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Abstract. We are interested in the spectrum of the Hodge-de Rham operator
on a Z-covering X over a compact manifold M of dimension n + 1. Let Σ be
a hypersurface in M which does not disconnect M and such that M − Σ is a
fundamental domain of the covering. If the cohomology group Hn/2(Σ) is trivial,
we can construct for each N ∈ N a metric g = gN on M , such that the Hodge-
de Rham operator on the covering (X, g) has at least N gaps in its (essential)
spectrum. If Hn/2(Σ) 6= 0, the same statement holds true for the Hodge-de Rham
operators on p-forms provided p /∈ {n/2, n/2 + 1}.

1. Introduction

A common feature of periodic operators is its band-gap nature of the spectrum. It
is natural to ask how we can create gaps between the bands of the spectrum. Here
we will extend the analysis done by the third named author in [20] to the Hodge-
de Rham operator on forms. However, there are topological obstructions for the
existence of gaps in the spectrum of the Hodge-de Rham operator. The following
Theorem A is a direct consequence of [8, Theorem 0.1]:

Theorem A. Let (M4k+1, g) be a compact oriented Riemannian manifold. Assume
that Σ ⊂ M is an oriented hypersurface, with non-zero signature and not discon-

necting M . Let Z → M̃ → M be the cyclic covering associated to Σ, then for any

complete Riemannian metric on M̃ (periodic or not) the spectrum of the Hodge-de

Rham Laplacian on M̃ is [0,∞[.

The result we present here has also a topological restriction:

Theorem B. Assume that Σn ⊂ Mn+1 is a hypersurface in a compact manifold M

and assume that Σ does not disconnect M . Let Z → M̃ → M be the cyclic covering
associated to Σ.

If p 6= n/2 and p 6= n/2+1, then there is a family of periodic Riemannian metrics

gε on M̃ such that the spectrum of the Hodge-de Rham Laplacian acting on p-forms
has Nε gaps with limε→0Nε = +∞.

If p = n/2 or p = n/2+1, the same conclusion holds provided that the (n/2)-Betti
number of Σ vanishes, i.e., bn/2(Σ) = 0.

Our result is obtained through a convergence result of the differential form spec-
trum which generalises the study of the first author and B. Colbois [3]. The family
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of metrics gε is defined on M as follows: outside a collar neighbourhood of Σ, the
metric is independent of ε and on this collar neighbourhood of Σ the Riemann-
ian manifold (M, gε) is isometric to the union of two copies of the truncated cone
([ε, 1] × Σ, dr2 + r2h), where h is a fixed Riemannian metric on Σ, and of a thin
handle [0, L] × Σ endowed with the Riemannian metric dr2 + ε2h.
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M
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Figure 1. Construction of the manifold Mε and the limit manifold M.
We start with a manifold M having product structure on U . The cones
on Mε have length 1 − ε, and the handle has length L and radius ε. The
limit consists of the manifold M with two conical singularities, and the line
segment [0, L].

Geometrically, the manifold (M, gε) is converging in the Gromov-Hausdorff topol-
ogy to the union of a manifold (M, g) with two conical singularities and of a segment
of length L joining the two singularities. On (M, g), the operator D := d + d∗, a
priori defined on the space of smooth forms with support in the regular part of M ,
is not necessary essentially self adjoint. After the pioneering work [9] of J. Cheeger
dealing with the Friedrichs extension Dmax ◦Dmin, the closed extensions of D have
been studied carefully (see for instance [7], [16], [25] and [15]).

