
ON THE SPECTRA OF CARBON NANO-STRUCTURES

PETER KUCHMENT AND OLAF POST

Abstract. An explicit derivation of dispersion relations and spectra for peri-
odic Schrödinger operators on carbon nano-structures (including graphene and
all types of single-wall nano-tubes) is provided.

1. Introduction

Carbon nano-structures, in particular fullerenes (buckyballs), carbon nano-
tubes, and graphene have attracted a lot of attention recently, due to their
peculiar properties and existing or expected applications (e.g., [21, 25, 55]).
Such structures have in particular been modelled by quantum networks (e.g.,
[2, 3, 26, 27]), also called quantum graphs, which goes back to quantum graph
models in chemistry [51, 54] and physics [1, 5, 11, 48, 45] (see also [7, 32, 33] and
references therein). A direct and inverse spectral study of Schrödinger operators
on zig-zag carbon nano-tubes was conducted in [26, 27].

In this paper, we take a different from [26, 27] approach to such a study.
Namely, we provide a simple explicit derivation of the dispersion relations for
Schrödinger operators on the graphene structure, which in turn implies the struc-
ture of the spectrum and density of states. This derivation was triggered by the
one done in [36] for the photonic crystal case, as well by [2, 3], albeit the pre-
sented computation is simpler and more convenient for our purpose than the one
in [36]. It reflects the known idea (e.g., [1, 5, 34, 35, 50]) that spectral analysis of
quantum graph Hamiltonians (at least on graphs with all edges of equal lengths)
splits into two essentially unrelated parts: analysis on a single edge, and then
spectral analysis on the combinatorial graph, the former being independent on
the graph structure, and the latter independent on the potential.

The results are formulated in terms of the monodromy matrix (or rather its
trace, also called the Hill discriminant [17]) of the 1D potential on one edge of
the graphene lattice. Then this dispersion relation, just by simple restriction
procedure, gives answers for any carbon nano-tube: zig-zag, armchair, or chiral.
We would like to emphasize that relations of properties of the discriminant to the
properties of the one-dimensional periodic potential have been studied for a long
time and are understood by now extremely well (e.g., [12, 17, 18, 19, 24, 41, 43,
44, 53, 58] and references therein). Thus, one can extract all spectral information
that might be needed, from our explicit description of dispersion relations that
involve the discriminant.
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The paper is structured as follows: in the next Section 2, the main geometries
and operators are introduced. Section 3 is devoted to derivation of the dispersion
relation and the spectral structure for graphene, the main results provided in
Theorem 3.6. The following Section 4 deals with nano-tubes. The main results
accumulated in Theorem 4.3 provide dispersion relations and all parts of the
spectra of the nano-tube operators. The last sections contain additional remarks
and results, and acknowledgments.

2. Schrödinger operators on carbon nano-structures

All structures studied in this text can be introduced through the honeycomb
graphene structure [21, 25, 55]. So, we start with discussing the latter.

2.1. Graphen. It is assumed that in graphene, the carbon atoms are situated
at the vertices of a hexagonal 2D structure G shown in Fig. 1 below. We will
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Figure 1. The hexagonal lattice G and a fundamental domain W
together with its set of vertices V (W ) = {a, b} and set of edges
E(W ) = {f, g, h}.

assume that all edges of G have length 1. It will be crucial for us to consider the
following action of the group Z2 on G: it acts by the shifts by vectors p1~e1 +p2~e2,
where (p1, p2) ∈ Z2 and vectors ~e1 = (3/2,

√
3/2), ~e2 = (0,

√
3) are shown in

Fig. 1. We choose as a fundamental domain (Wigner-Seitz cell) of this action the
parallelogram region W shown in the picture. Here two vertices V (W ) = {a, b}
are assumed to belong toW , while the vertices b′, b′′ and b′′′ belong to other shifted
copies of the fundamental domain. Three edges f, g, h belong to W . Although
the graph G does not have to be directed, it will be convenient for us to assign
directions to the edges in W as shown in the picture.

We will now equip the graph G with the structure of a quantum graph (quan-
tum network) [7, 28, 29, 33, 34]. This requires introduction of a metric structure
and of a differential Hamiltonian. We assume that G is naturally embedded into
the Euclidean plane, which induces the arc length metric on G, as well as the
identification of each edge e in G with the segment [0, 1]. Under this identifica-
tion, the end points of an edge correspond to the points 0 and 1 (this identification
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is unique up to a symmetry with respect to the center of the edge, i.e., up to
the direction of the edge). We also obtain a measure (that we will call dx), and
the ability to differentiate functions along edges and to integrate functions on G.
In particular, the Hilbert space L2(G) :=

⊕
e∈E(G) L2(e) consisting of all square

integrable functions on G can be naturally defined. Here E(G) denotes the set
of edges in G.

We now describe the graphene Hamiltonian H in L2(G) that will be studied
in our paper (it has also been considered for some special potentials in [2]).
Such operators are used for approximating the band structure of carbon nano-
structures, as well of other compounds (e.g., [2, 3, 54], and references therein).
Let q0(x) be an L2-function on the segment [0, 1]. We will assume that it is even:

q0(x) = q0(1 − x). (2.1)

The evenness assumption is made not just for mathematical convenience. As the
proposition below shows, this condition is required if one considers operators in-
variant with respect to all symmetries of the graphene lattice. One could consider
a directed honeycomb graph, and thus avoid the evenness condition (hence losing
invariance of the operator), but the authors did not see any compelling physical
reason for doing so.

Using the fixed identification of the edges e ∈ E(G) with [0, 1], we can pullback
the function q0(x) to a function (potential) q(x) on G. Notice, that due to the
evenness condition imposed on q0(x), the definition of the potential q does not
depend on the orientations chosen along the edges. It is also easy to see that the
following claim holds:

Proposition 2.1. The potential q defined as above, is invariant with respect to
the full symmetry group of the honeycomb lattice G. Moreover, all invariant
potentials from L2,loc(G) are obtainable by this procedure.

