)2 ≥ (1 − δ)a2 −
1

δ
b2, δ > 0 (3.8)

and obtain as upper bound

‖u‖2

Uε,j
− (1 − δ)

∫

Ij

|Nu(x)|2εmdx +
εm

δ

∫

Ij

|ρ(x)|2dx max
x0∈∂Ij

|Nu(x0)|2

≤

∫

Ij

[
‖u(x, ·)‖2 − |〈u(x, ·), ϕ〉|2

]
εmdx

+
( δ

1 − ajε
− ajε

)
‖u‖2

Uε,j
+

εm

δ
‖ρ‖2

Ij
max
x0∈∂Ij

|Nu(x0)|2

using Cauchy-Schwarz. Applying Lemma 3.1, the scaling of the metric on F
in (2.3), Lemma 3.3 and setting δ = ε1/2, we end up with the estimate

‖u‖2

ε − ‖Jεu‖
2

0
≤ O(ε1/2)‖u‖2

ε,1. (3.9)

For the quadratic form difference we have

q0(Jεu) − qε(u)

≤
∑

j∈J

εm‖N(∂xu) − ρ′Nu(x0)‖2

Ij
−

1

1 − ajε

∫

Ij

‖∂xu(x, ·)‖2εmdx

where the terms of order ε−2 has been estimated with (2.7). Using

(a + b)2 ≤ (1 + δ)a2 +
2

δ
b2, 0 < δ ≤ 1, (3.10)
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with δ = ε1/2, Cauchy-Schwarz for |N(∂xu(x, ·)|2 ≤ ‖∂xu(x, ·)‖2 and Lemma 3.3,
we obtain

q0(Jεu) − qε(u) ≤ O(ε1/2)‖u‖2

ε,1. (3.11)

Applying Lemma 2.2 again (with Λ = 0), we obtain

λk(Qε) = λk(ε) −
λ1

ε2
≥ λk(0) − ηk. (3.12)

Here, ηk = O(ε1/2) using (3.9), (3.11) and the upper estimate λk(Qε) ≤ λk(0) +
O(ε) = O(1) from (3.5).

4. Curved edges

Let us now consider a curved quantum wave guide embedded in R
2 (more

general embeddings can be treated similarly). Such spaces have already been
analysed e.g. in [EŠ89] or [DE95]. We only consider a single edge here since
one can easily replace the edge estimates without curvature by the appropriate
estimates with curvature in the previous section1 (cf. Remark 4.1 for the precise
assumptions on the curvature). The convergence of the discrete spectrum of an
infinite curved quantum wave guide has already been established in [DE95] using
perturbation arguments and an asymptotic expansion (cf. also [KaP88] where the
asymptotic of the first Dirichlet eigenvalue of a ε-neighbourhood of a finite length
curve in R

3 was treated). Here, in contrast, we use the variational arguments of
Lemma 2.2 which are somehow simpler (the price being a weaker result).

Definition of the approximating space. Suppose that γ : I −→ R
2 is a smooth

curve (e.g. C4 is enough) with bounded derivatives parametrised by arclength
(i.e. the tangent vector γ̇(x) has unit length for all x ∈ I). Suppose that either
γ is a closed curve (I ∼= S

1) or has two ends (I ∼= (0, 1)).
We introduce the ε-neighbourhood Uε of the curve given as the image of the

parametrisation
Ψ: I × F −→ Uε ⊂ R

2

(x, y) 7−→ γ(x) + εy n(x)
(4.1)

where n(x) := (γ̇2(x),−γ̇1(x)) is orthogonal to the tangent vector γ̇(x) and F =
(−1, 1). Define the signed curvature by

κ := γ̇1γ̈2 − γ̇2γ̈1 (4.2)

and suppose that 0 < ε ≤ ε0 := 1/(2‖κ‖∞) where ‖κ‖∞ denotes the supremum
of |κ(x)|, x ∈ I. We assume in addition that Ψ is a diffeomorphism.