Denote by σD = { (πk/L)2 ; k = 1, 2, . . .} the Dirichlet spectrum of the Laplacian
on functions on the interval [0, L] and similarly by σN := σD ∪ {0} the Neumann
spectrum. Our main theorem is the following:

Theorem C. Suppose, in the case when n is even, that the cohomology group
Hn/2(Σ) = 0. The spectrum of the Hodge-de Rham operator acting on p-forms
of the manifold (M, gε) converges to the spectrum σp of the limit problem, where σp

is given as follows:

p < (n + 1)/2: The limit spectrum σp is the union of the spectrum of the oper-

ator Dmax◦Dmin on p-forms on M , the Neumann spectrum σN with multiplic-
ity dimHp−1(Σ) and the Dirichlet spectrum σD with multiplicity dimHp(Σ).

p > (n + 1)/2: The limit spectrum σp is the union of the spectrum of the oper-
ator Dmax◦Dmin on p-forms on M , the Neumann spectrum σN with multiplic-
ity dimHp(Σ) and the Dirichlet spectrum σD with multiplicity dimHp−1(Σ),
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p = (n + 1)/2: The limit spectrum σp is the union of the spectrum of the op-
erator Dmin ◦Dmax on p-forms on M , and the Neumann spectrum σN with
multiplicity dimHp(Σ) ⊕ dimHp−1(Σ).

Remarks. Our Theorem 12 gives also a convergence result in the case when n is
even, the (n/2)-cohomology group of Σ is non-trivial and p = n/2 or p = (n+1)/2. In
this case the limit spectrum is obtained by a coupled problem between the manifold
M and the line segment. Consequently, the result of Theorem 12 does not help for
the determination of the spectrum on the periodic manifold: The spectrum depends
in fact on the spectral flow (see [4, p.93] for a definition) of the family of operators
defined by the Floquet parameter.

We remark also that the presence of the handle influences the definition of the
limit problem on the manifold M , namely in the case p = (n+ 1)/2 where in fact
the operator Dmin ◦Dmax appears. If the handle is not present (i.e. L = 0), the index
of the Gauß-Bonnet operator in this situation has been studied by R. Seeley in [25],
and the convergence of the spectrum of the Hodge-de Rham operator acting on p-
forms by P. Macdonald ([18]), and next by R. Mazzeo and J. Rowlett ([19, 23]). The
result is that, with the topological hypothesis Hn/2(Σ) = 0, this spectrum converges to
the spectrum of the Friedrichs extension Dmax ◦Dmin of the Hodge-de Rham operator
on M for any degree p. This fact can be recovered by our analysis.

Finally, our work has also an extension to the Dirac operator: there is an analogue
of Theorem A due to J. Roe for the Dirac operator ([22]). On the other hand, if we
consider a compact spin manifold Mn+1 and an oriented hypersurface Σ with trivial
Â-invariant or trivial α-invariant, then the recent work of B. Ammann, M. Dahl and
E. Humbert [1] provides a Riemannian metric h on Σ with no harmonic spinors.
Then we can scale this metric so that its associated Dirac operator on Σ has no
eigenvalue in a large symmetric interval. Then our construction also applies in this
case, and gives, with J. Roe’s results, the following

Theorem D. Assume that Σn ⊂ Mn+1 is an oriented hypersurface in a compact

spin manifold M , which does not disconnect M , and consider Z → M̃ → M, the
associated cyclic covering. Then there is a family gε of periodic Riemannian metrics

on M̃ , whose Dirac operator has a large number of gaps in its spectrum if and only

if Â(Σ) = 0, in the case n = 4k, or α(Σ) = 0, in the case n = 8k + 1 or n = 8k + 2.

Recall that the spin cobordism α-invariant satisfies α(Σ) ∈ Z/2Z. This last result
can be compared with the recent one of D. Ruberman and N. Saveliev. Indeed they

prove in [24, Theorem 2] that, the Dirac operator on a cyclic covering M̃ → M is
invertible for a generic set of Z-periodic metric , if and only if αn+1(M) = 0 and
αn(Σ) = 0. The topological invariant αn(X) for a closed manifold X of dimension n
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is defined as an elemant of KOn, and we have

αn(X) =





Â(X), if n = 8k,

Â(X)/2, if n = 8k + 4,

α(X), if n ∈ {8k + 1, 8k + 2},
0, otherwise.

They use also the construction of B. Ammann, M. Dahl and E. Humbert [1]. In
particular, the results of Ruberman and Saveliev imply that generically, the first
band of the spectrum of the Dirac operator does not touch 0; it is not a result about
the presence of many gaps in the spectrum.