We skip the immediate proof of this statement.
We can now define our Hamiltonian H . It acts along each edge e as

Hu(x) = −d
2u(x)

dx2
+ q(x)u(x), (2.2)

where we use the shorthand notation x for the coordinate xe along the edge e.
The domain domH of the operator H consists of the functions u that belong

to the Sobolev space H2(e) on each edge e in G and satisfy the inequality
∑

e∈E(G)

‖u‖2
H2(e) <∞. (2.3)

They also must satisfy the so-called Neumann vertex conditions (also somewhat
misleadingly called Kirchhoff vertex conditions) at vertices. These conditions
require continuity of the functions at each vertex v (and thus on all graph G)
and vanishing of the total flux, i.e.,

ue1
(v) = ue2

(v) if e1, e2 ∈ Ev(G), (2.4a)
∑

e∈Ev(G)

u′e(v) = 0 (2.4b)
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at each vertex v ∈ V (G). Here Ev(G) := { e ∈ E(G) | v ∈ e } is the set of edges
adjacent to the vertex v, ue is the restriction of a function u to the edge e, and
u′e(v) denotes the derivative of ue along e in the direction away from the vertex
v (outgoing direction). Thus defined operator H is unbounded and self-adjoint
in the Hilbert space L2(G) [28, 34]. Due to the condition on the potential and
Proposition 2.1, the Hamiltonian H is invariant with respect to all symmetries
of the hexagonal lattice G, in particular with respect to the Z2-shifts, which will
play a crucial role in our considerations.

2.2. Nano-tubes. We provide here a very brief introduction to carbon nano-
tubes. One can find more detailed discussion and classification of nano-tubes in
[21, 55]. We also emphasize that only single-wall nano-tubes are considered.

Let p ∈ R
2\{~0} be a vector that belongs to the lattice of translation symmetries

of the honeycomb structure G. In other words, G + p = G. Let us denote by
ιp the equivalence relation that identifies vectors z1, z2 ∈ G such that z2 − z1 is
an integer multiple of the vector p. A nano-tube Tp is the graph obtained as the
quotient of G with respect to this equivalence relation:

Tp := G/ιp. (2.5)

This graph is naturally isometrically embedded into the cylinder R2/ιp.
If p = p1~e1 +p2~e2, we will abuse notations denoting Tp by T(p1,p2). For example,

T(0,N) is the so-called zig-zag nano-tube, while T(N,N) is the so-called armchair
nano-tube. The names come from the shape of the boundary of a fundamental
domain (cf. Fig. 2). There are many other types of nano-tubes, besides the zig-zag

T(0,1)

T(0,2) T(1,1)

Figure 2. A zig-zag (left) and armchair (right) nano-tube T(0,2)

and T(1,1), respectively. The vectors show the translation vector p.
The name-giving fundamental domain of each of the nano-tubes is
shaded in dark grey. The dashed lines have to be identified. Below,
the (degenerate) zig-zag nano-tube T(0,1) is shown.

and armchair ones. They are usually called chiral.
A degenerate example is given by the zig-zag nano-tube T(0,1), which consists

of a sequence of loops (“beads”) joined by edges into a 1D-periodic necklace
structure (see Fig. 2).
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One can notice that due to existence of rotational and mirror symmetries of
the hexagonal structure G, different vectors p can produce the same nano-tubes
Tp. For instance, T(m,n) = T(n,m). Also, zig-zag tubes T(0,N), T(N,0), and T(N,−N)

are the same (see [21] and references therein for a more detailed classification of
nano-tubes).

The Hamiltonian Hp on T = Tp is defined exactly as for the graphene lattice G.
Alternatively, one can think of H acting on functions on G that are periodic with
the period vector p (this definition requires some precision, since such functions
do not belong to L2(G)).

3. Spectra of graphene operators

Here we calculate the dispersion relation and thus all parts of the spectrum
of the graphene Hamiltonian H (see also [2, 3] for related considerations). One
can notice that the density of states is determined by the dispersion relation, and
thus when the latter is known, the former can be determined as well [4, 53].

We apply now the standard Floquet-Bloch theory (e.g., [17, 31, 53]) with re-
spect to the Z2-action that we specified before. This theory also holds in the
quantum graph case, (see, e.g., [14, 15, 30, 35, 49] and references therein). This
reduces the study of the Hamiltonian H to the study of the family of Bloch
Hamiltonians Hθ acting in L2(W ) for the values of the quasimomentum θ in the
Brillouin zone [−π, π]2. Here the Bloch Hamiltonian Hθ acts the same way H
does, but it is applied to a different space of functions. Each function u = {ue} in
the domain ofHθ must belong to the Sobolev space ue ∈ H2(e) on each edge e and
satisfy the vertex conditions (2.4), as well as the cyclic conditions (Floquet-Bloch
conditions)

u(x+ p1~e1 + p2~e2) = eip·θu(x) = ei(p1θ1+p2θ2)u(x) (3.1)

for any vector p = (p1, p2) ∈ Z2 and any x ∈ G.
Due to the conditions (3.1), functions u are uniquely determined by their re-

strictions to the fundamental domain W . Then conditions (2.4) and (3.1) reduce
to 





uf(0) = ug(0) = uh(0) =: A

u′f(0) + u′g(0) + u′h(0) = 0

uf(1) = eiθ1ug(1) = eiθ2uh(1) =: B

u′f(1) + eiθ1u′g(1) + eiθ1u′h(1) = 0.

. (3.2)

By standard arguments (see e.g. [34, Theorem 18]), Hθ has purely discrete spec-
trum σ(Hθ) = {λj(θ)}. The graph of the multiple valued function θ 7→ {λj(θ)} is
known as the dispersion relation, or Bloch variety of the operator H . It is known
[17, 24, 31, 53] that the range of this function is the spectrum of H :

σ(H) =
⋃

θ∈[−π,π]2

σ(Hθ). (3.3)

It is also well known that the dispersion relation determines not only the spec-
trum, but the density of states of H as well [4, 53].

So, our goal now is the determination of the spectrum of Hθ and thus the
dispersion relation of H . In order to determine this spectrum, we have to solve
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the eigenvalue problem

Hθu = λu (3.4)

for λ ∈ R and a non-trivial function u ∈ L2(W ) satisfying the above boundary
conditions.

Let us denote by ΣD the spectrum of the Dirichlet Hamiltonian HD acting as
in (2.2) on (0, 1) with boundary conditions u(0) = u(1) = 0. If λ /∈ ΣD, there
exist two linearly independent solutions ϕ0, ϕ1 (depending on λ) of the equation

−ϕ′′ + q0ϕ = λϕ (3.5)

on (0, 1), such that ϕ0(0) = 1, ϕ0(1) = 0 and ϕ1(0) = 0, ϕ1(1) = 1. For example,

if q0 = 0 and λ > 0 then we have λ /∈ ΣD if and only if µ :=
√
λ /∈ πZ and

ϕ0(t) =
sin µ(1 − t)

sinµ
and ϕ1(t) =

sinµt

sinµ
. (3.6)

We will often use the notation ϕ0,λ, ϕ1,λ to emphasize dependence on the spectral
parameter.