1More precisely: one has to show the estimates of this section for the metric

gε = (1 − εa)2(1 + εy κ(x))2dx2 + ε2dy2

instead of the metric defined in (4.3) in order to take into account the shortened edges due to
the embedding. To keep the notation manageable we omit this fact here.
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Remark 4.1. Suppose we consider an embedded graph M0 with curved edges
ej with curvature κj. Besides the assumption that the parametrisation (4.1)
is a diffeomorphism for each edge ej we need the additional hypothesis that
supp κj is contained in the open interval Ij, i.e., that the curvature vanishes in a
small neighbourhood of the adjacent vertices. Otherwise one needs to modify the
scaling property of the vertex neighbourhoods Vε,k: they cannot be homothetic
to a fixed set Vk if the edge is curved up to the vertex vk.

Denote by gε the pull-back of the Euclidean metric via Ψ, i.e., gε := Ψ∗geucl.
A straightforward calculation shows that

gε = (1 + εy κ(x))2dx2 + ε2dy2. (4.3)

We denote by Uε the manifold I ×F with metric gε and by Ũε the same manifold
with the product metric

g̃ε = dx2 + ε2dy2.

For computational reasons, it is much easier to deal with the latter metric so we
introduce the unitary transformation

Φ: L2(Uε) −→ L2(Ũε)
u 7−→ (1 + εy κ(x))1/2u.

(4.4)

Note that det g
1/2

ε = ε(1 + εy κ(x)) > 0 is the density of the metric gε and

det g̃
1/2

ε = ε. For the rest of the section, we will work in the Hilbert space
Hε := L2(Ũε).

Definition of the operator on the thickened set. We want to consider the Dirichlet
Laplacian on Uε. Its quadratic form is ‖du‖2

Uε
, u ∈

◦

H1(Uε) (we could also allow
other boundary conditions at ∂I × F ). The transformed quadratic form is given
by

hε(u) := ‖dΦ∗u‖2

Uε
= ‖d((1 + εy κ)−1/2u)‖2

Uε
, u ∈

◦

H1(Ũε) =
◦

H1(Uε)

A straightforward calculation already performed at various places (e. g. [EŠ89]
or [DE95]) yields

hε(u) =

∫

I

∫

F

[ 1

(1 + εy κ)2
|∂xu|

2 +
1

ε2
|∂yu|

2 + Kε|u|
2

]
ε dy dx (4.5)

where the curvature induced potential Kε is given by

Kε(x, y) = −
κ2

4(1 + εy κ)2
+

εy κ̈

2(1 + εy κ)3
−

5ε2y2 κ̇2

4(1 + εy κ)4
. (4.6)

Note that Kε, 0 < ε ≤ ε0, is bounded from below by a constant −Λε0
, Λε0

≥ 0
depending only on the supremum of κ, κ̇, κ̈ and ε0. Using the first estimate
in (2.7) we see that

qε(u) := hε(u) −
λ1

ε2
‖u‖2

Ũε
(4.7)
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is bounded from below by −Λε0
‖u‖2

Ũε
. Therefore,

‖u‖2

ε,1 := qε(u) + (Λε0
+ 1)‖u‖2

Ũε

defines a norm on the quadratic form domain
◦

H1(Ũε).

Definition of the limit space and operator. Finally, we define the limit operator
Q0. Clearly, Q0 will act in the limit space H0 := L2(I). As usual, we define Q0

via its quadratic form

q0(f) :=

∫

I

[
|f ′|2 −

κ2

4
|f |2

]
dx. (4.8)

Again,

‖f‖2

0,1 := q0(f) +
(‖κ‖2

∞

4
+ 1

)
‖f‖2

I

defines a norm on the quadratic form domain
◦

H1(I). Note that Kε(x, y) =
−κ(x)2/4 + O(ε) as ε → 0.