It is tempting to ask whether an equivalence as in Theorem D also holds for
the Hodge-de Rham operator, but we have no guess about the validity of such an
extension. We think that it is an interesting question and we intend to consider this
question in a future work.

The paper is organised as follows: In the next section, we fix the geometric setting
for the quotient manifoldM , namely the family of metrics gε. In Section 3 we describe
the Hodge-de Rham operator in natural coordinates on the collar neighbourhood of
Σ. In Section 4 we provide basic estimates on a sequence of eigenforms used in the
main convergence result, which will be presented in Section 5. In Section 6 we deduce
the existence of spectral gaps and in Section 7 we discuss the possible appearance of
small eigenvalues in the setting of Theorem C.

Acknowledgements. This work began with a one month visit of O. Post at the
University of Nantes; O. Post would like to thank for this invitation. G. Carron
thanks R. Mazzeo for useful discussions. We thank the referee for drawing our
attention to the work of Ruberman and Saveliev [24].

2. The geometric set-up

In this section, we explain the construction of the deforming family of metrics gε.
We assume that M is a compact manifold of dimension n+1 and that Σ is a compact
hypersurface inM which does not disconnect the manifold (note that this hypothesis,
needed for the construction of a connected periodic manifold, does not play any role
in the proof of the preliminary Theorem C). We choose a metric g on M such that
there exists a collar neighbourhood U = ]−2, 2[ × Σ of Σ where g is of the form
dt2 + h for a (fixed) metric h on Σ.

For ε ∈ ]0, 1], we construct a family of continuous, piecewise smooth metrics gε on
M as follows:

• Outside the collar neighbourhood V := ] − 1, 1[ × Σ ⊂ U , we do not change
the metric, i.e. gε = g on M \ V.

• On the collar neighbourhood V, the metric is chosen in such a way that
(V, gε) is isometric to the union Mε = C−

ε ∪ Aε ∪ C+
ε , where C±

ε are cones
]ε, 1[ × Σ endowed with the metric dt2 + t2h and with distinct orientation,
and where Aε is the handle ]0, L[ × Σ endowed with the metric dt2 + ε2h.
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Using a coordinate τ on all three parts, (Mε, gε) is isometric to ]−(L/2+1−
ε), L/2+1−ε[×Σ, endowed with the warped product metric dτ 2 +ρε(τ)

2h,
where

ρε(τ) =

{
ε if |τ | ≤ L/2

|τ | − L/2 + ε if |τ | ≥ L/2.

We denote by Mε the new Riemannian manifold. We are interested in studying the
limit, as ε → 0, of the spectrum λp

k(ε) = λp
k(gε), k ≥ 1, of the Hodge-de Rham

operator acting on p-forms defined on the manifold Mε. We remark that gε is only
continuous.

The Hodge-de Rham operator is defined in this case as follows (see [3] for more
details). The manifold is the union of two smooth parts with boundary. For a
manifold M = M1 ∪M2, denote by D1, D2 the Gauß-Bonnet operator on each part.
The quadratic form q(ϕ) =

∫
M1

|D1(ϕ↾M1
)|2 +

∫
M2

|D2(ϕ↾M2
)|2 is well defined and

closed on the domain

dom(q) =
{
ϕ = (ϕ1, ϕ2) ∈ H

1(M1) × H
1(M2) ; ϕ1↾∂M1

L
2= ϕ2↾∂M2

}
,

and on this space the total Gauß-Bonnet operator is defined and selfadjoint. The
Hodge-de Rham operator of M is then defined as the operator obtained by the
polarization of the quadratic form q. This gives compatibility conditions between
ϕ1 and ϕ2 on the commun boundary, these conditions are explained in detail in the
next section.

Finally we remark that it is not a loss of generality to concider only continuous
metrics: the family (gε)ε>0 can be approched by a family of smooth Riemannian
metrics (gε,η)ε>0 such that

e−ηgε ≤ gε,η ≤ eηgε (1)

for all ε.