We will assume that the functions ϕj are lifted to each of the edges in W ,
using the described before identifications of these edges with the segment [0, 1].
Abusing notations, we will use the same names ϕj for the lifted functions. Then,
for λ /∈ ΣD we can use (3.2) to represent any solution u of (3.4) from the domain
of Hθ on each edge in W as follows:





uf = Aϕ0 +Bϕ1

ug = Aϕ0 + e−iθ1Bϕ1

uh = Aϕ0 + e−iθ2Bϕ1.

(3.7)

With this choice, the continuity conditions in (3.2) and the eigenvalue equation
on each edge are automatically satisfied. The remaining two equations that guar-
antee zero fluxes at the vertices, lead to the system

{
3ϕ′

0(0)A+ (1 + e−iθ1 + e−iθ2)ϕ′
1(0)B = 0

(1 + eiθ1 + eiθ2)ϕ′
0(1)A+ 3ϕ′

1(1)B = 0.
(3.8)

Using the symmetry (2.1) of the potential q0, we obtain

ϕ′
1(1) = −ϕ′

0(0) and ϕ′
0(1) = −ϕ′

1(0). (3.9)

Thus, the system (3.8) reduces to
{
−3ϕ′

1(1)A+ (1 + e−iθ1 + e−iθ2)ϕ′
1(0)B = 0

(1 + eiθ1 + eiθ2)ϕ′
1(0)A− 3ϕ′

1(1)B = 0.
(3.10)

The quotient

η(λ) :=
ϕ′

1(1)

ϕ′
1(0)

=
ϕ′

1,λ(1)

ϕ′
1,λ(0)

(3.11)

is well defined, since ϕ′
1(0) 6= 0. Thus, the system (3.10) can be rewritten as

{
−3η(λ)A+ (1 + e−iθ1 + e−iθ2)B = 0

(1 + eiθ1 + eiθ2)A− 3η(λ)B = 0.
(3.12)
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The determinant of this system is clearly equal to

|1 + eiθ1 + eiθ2|2 − 9η2(λ)
= 3 + 2 cos θ1 + 2 cos θ2 + 2 cos (θ1 − θ2) − 9η2(λ)

= 1 + 8 cos θ1−θ2

2
cos θ1

2
cos θ2

2
− 9η2(λ).

(3.13)

Thus, we have proven the following lemma:

Lemma 3.1. If λ /∈ ΣD, then λ is in the spectrum of the graphene Hamiltonian
H if and only if there is θ ∈ [−π, π]2 such that

9η2(λ) = |1 + eiθ1 + eiθ2 |2,
or

9η2(λ) = 1 + 8 cos
θ1 − θ2

2
cos

θ1
2

cos
θ2
2
. (3.14)

Remark 3.2. Note that this lemma gives a nice relation between the spectrum
of the metric graph Hamiltonian H and the discrete graph Laplacian [9, 10]
∆U := 1

deg v

∑
w∼v U(w). Indeed, the Bloch Laplacian ∆θ on ℓ2({a, b}) ∼= C2 has

the matrix

∆θ ∼= 1

3

(
0 1 + e−iθ1 + e−iθ2

1 + eiθ1 + eiθ2 0

)
.

Thus, the lemma is just the statement that for λ /∈ ΣD, we have λ ∈ σ(Hθ) if
and only if η(λ) ∈ σ(∆θ), and hence λ ∈ σ(H) if and only if η(λ) ∈ σ(∆).

This relation between quantum and combinatorial graph operators is well
known and has been exploited many times (e.g., [1, 5, 8, 34, 35, 39, 50]).

Lemma 3.1, in particular, says that in order to find the spectrum of H , we
need to calculate the range of the following function on [−π, π]2:

F (θ1, θ2) =

√
1 + 8 cos

θ1 − θ2
2

cos
θ1
2

cos
θ2
2
. (3.15)

Lemma 3.3. The function F has range [0, 3]; its maximum is attained at (0, 0)
and minimum at (2π/3,−2π/3) and (−2π/3, 2π/3).

The proof of the lemma is straightforward, after noticing that the function

F (θ1, θ2)
2 = 1 + 8 cos

θ1 − θ2
2

cos
θ1
2

cos
θ2
2

= |1 + eiθ1 + eiθ2 |2

ranges from 0 to 9.
Next, we want to interpret the function η(λ) in terms of the original potential

q0(x) on [0, 1]. To this end, let us extend q0(x) periodically to the whole real axis
R and consider the Hill operator Hper on R given as in (2.2) with the resulting
periodic potential:

Hperu(x) = −d
2u(x)

dx2
+ q0(x)u(x). (3.16)

(We maintain the notation q0(x) for the extended potential.)
We will be interested in the well studied spectral problem

Hperu = λu (3.17)
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As it is usually done in the theory of periodic Hill operators (e.g., [17, 24, 41,
12, 53]), we consider the so called monodromy matrix M(λ) of Hper. It is defined
as follows: (

ϕ(1)
ϕ′(1)

)
= M(λ)

(
ϕ(0)
ϕ′(0)

)

where ϕ is any solution of (3.17). In other words, the monodromy matrix shifts by
the period along the solutions of (3.17). The matrix valued function λ 7→ M(λ)
is entire.

It is well known (see the references above) and easy to see that the mon-
odromy matrix has determinant equal to 1. Its trace plays the major role in
the spectral theory of the Hill operator. Namely, let D(λ) = trM(λ) be the so
called discriminant (or Lyapunov function) of the Hill operator Hper. The next
proposition collects well known results concerning the spectra of Hill operators
[17, 24, 41, 12, 53]:

Proposition 3.4.

(i) The spectrum σ(Hper) of Hper is purely absolutely continuous.
(ii) σ(Hper) =

{
λ ∈ R

∣∣ |D(λ)| ≤ 2
}
.