Spectral convergence. We want to show the following spectral convergence. From
its proof it is straightforward to show Theorem 1.1 in the general case of branched
quantum wave guides with curved edges.

Theorem 4.2. Denote by λk(ε) the k-th Dirichlet eigenvalue of the curved quan-
tum wave guide Uε. Then

λk(ε) −
λ1

ε2
= λk(0) + O(ε), ε → 0,

where λk(0) denotes the k-th eigenvalue of Q0 = −d2/d2x − κ2/4.

Here, λ1 = π2/4 is the first Dirichlet eigenvalue of F = (−1, 1). As before, we
establish an upper and a lower bound on λk(ε).

Upper bound. We define the transition operator J0 as in (3.1) on the edges (here,
m = 1). Clearly, we have

‖f‖2

0
= ‖J0f‖

2

ε

since ϕ is supposed to be normalised. In addition,

qε(J0f) − q0(f) =
∫

I

∫

F

[( 1

(1 + εy κ)2
− 1

)
|f ′ϕ|2 + |f |2

1

ε2

(
|ϕ′|2−λ1|ϕ|

2
)
+

(
Kε +

κ2

4

)
|fϕ|2

]
ε dy dx

which can be estimated by O(ε)‖f‖2

0,1 where O(ε) depends only on κ (and its
derivatives) (remember that ϕ is the first Dirichlet eigenfunction on F with
eigenvalue λ1). Applying Lemma 2.2 yields the desired upper estimate with
ηk(ε) = O(ε).
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Lower bound. The lower bound is again a little bit more difficult. We define the
transition operator Jε by

(Jεu)(x) := ε1/2Nu(x) (4.9)

where Nu is the transversal expectation value of u with respect to ϕ, cf. Equa-
tion (3.7). Applying Lemma 3.1 for v = u(x, ·) we obtain the estimate

‖u‖2

ε − ‖Jεu‖
2

0
≤

ε2

λ2 − λ1

∫

I

∫

F

[ 1

ε2

(
|∂yu|

2 − λ1|u|
2
)]

ε dy dx

≤
ε2

λ2 − λ1

(
qε(u) + Λε0

‖u‖2

ε

)
= O(ε2)‖u‖2

ε,1.

The quadratic form estimate is given by

q0(Jεu) − qε(u) =

∫

I

∫

F

[(
|〈∂xu(x, ·), ϕ〉|2 −

1

(1 + εy κ)2
|∂xu|

2
)

−
1

ε2

(
|∂yu|

2 − λ1|u|
2
)

+
κ2

4

(
|u|2 − |〈u(x, ·), ϕ〉|2

)
− |u|2

(κ2

4
+ Kε

)]
ε dy dx.

As before, we estimate the first difference using Cauchy-Schwarz. The second
difference is negative (cf. (2.7)). The third difference is small due to Lemma 3.1.
The forth difference is also small since Kε = −κ2/4 + O(ε). Therefore, we end
up with an upper estimate given by O(ε)‖u‖2

ε,1. Applying Lemma 2.2 once more,
we obtain the desired lower estimate on λk(ε). Using also the upper estimate we
see that ηk(ε) = O(ε).

5. Examples

In this section, we want to comment on the smallness condition (1.2) and give
examples where this condition holds or fails. To simplify the presentation, we
assume that M0 ⊂ R

2.
First, we show, that the condition can always be fulfilled, provided the vertex

neighbourhood is small enough. Suppose that we start with the 1-neighbourhood
denoted by Vk(0), i.e., we set ε = 1 and regard the unscaled vertex neighbour-
hood Vk. Remember that we have assumed that the curvature vanishes near
the vertices, therefore Vk(0) is bounded by straight lines. Then we deform Vk(0)
smoothly in order to obtain a family Vk(τ), τ ≥ 0, shrinking to the graph, but fix-
ing the boundary parts ∂jVk(τ) = ∂jVk(0), j ∈ Jk, where the edge neighbourhoods
touch (cf. Figure 3). As in [P03, Sec. 7] we can show that the first eigenvalue of
the Laplacian on Vk(τ) with Dirichlet boundary conditions except on the fixed
boundary parts ∂jVk(τ), where we impose Neumann boundary conditions, tends
to ∞, i.e.,