Proof. Let fη be a smooth, increasing function on R
+ such that

fη(r) = 1 for r ≤ 1 and fη(r) = r for r ≥ 1 + η.

Then the metric gε,η = dτ 2 + fε,η(τ)
2h on Mε with fε,η defined by

fε,η(τ) =

{
ε if |τ | ≤ L/2,

εfη

(
|τ |−L/2+ε

ε

)
if |τ | ≥ L/2

satisfies the estimate (1). �

A result of Dodziuk [13, Prop. 3.3] implies now, that the corresponding eigenvalues
satisfy

e−(n+2p)ηλp
k(gε) ≤ λp

k(gε,η) ≤ e(n+2p)ηλp
k(gε).

Note that the result of Dodziuk also applies to our singular metrics, based on the
Hodge decomposition and the fact that the spectrum away from 0 is given by exact
forms. Hence, it is enough to prove our results only for a family of continuous (but
piecewise smooth) metrics, and the convergence results extend also to a family of
smooth metrics. The above definition of a family of non-smooth metrics will simplify
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some of our arguments in the next section. Namely, we can solve certain differential
equations explicitly due to the special form of the metric on the cones and the handle.

3. Description of the Hodge-de Rham operator on Mε

In this section we express the norm of a p-form, the Gauß-Bonnet, the Hodge-de
Rham operator and its associated quadratic form in the new coordinates. On the
cones C±

ε , we use the same parametrisation of the forms as the one introduced in [7]
and [6], namely a p-form ϕ can be written as

ϕ = dt ∧ t−(n/2−p+1)β± + t−(n/2−p)α±

and we set

U±ϕ := σ± := (β±, α±) ∈ C
∞(]ε, 1[,C∞(Λp−1T ∗Σ) ⊕ C

∞(ΛpT ∗Σ)).

Similarly, on the handle, we have

ϕ = dr ∧ ε−(n/2−p+1)β + ε−(n/2−p)α

and we set

Uϕ := σ := (β, α) ∈ C
∞(]0, L[,C∞(Λp−1T ∗Σ) ⊕ C

∞(ΛpT ∗Σ)).

Since we included the factor ρε of the (warped) product gε = dt2 + ρε(t)
2h in the

definition of the transformation, it is now straightforward to see that U± extends to
a unitary operator on the corresponding L2-spaces and similarly for U . In particular,
we have

‖ϕ‖2
L2(Λ•T ∗Mε,gε)

=

∫

Mε

|ϕ|2gε
d volgε

=
∑

s=±

∫ 1

ε

[
|βs(t)|2 + |αs(t)|2

]
dt+

∫ L

0

[
|β(t)|2 + |α(t)|2

]
dt, (2)

where | · | denotes the L2-norm on L2(Λ•T ∗Σ, h).
We can now transform the Gauß-Bonnet operator D := d + d∗, which in fact

depends on ε as the metric does, using the transformations U± resp. U and obtain

UDU∗ =

(
0 1
−1 0

) (
∂t +

1

ε

(
0 −D0

−D0 0

) )
on the handle Aε and

U±DU
∗
± =

(
0 1
−1 0

) (
∂t +

1

t



n

2
− P −D0

−D0 P − n

2




)
on the cones C±

ε ,

where D0 = d0 + d∗0 denotes the Gauß-Bonnet operator on the compact Riemannian
manifold (Σ, h) and where P is the linear operator multiplying with the degree of
the form. For further purposes, it will be useful to denote

A0 =

(
0 −D0

−D0 0

)
and A =



n

2
− P −D0

−D0 P − n

2
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the parts, in the transformed Gauß-Bonnet operators, acting non-trivially in the
transversal direction Σ.