(iii) σ(Hper) consists of the union of closed non-overlapping and non-zero
lengths finite intervals (bands) B2k := [a2k, b2k], B2k+1 := [b2k+1, a2k+1]
such that

a0 < b0 ≤ b1 < a1 ≤ a2 < b2 ≤ . . .

and limk→∞ ak = ∞.
The (possibly empty) segments (b2k, b2k+1) and (a2k+1, a2k+2) are called

the spectral gaps.
Here {ak} and {bk} are the spectra of the operator with periodic and

anti-periodic conditions on [0, 1] correspondingly.
(iv) Let λD

k ∈ ΣD be the kth Dirichlet eigenvalue, labelled in increasing order.
Then λD

k belongs to (the closure of) the kth gap1. When q0 is symmetric,
as in our case, λD

k coincides with an edge of the kth gap2.
(v) If λ is inside the kth band Bk, then D′(λ) 6= 0, and D(λ) is a homeo-

morphism of the band Bk onto [−2, 2]. Moreover, D(λ) is decaying on
(−∞, b0) and (a2k, b2k) and is increasing on (b2k+1, a2k+1). It has a simple
extremum in each spectral gap [ak, ak+1] and [bk, bk+1].

(vi) The dispersion relation for Hper is given by

D(λ) = 2 cos θ, (3.18)

where θ is the one-dimensional quasimomentum.

There are many other important direct and inverse spectral results concerning
the well studied (in particular, due to the inverse scattering transform research)
operator Hper (see, e.g., [17, 18, 19, 24, 44, 41, 43, 53, 58]).

We will now see the relation between the function η(λ) that was introduced
for the graphene operator H and the discriminant of Hper. In order to do so, we
introduce another basis of solutions of (3.17), namely cλ and sλ with cλ(0) = 1,

1If the gap closes, this boils down to a single point.
2The same comment applies here.
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c′λ(0) = 0 and sλ(0) = 0, s′λ(0) = 1 (the notations are chosen to remind the cosine
and sine functions in the case of zero potential). Using this basis of the solution
space, we obtain

M(λ) =

(
cλ(1) sλ(1)
c′λ(1) s′λ(1)

)
. (3.19)

A simple calculation (assuming the symmetry (2.1)) relates the new basis with
the one of ϕ0 and ϕ1 (which we now denote ϕ0,λ, ϕ1,λ to emphasize dependence
on the spectral parameter):

cλ = ϕ0,λ + η(λ)ϕ1,λ and sλ =
1

ϕ′
1,λ(0)

ϕ1,λ.

In particular, cλ(1) = s′λ(1) = η(λ). Thus,

η(λ) =
1

2
D(λ). (3.20)

For example, if q0 = 0, then η(λ) = cos(
√
λ).

So far, we have been avoiding points of the Dirichlet spectrum ΣD of a single
edge (i.e, the Dirichlet spectrum of the potential q0(x) on [0, 1]). We will now
deal with exactly these points.

Lemma 3.5. Each point λ ∈ ΣD is an eigenvalue of infinite multiplicity of the
graphene Hamiltonian H. The corresponding eigenspace is generated by simple
loop states, i.e., by eigenfunctions which live on a single hexagon and vanish at
the vertices (see Fig. 3 below).

Proof. We need to guarantee first that each λ ∈ ΣD is an eigenvalue. Indeed, an
eigenfunction is provided by a simple loop state of the type shown for zero poten-
tial in Fig. 3 below. It is constructed as follows. Let ψλ(x) be an eigenfunction

ψλ(x)

Figure 3. A simple loop state constructed from an odd eigenfunc-
tion on [0, 1].

of the operator −d2/dx2 + q0(x) with the eigenvalue λ and Dirichlet boundary
conditions on [0, 1]. Then, due to the symmetry (evenness) of the potential, we
can assume the eigenfunction to be either even, or odd. For an odd eigenfunc-
tion ψλ(x), repeating it on each of the six edges of a hexagon, we clearly get
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an eigenfunction of the operator H . If it is an even eigenfunction, then repeat-
ing it around the hexagon with an alternating sign does the same trick. Thus
λ ∈ σpp(H).

It is well known then (e.g., [17]) that the multiplicity of the eigenvalue must be
infinite. For completeness, we repeat here this simple argument. Let Mλ ⊂ L2(G)
be the eigenspace. Consider a vector γ that is a period of the lattice G and the
operator Sγ of shift by γ in L2(G). Then Sγ acts in Mλ as a unitary operator.
If dimMλ were finite, Sγ would have had an eigenvector f ∈ Mλ ⊂ L2(G) with
an eigenvalue µ, |µ| = 1. However, such a function f obviously cannot belong
to L2(G), since it is quasi-periodic in the direction of the vector γ. This proves
infinite multiplicity.

We note now that due to [30] (see also [35, Thm. 11]), linear combinations
of compactly supported eigenfunctions are dense in the whole eigenspace Mλ.
Thus, we only need to show that the simple loop states just described generate
all compactly supported eigenfunctions in the space Mλ.

Suppose that ϕ is a compactly supported eigenfunction of H corresponding to
the eigenvalue λ ∈ ΣD. First, note that ϕ vanishes at each vertex. Indeed, if this
were not true, due to compactness of support, there would have been an edge
such that at its one end v0 (corresponding to x = 0), ϕ(v0) 6= 0, while at the
other v1 (corresponding to x = 1), ϕ(v1) = 0. Expanding into the basis cλ, sλ, we
get

ϕ(x) = Acλ(x) +Bsλ(x).

In particular, ϕ(0) = A 6= 0. Then ϕ(1) = Acλ(1) = As′λ(1) 6= 0, since sλ(1) = 0.
This leads to a contradiction. Thus, ϕ vanishes at all vertices. In particular,
on each edge it constitutes a Dirichlet eigenfunction for the Hill operator on this
edge.

This also implies that the support of ϕ, as a graph, cannot have vertices of
degree 1 and suppϕ cannot be a tree. Thus, there must be a loop in the support
of ϕ. In particular, the outer boundary of the support must be a loop. Take one
boundary edge e0. There is a hexagon inside the boundary loop which contains
this edge. Consider a simple loop state ϕ0 coinciding with the eigenfunction ϕ
on e0 and extended to the hexagon the way it was described before. Subtracting
ϕ0 from ϕ, we obtain a new eigenfunction ϕ̃. The number of hexagons inside the
boundary loop of the support of ϕ̃ is less than inside the support of ϕ. Thus,
continuing this procedure, we eventually represent ϕ as a combination of simple
loop eigenstates. Fig. 4 below illustrates this process. �

Figure 4. Deleting simple loop states (dark grey) from the sup-
port of an eigenfunction (light grey).
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We can now completely describe the spectral structure of the graphene operator
H .

Theorem 3.6.