λDN

1
(Vk(τ)) → ∞ as τ → ∞.
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Figure 3. The original vertex neighbourhood Vk(0) (light grey)
and the shrunken vertex neighbourhood Vk(τ) (dark grey).

Therefore there always exists a fixed τ ∈ (0,∞) such that Vk := Vk(τ) satis-
fies (1.2). Fixing this shrinking parameter τ , we proceed with the definition of
Mε as in Section 2.

An example not satisfying the smallness assumption. Let us briefly give an ex-
ample of a vertex neighbourhood not satisfying (1.2). For suitable vertex neigh-
bourhoods (e.g. arising from the ε-neighbourhood of a graph) we will show the
existence of an eigenvalue below the threshold λ1/ε

2 = π2/(4ε2) (cf. also [SRW89]
and [ABGM91] for the case of an ε-neighbourhood of a vertex with four infinite
edges emanating (a “cross”); in the former reference one can also find a contour
plot of the first eigenfunction). Therefore, the conclusion of Theorem 1.1 is false,
i.e., (1.2) fails.

The existence of such an eigenvalue below the threshold can easily be estab-
lished by inserting an appropriate trial function in the Rayleigh quotient. We
consider a graph with one vertex and three adjacent edges of length ` and denote
its ε-neighbourhood by Mε. We decompose Mε into three rectangles Uε,j and
three sets Aε,j as in Figure 4.

On the rectangle Uε,j we use the coordinates 0 < x < ` and −ε < y < ε
where x = 0 corresponds to the common boundary with Aε,j. We extend these
coordinates from Uε,j onto Aε,j and define

u(x, y) := ε−1/2χ(x) cos(
π

2ε
y)

as a test function on each of the three sets Uε,j ∪ Aε,j. Here, χ(x) = 1 for x < 0
(i.e., on Aε,j), χ(x) = cos(πx/(2εκ)) for 0 ≤ x ≤ κε and χ(x) = 0 for ε < x < `
where κ > 0 is some constant to be specified later. Although u is not differentiable
across the different borders (but continuous), it still lies in the quadratic form

domain
◦

H1(Mε).
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Aε,1 Uε,1

Uε,2

Aε,2

Aε,3

Uε,3

x

x

xy
α

α

Mε

Figure 4. A simple trial function supported in a neighbourhood
of the vertex has an eigenvalue below the threshold λ1/ε

2 =
π2/(4ε2).

A straightforward calculation yields

‖du‖2

Mε

‖u‖2

Mε

−
π2

4ε2
=

( 8κ cosα + 3π2 sin α − 16κ

((3π2 − 4) cos α + 3π2κ sin α + 8)κ

) π2

4ε2
. (5.1)

This quantity is negative for all 0 < α < 0.93π if we choose e.g. κ = 3. In
particular, there exists a negative eigenvalue of ∆D

Mε
− λ1/ε

2 of order ε−2, and
Condition (1.2) fails here for any choice of vertex neighbourhoods Vε,k since the
conclusion of Theorem 1.1 is false. Note that the vertex neighbourhoods Vε,k are
not uniquely determined. One could enlarge Vε,k at each edge emanating by a
cylinder of length aε taken away from the corresponding edge neighbourhood.

If ∆D

Mε
−λ1/ε

2 has negative eigenvalues it is not clear whether its appropriately
scaled eigenvalues converge to eigenvalues of an operator on the graph M0. The
dependence of the leading order on the angle α in (5.1) indicates that the limit
should depend on the angles of the edges meeting at a vertex.
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