(i) The singular continuous spectrum σsc(H) is empty.
(ii) The absolutely continuous spectrum σac(H) has band-gap structure and

coincides as a set with the spectrum σ(Hper) of the Hill operator Hper

with potential q0 periodically extended from [0, 1]. In particular,

σac(H) =
{
λ ∈ R

∣∣ |D(λ)| ≤ 2
}
,

where D(λ) is the discriminant of Hper.
(iii) The pure point spectrum σpp(H) coincides with ΣD and thus, due to the

evenness of the potential, belongs to the union of the edges of spectral
gaps of σ(Hper) = σac(H).

(iv) The dispersion relation consists of the variety

D(λ) = ±2

3

√
1 + 8 cos

θ1 − θ2
2

cos
θ1
2

cos
θ2
2

(3.21)

and the collection of flat branches λ ∈ ΣD.
(v) Eigenvalues λ ∈ ΣD of the pure point spectrum are of infinite multi-

plicity and the corresponding eigenspaces are generated by simple loop
eigenstates.

In particular, σ(H) has gaps if and only if σ(Hper) has gaps.

Proof.
The claim (i) about absence of the singular continuous spectrum is a general

fact about periodic “elliptic” operators. For instance, the standard proof applied
for the case of periodic Schrödinger operators in [53, 56] or [31, Theorem 4.5.9]
works in our situation. Alternatively, in [20] one can find this statement proven
for a general case of analytically fibered operators, which covers our situation as
well.

Statement (iv) is a combination of Lemmas 3.1 and 3.5 and formula (3.20).
The statement (ii) about absolute continuity of the spectrum outside the points

of ΣD follows from (iv) and the standard Thomas’ analytic continuation argu-
ment [31, 53, 56]. We remind the reader that according to this argument, eigen-
values correspond to constant branches of the dispersion relation. It is clear that
the dispersion curves (3.21) have no constant branches outside ΣD.

The claim (iii) is just a combination of Lemma 3.5 and of the Thomas’ argument
again, which shows that there are no eigenvalues outside ΣD.

Finally, (v) is a combination of (iii) and Lemma 3.5. �

It is clear that the function F 2 has non-degenerate minima F = 0 at the points
θ = ±(2π/3,−2π/3). Thus, the function ±F has conical singularities at these
points. Since, according to Proposition 3.4, the discriminant D is monotonic
with non-degenerate derivative near each point where D(λ) = 0, one obtains the
following conclusion:

Corollary 3.7. The dispersion curve of the graphene operator H has conical
singularities at all spectral values λ such that D(λ) = 0.
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These singularities (sometimes described as “linear spectra”) represent one of
the most interesting features of graphene structures (cf. Fig. 5). These singu-

−1.0−0.5

0

5

−1.0

10

15

x

20

0.0−0.5

y

0.0 0.50.5 1.01.0
θ2

θ1

0

10

20

−π
−π

λ

ππ 00

Figure 5. The dispersion relation cos
√
λ = ±F (θ)/3 for the free

(i.e., q0 = 0) case. The cones arising from D(λ) = 2 cos(
√
λ) = 0

are at the levels λ = (π(2k+1))2. They are located inside a band of
the corresponding Hill operator. Note that the cones at D(λ) = ±2
(i.e., λ = (πk)2 in the free case) are located at the band edges of
the Hill operator.

larities resemble Dirac spectra for massless fermions and thus lead to unusual
physical properties of graphene (e.g., [25]). We see that quantum graph models
with arbitrary periodic potentials preserve this feature.

4. Spectra of nano-tube operators

We use here the notations concerning nano-tubes that were introduced in Sec-
tion 2.2. Consider a vector p = (p1, p2) ∈ Z

2 that belongs to the lattice of
translation symmetries of the graphene structure G, i.e., it shifts the structure
by p1~e1 + p2~e2 (see Fig. 1). We will use, as before, the corresponding nano-tube
Tp = T(p1,p2) and the Hamiltonian Hp = H(p1,p2) on Tp (see Section 2.2).

Let B = [−π, π]2 be the Brillouin zone of graphene. Then, as we discussed
in the previous section, the Floquet-Bloch theory provides the direct integral
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expansion

H =

⊕∫

B

Hθdθ. (4.1)

In the case of the nano-tube Tp, only the values of quasimomenta θ enter that
satisfy the condition

p · θ = p1θ1 + p2θ2 ∈ 2πZ (4.2)

since a function on Tp lifts to a p-periodic function u on G, i.e.,

u(x+ p1~e1 + p2~e2) = u(x)

(cf. (3.1)). Thus, let us consider the following subset Bp ⊂ B:

Bp :=
{
θ ∈ [−π, π]2

∣∣ p · θ ∈ 2πZ
}
. (4.3)

Then, we have the direct integral decomposition

Hp =

⊕∫

Bp

Hθdθ. (4.4)

In particular, the spectrum of Hp is given by

σ(Hp) =
⋃

θ∈Bp

σ(Hθ), (4.5)

and the dispersion relation for Hp is just the restriction to Bp of the dispersion
relation for H described in the part (iv) of Theorem 3.6.

This implies for instance that we still have ΣD ⊂ σpp(Hp) and the rest of the
spectrum is determined by the pre-image

η−1
{
±1

3
F (Bp)

}
= D−1

{
±2

3
F (Bp)

}
. (4.6)

One should notice that it is conceivable that non-constant branches of the dis-
persion curves (3.14) might sometimes have constant restrictions to Bp, thus
providing new eigenvalues for the nano-tube Hamiltonian. This happens if the
line (4.2) is a level set of the function F . It is easy to find such lines.

Lemma 4.1. The only linear level sets of the function F inside B are the fol-
lowing ones:

(i) θ1 = ±π
(ii) θ2 = ±π
(iii) θ1 − θ2 = ±π

On these lines F (θ1, θ2) = 1.

The proof of the lemma is immediate from the expression (3.15) for the function
F (see also Fig. 6 for the level sets of F , which illustrates this statement). We
will see that existence of such lines leads to additional pure point spectrum for
some types of nano-tubes.

In order to determine the spectra of nano-tubes, we need to know the ranges of
the function F (cf. (3.15)) restricted to Bp. These are described in the following

Lemma 4.2.
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θ2

θ1

π

π

p · θ = 2πm

Figure 6. The level curves of F for levels varying from 0 (the two
dots at ±(2π/3,−2π/3)) till 3 (the dot at the origin). The level
curve associated to F = 1 is dotted, the areas where F < 1 are
shaded. The dashed line is the line in Bp closest to the minimum
point (−2π/3, 2π/3) (in the case p1 − p2 = 3m± 1).

(i) The function F restricted to Bp, achieves its maximum 3 at (0, 0) ∈ Bp

for any p.
(ii) The location and value of the minimum depends on the vector p. The

minimal value

α(p) := min
θ∈Bp

F (θ)

satisfies

α(p) ∈ [0, 1] (4.7)

for any p.
(iii) α(p) = 0 if and only if p1 − p2 is divisible by 3.
(iv) α(p) = 1 if and only if p = (0,±1), (±1, 0), (0,±2), (±2, 0), (1,−1),

(−1, 1), (2,−2), or (−2, 2). (All these cases correspond to zig-zag nano-
tubes).

(v) In all cases not covered by (iii) and (iv), let p1 − p2 = 3m ± 1. Then
α(p) ∈ (0, 1) can be found by minimizing the function F over the line
p1θ1 + p2θ2 = 2πm.

In particular, in the case when p = (0, N) with N = 3m ± 1 > 2
(m ∈ Z), one has

α
(
(0, N)

)
=

∣∣∣2 cos
πm

N
− 1

∣∣∣ (4.8)

(this formula gives the correct answer α(p) = 0 also when N = 3m).
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(vi)

lim
|p|→∞

α(p) = 0. (4.9)

Proof.
(i) The claim about the maximum is straightforward, since the only maximum

point (0, 0) of F in B belongs to Bp for any p.
(ii) The expression (3.15) shows that the set of points θ ∈ B where F = 1,

consists of four lines θj = ±π, as well as two lines θ1 − θ2 = ±π. Since no
line p · θ = 0 can miss all these points, we conclude that α(p) ≤ 1 for any p.
The inequality α(p) ≥ 0 is obvious, since, as we have already discovered, the
expression under the square root in (3.15) has its minimum equal to 0.

(iii) As we have already indicated before, the points where F reaches its min-
imum are (2π/3,−2π/3) and (−2π/3, 2π/3). Thus, for α(p) = 0 to hold, one of
the lines p ·θ = 2πn must pass through one of these points. Thus, p1−p2 = ±3n,
and the claim is proven.

(iv) In order for α(p) to be equal to 1, the lines p · θ ∈ 2πZ should not enter
the zones where F < 1 (shaded in Fig. 6). It is clear that when p1, p2 are of the
same sign, this is impossible for the line p · θ = 0, unless one of the coordinates
pj is equal to zero. One can assume then, due to symmetries, that p = (0, N),
N > 0. In this case, the line p · θ = Nθ2 = 2π enters the shaded region, unless
N ≤ 2.

If the coordinates pj have opposite signs, then in order for the first “non-trivial”
line p · θ = ±2π not enter the Brillouin zone (and thus in particular the shaded
area), one has to satisfy the condition |p1π − p2π| ≤ 2π. Due to the signs of pjs
being opposite, this means that |p1| + |p2| ≤ 2. This restricts the situation to
the vectors p = (1,−1) and (−1, 1) only, which do satisfy α(p) = 1. If this line
does enter the Brillouin zone, the only case when the shaded area is not entered
is when p = (2,−2) or (−2, 2) and thus the line goes along the boundary of the
shaded region.

(v) In order to find α(p), we need to minimize F over the set of lines p ·θ = 2πn
for all such integers n that the line intersects the Brillouin zone B. This entails
first determining the appropriate of value of n and then minimizing over the
corresponding line. The minima of F are located at the points (−2π/3, 2π/3)
and (2π/3,−2π/3) and are the only local minima in the shaded regions shown
in Fig. 6. Thus, we need to find the value of n that provides a line closest to a
minimum point (see again Fig. 6). Evaluating p · θ at the point (−2π/3, 2π/3),
we get 2π(p1 − p2)/3 = 2π(m ± 1/3). This suggests that the line p · θ = 2πm is
the right one.

When p = (0, N) with N = 3m±1 > 2, we conclude that we need to minimize
F over the line Nθ2 = 2πm. Substituting the value θ2 = 2πm/N into the modified
expression for F ,

F (θ1, θ2) =

√
1 + 4 cos

θ2
2

[
(cos

θ2
2

+ cos
(
θ1 −

θ2
2

)]
, (4.10)

leads to a simple minimization with respect to θ1 and thus to the formula (4.8).
(vi) This claim is clear, since when |p| → ∞, the lines p · θ ∈ 2πZ form a dense

set in B, and thus the minimum of F over Bp approaches zero. �
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Let us now concentrate for a moment on the additional pure point spectrum
that arises due to the linear level sets described in Lemma 4.1. Let us assume
that p = (0, 2N), N ∈ Z. Then, according to that lemma, the line p · θ = 2Nπ is
a level 1 set of F (θ). Consider λ such that η(λ) = 1/3 (or η(λ) = −1/3). We will
now construct a compactly supported eigenfunction for H(0,2N). In order to do
so, let us notice that η(λ) = 1/3 means that ϕ′

1,λ(0) = 3ϕ′
1,λ(1). Let us construct

a function ϕ+ on the boldface structure Z in Fig. 7 below. It is constructed as

ϕ+(x) ϕ−(x)

ba

Z

a b a
b

Figure 7. The extra eigenstates outside the Dirichlet spectrum
for the zig-zag nano-tubes with even number of “zig-zags”. On
the left, the support is shown; on the right, the eigenfunctions ϕ±

corresponding to the smallest solution of η(λ) = cos
√
λ = ±1/3

are plotted (in the case of zero potential q0 = 0).

follows: on the two “horns” directed toward the vertex a, we define the function
to be equal to ϕ1,λ(x). It is similarly defined on the “horns” leading towards b.
On the “bridge” between a and b, we define the function as ϕ0,λ +ϕ1,λ. It is easy
to conclude that the equality ϕ′

1,λ(0) = 3ϕ′
1,λ(1) implies that the function satisfies

Neumann conditions at both vertices (and certainly the equation Hϕ = λϕ on
the edges of Z). The graph of the function ϕ+ is visualized in the middle of
Fig. 7.

Analogously, if η(λ) = −1/3, one creates a function ϕ−, changing the value on
the bridge to ϕ0,λ − ϕ1,λ (see the right graph in Fig. 7).

The functions ϕ± are defined on Z only, but can be extended to the whole
structure G as follows: one repeats the functions up and down (to dashed-line
hexagons in Fig. 7), alternating the sign. Outside this column of hexagons, we
define the functions to be equal to zero. These functions are periodic with respect
to the vector ~e2 with period 2, and thus define compactly supported eigenfunc-
tions for any even zig-zag nano-tube T(0,2N). We will call such eigenfunctions the
three-leaf eigenfunctions (the name suggested by the right graph in Fig. 7).

We are now ready to establish the main result about the spectra of carbon
nano-tubes. First of all, let us collect all the notions we need here. As before,
p = (p1, p2) ∈ Z2 is a translation vector that determines the nano-tube Tp. The
Hamiltonian Hp on L2(Tp) is defined as before, using the pull-back of a potential
q0(x) on [0, 1] symmetric with respect to the point 1/2. We also denote by D(λ)
the Hill discriminant (trace of the monodromy matrix) of the Hill operator Hper

on R with periodized potential q0. The subset Bp of the Brillouin zone B is
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defined in (4.3). Finally, the function F (θ) of the quasimomentum θ is defined
in (3.15), and α(p) is described in Lemma 4.2.

In order to avoid lengthy formulation, in the Theorem and two Corollaries
below, when dispersion relations are described, the flat branches corresponding
to the pure point spectrum are omitted. The pure point spectra (and thus the
flat branches) are described in separate statements.

Theorem 4.3.

(i) The non-constant part of the dispersion relation for Hp is provided by

D(λ) = ±2

3
F (θ), θ ∈ Bp. (4.11)

(ii) The singular continuous spectrum σsc(Hp) is empty.
(iii) The absolutely continuous spectrum is given by

σac(Hp) = D−1
([

−2,−2

3
α(p)

]
∪

[2

3
α(p), 2

])
(4.12)

and

D−1
([

−2,−2

3

]
∪

[2

3
, 2

])
⊆ σac(Hp) ⊆ σ(Hper) = D−1

(
[−2, 2]

)
. (4.13)

(iv) σac(Hp) = σ(Hper) if and only if p1 − p2 is divisible by 3.
(v) σac(Hp) = D−1

(
[−2,−2

3
] ∪ [2

3
, 2]

)
if and only if Tp is either a (0, 1)-, or

a (0, 2)- zig-zag nano-tube (or equivalent, e.g. T(1,−1)).
(vi) Unless Tp is a zig-zag nano-tube with an even number of zig-zags (i.e.,

T(0,2N)), one has

σpp(Hp) = ΣD. (4.14)

This spectrum consists of one edge of each spectral gap (including the
closed ones) of σ(Hper). All these eigenvalues are of infinite multiplic-
ity and the corresponding eigenspaces are spanned by simple loop eigen-
functions (supported on a single hexagon) and tube loop eigenfunctions
(supported on a loop around the tube).

(vii) If Tp is a zig-zag nano-tube with an even number of zig-zags (i.e., T(0,2N)),
one has

σpp(Hp) = ΣD ∪ Ξ, (4.15)

where

Ξ = D−1
(
±2

3

)
. (4.16)

The eigenvalues from Ξ are of infinite multiplicity, are embedded into
σac(Hp), and are located two per each band of σ(Hper). The corresponding
eigenspaces are generated by the compactly supported three-leaf functions.

The eigenvalues from ΣD are of infinite multiplicity and the corre-
sponding eigenspaces are spanned by simple loop eigenfunctions and tube
loop eigenfunctions.

(viii) If p1−p2 is divisible by 3, the ac-spectrum of Hp has exactly the same gaps
as σ(Hper). Otherwise, there is an additional gap D−1

(
(−2

3
α(p), 2

3
α(p))

)

inside each band of the spectrum of Hper.
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Proof.
The first statement coincides with (4.6).
The claim (ii) is proven exactly as the corresponding statement in Theorem 3.6.
Statements (iii) through (v) follow from (i) and Lemma 4.2.
The statement (vi) is almost completely proven, except the description of the

eigenfunctions. The proof of this description works exactly like in Theorem 3.6,
except that the procedure of eliminating hexagons does not have to end with an
empty set. One can end up with a loop of edges around the tube, which thus
does not encircle any hexagons. This would provide a loop eigenfunction that
runs around the tube, rather than around a hexagon. The similar claim in (vii)
concerning the eigenvalues from ΣD is proven exactly the same way.

What remains to be proven in (vii), is the structure of the eigenfunctions cor-
responding to λ ∈ Ξ. It is proven similarly to the structure of eigenfunctions
corresponding to ΣD. Indeed, again according to [35], the eigenspace is spanned
by compactly supported eigenfunctions. Consider the outer boundary of the sup-
port and start eliminating hexagons inside as follows. There must be a vertex
(like the ends of horns in Fig. 7) that borders zero values. Then, on the corre-
sponding horn the function must be proportional to ϕ1,λ. Let us now extend it
to a three-leaf eigenfunction and subtract from the original one. Continuing this
process, we eventually eliminate all hexagons. Notice that in this case we cannot
end up with a loop around the tube, since this would force all the vertex values
to be equal to zero, which is impossible, when λ does not belong to ΣD. Thus,
only the three-leaf states enter the eigenfunction.

The statement (viii) follows from the previous ones. �

We will specify this result for the cases of zig-zag (p = (0, N)) and armchair
(p = (N,N)) nano-tubes. The zig-zag case was also considered in [26].

Corollary 4.4. Let T(0,N) be a zig-zag nano-tube with N zig-zags.

(i) The non-constant part of the dispersion relation for H(0,N) is given by

D(λ) = ±2

3

√
1 + 4 cos

πn

N

[
(cos

πn

N
+ cos

(
θ1 −

πn

N

)]
, (4.17)

where 0 ≤ n < N .
(ii) The singular continuous spectrum is empty.
(iii) The absolutely continuous spectrum is given by

σac(H(0,N)) = D−1
([

−2,−2

3
α
]
∪

[2

3
α, 2

])
(4.18)

where α = α((0, N)) ∈ [0, 1] is defined in (4.8). In particular, α = 0 (i.e.,
σac(H(0,N)) = σ(Hper)) if and only if N is divisible by 3. Furthermore,
α = 1 if and only if N = 1 or N = 2.

(iv) If N is odd, then the pure point spectrum is given by σpp(H(0,N)) = ΣD.
The corresponding eigenspaces are infinite-dimensional and generated by
simple loop eigenfunctions (supported on a single hexagon) and tube loop
eigenfunctions (supported on a loop around the tube).

If N is even, then σpp(H(0,N)) = ΣD ∪ Ξ where Ξ is defined in (4.16).
In particular, if N = 2 then the embedded eigenvalues from Ξ are located
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at the band edges of σac(Hp). If N > 2 is even, this new point spec-
trum is located inside the bands. The eigenspaces corresponding to Ξ are
infinite-dimensional and generated by the compactly supported three-leaf
functions.

(v) σ(H(0,N)) has additional gaps (other than the gaps of σ(Hper)) if and only
if N is not divisible by 3.

Remark 4.5. In order to avoid confusion, we need to specify what a simple loop
eigenstate is for the case of the necklace tube T(0,1). In this case, the image of
a hexagon in the tube is a “dumbbell” consisting of two beads of the necklace
connected with a link (see Fig. 8 below). A simple loop eigenfunction in this case

Figure 8. A dumbbell image of a hexagon.

can concentrate either on a single bead, or on the whole dumbbell.

Corollary 4.6. Let T(N,N) be an armchair nano-tube.

(i) The non-constant part of the dispersion relation for H(N,N) is given by

D(λ) = ±2

3

√
1 + 8 cos

(
θ1 −

πn

N

)
cos

(θ1
2

)
cos

(θ1
2
− πn

N

)
, (4.19)

where 0 ≤ n < N .
(ii) The singular continuous spectrum is empty.
(iii) The absolutely continuous spectrum is given by

σac(H(N,N)) = D−1
(
[−2, 2]

)
= σ(Hper). (4.20)

(iv) The pure point spectrum is given by σpp(H(N,N)) = ΣD and is located at
an edge of each gap in σac(H(N,N)). The eigenvalues are of infinite mul-
tiplicity and the eigenspaces are generated by simple loop eigenfunctions
(either on a single hexagon or a loop around the tube).

(v) σ(H(N,N)) has exactly the same gaps as σ(Hper).

5. Final remarks

• The zig-zag nano-tube case has been thoroughly studied by a different
method in [26, 27]. The methods employed in this paper seem to be
significantly simpler than the ones in [26, 27] and also apply to all 2D
carbon nano-structures such as graphene and any single-wall nano-tube.

After the paper was accepted for publication, the authors received
the preprint [6], where the case of armchair nano-tubes is considered by
methods analogous to the ones of [26, 27].

• Other spectral properties of the operators H and Hp, e.g. asymptotics of
gaps lengths or properties of (and formulas for) the density of states can
be easily derived from the explicit dispersion relations that we obtained
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and the well studied properties of the Hill discriminant. As an example,
we provide a theorem below that describes the smoothness of the poten-
tial in terms of the gap decay. In order to do so, we call the gaps arising
as D−1([−2

3
α(p), 2

3
α(p)]) the odd gaps G2k−1, k = 1, 2, ... and the gaps of

the Hill operator the even gaps G2k, k = 1, 2, .... Notice that we count
the gaps even when they close (e.g., all odd gaps close for graphene and
for nano-tubes with integer (p1 − p2)/3). Let also γk be the lengths of
the gap Gk.

In the theorem below, the operator is either the graphene operator H ,
or the nano-tube operator Hp.

Theorem 5.1. (i) The periodized 1D potential q0 is infinitely differ-
entiable if and only if γ2k decays faster than any power of k when
k → ∞.

(ii) The periodized 1D potential q0 is analytic if and only if γ2k decays
exponentially with k.

Since the even gaps are exactly the spectral gaps for the Hill operator
with the periodized q0, this is an immediate corollary of the results of
this text and known results of the same nature for the Hill operator
[12, 22, 23, 40, 57]. Statements similar to this theorem can be derived as
easily for other functional classes of potentials, using the corresponding
results for the Hill operator in [12].

• Albeit for graphene (as well as for the nano-tubes with p1 − p2 divisible
by 3) the absolutely continuous spectrum coincides with the one of the
periodic Hill operator as a set, the structure of the spectrum is different,
due to the appearence of the conical singularities inside of each band of
the Hill spectrum.

Such singularities can also appear when the even gaps close, but this
situation is non-generic with respect to the potential q0. However, as
we discussed above, closing the odd gaps and thus appearence of conical
singularities there is mandatory for any potential in the graphene case,
as well for nano-tubes Tp with p1 − p2 divisible by 3.

• As we have indicated in the beginning, quantum graphs (quantum net-
works) have been used to model spectra of molecules at least since
[51, 54]. However, the validity of such models is still under investiga-
tion, see e.g., [13, 16, 33, 46, 47, 52] and references therein.

• The graphene operator H provides also an interesting example in terms
of Liouville type theorems. As it was established in [38] (see also [37] for
related considerations), the Liouville theorem for periodic operators holds
if and only if the Fermi surface consists of finitely many points. Albeit
this normally occurs at the spectral edges only, it was indicated in [37, 38]
that in principle this can happen inside the spectrum. The graphene
operator provides just such an example. Namely, a direct corollary of
our results and the ones of [38] is the following
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Theorem 5.2. Let H be the graphene operator. Suppose D(λ) = 0 and
n > 0. Then the space of solutions u of the equation

Hu− λu = 0

such that
|u(x)| ≤ Cu(1 + |x|)n

is finite dimensional.

Acknowledgments

The authors express their gratitude to E. Korotyaev, K. Pankrashkin and
V. Pokrovsky for information and comments. In particular, it was V. Pokrovsky,
who attracted our attention to the importance of conical singularities.

The authors are also grateful to the reviewer for useful remarks.
This research of both authors was partly sponsored by the NSF through the

NSF Grant DMS-0406022. The authors thank the NSF for this support. The
second author was partly supported by the DFG through the Grant Po 1034/1-1.
Part of this work was done during O. P. visiting Texas A&M University. The
second author thanks the DFG for this support and Texas A&M University for
the hospitality.

References

[1] S. Alexander, Superconductivity of networks. A percolation approach to the effects of
disorder, Phys. Rev. B, 27 (1985), 1541-1557.

[2] C. Amovilli, F. Leys and N. March, Electronic energy spectrum of two-dimensional
solids and a chain of C atoms from a quantum network model, Journal of Math.
Chemistry, Vol. 36, No. 2, 2004.

[3] C. Amovilli, F. Leys, and N. March, Topology, connectivity, and electronic structure

of C and B cages and the corresponding nanotubes, J. Chem. Inf. Comput. Sci. 44

(2004), 122–135.
[4] N. W. Ashcroft and N. D.Mermin, Solid State Physics, Holt, Rinehart and Winston,

New York-London, 1976.
[5] J. Avron, A. Raveh, and B. Zur, Adiabatic quantum transport in multiply connected

systems, Rev. Mod. Phys. 60 (1988), no.4, 873-915.
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