In this representation, a piecewise smooth form ϕ is in the domain of D if and
only if ϕ is in the H1-space of each part and if the components of Uϕ and U±ϕ satisfy
the compatibility or transmission conditions

{
β(L) = β+(ε), β(0) = −β−(ε)

α(L) = α+(ε), α(0) = α−(ε).
(3)

The Hodge-de Rham operator is now given by D2. A simple calculation shows that
on the handle Aε, we have

UD2U∗ = −∂2
t +

1

ε2
A2

0 = −∂2
t +

1

ε2

(
∆Σ 0
0 ∆Σ

)
,

where ∆Σ = D2
0 denotes the Hodge-de Rham operator of the Riemannian manifold

(Σ, h). Similarly, on the cones C±
ε we have the expression

U±D
2U∗

± = −∂2
t +

1

t2
(A+ A2),

where

A + A2 =


∆Σ +

(n
2
− P

)(n
2
− P + 1

)
−2d∗0

−2d0 ∆Σ +
(n

2
− P

)(n
2
− P − 1

)

 . (4)

The domain of D2 consists of those forms ϕ in the domain of D such that Dϕ is
also in the domain of D. In particular, the domain of the transformed operator
UD2U∗ consists of pairs of forms satisfying — in addition to (3) — the following
compatibility or transmission conditions (of first order) on the derivatives:

β ′(L) = β ′
+(ε) +

1

ε

(n
2
− P

)
β+(ε), β ′(0) = β ′

−(ε) +
1

ε

(n
2
− P

)
β−(ε) (5a)

α′(L) = α′
+(ε) − 1

ε

(n
2
− P

)
α+(ε), α′(0) = −α′

−(ε) +
1

ε

(n
2
− P

)
α−(ε). (5b)

Let us now compute the expression

‖Dϕ‖2
L2(Λ•T ∗Mε,gε) =

∫

Mε

|Dϕ|2gε
d volgε

,

i.e., the quadratic form on Mε, for a form ϕ in the domain of D, and with support
in Mε in terms of

σ± =

(
β±
α±

)
= U±ϕ and σ =

(
β
α

)
= Uϕ

using the isometries U± and U .
Denote by 〈·, ·〉 the scalar product in L2(Λ•T ∗Σ, h)⊕L2(Λ•T ∗Σ, h) and by Cε one of

the two cones, oriented by dt ∧ d volΣ. The expression of the transformed quadratic
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form on the cone is then
∫

Cε

|Dϕ|2gε
d volgε

=

∫ 1

ε

∣∣∣∣
(
∂t +

1

t
A

)
σ±

∣∣∣∣
2

dt

=

∫ 1

ε

[
|σ′

±|2 +
2

t
〈σ′

±, Aσ±〉 +
1

t2
|Aσ±|2

]
dt

=

∫ 1

ε

[
|σ′

±|2 + ∂t

(1

t
〈σ±, Aσ±〉

)
+

1

t2
(
〈σ±, Aσ±〉 + |Aσ±|2

) ]
dt

=

∫ 1

ε

[
|σ′

±|2 +
1

t2
〈σ±, (A+ A2)σ±〉

]
dt− 1

ε

〈
σ±(ε), Aσ±(ε)

〉
.

Similarly, on the handle we have
∫

Aε

|Dϕ|2gε
d volgε

=

∫ L

0

∣∣∣∣
(
∂t +

1

ε
A0

)
σ

∣∣∣∣
2

dt

=

∫ L

0

[
|σ′|2 +

1

ε2
|A0σ|2 +

2

ε
〈σ′, A0σ〉

]
dt

=

∫ L

0

[
|σ′|2 +

1

ε2
|A0σ|2

]
dt

+
1

ε

(〈
σ(L), A0σ(L)

〉
−

〈
σ(0), A0σ(0)

〉)
.

The total boundary term is

b(ϕ, ϕ) =
(
−

〈
σ+(ε), Aσ+(ε)

〉
−

〈
σ−(ε), Aσ−(ε)

〉

+
〈
σ(L), A0σ(L)

〉
−

〈
σ(0), A0σ(0)

〉)
.

Using the compatibility conditions (3) and the relation

A = A0 −
(
P − n

2
0

0 n
2
− P

)
,

we obtain for the boundary term b(ϕ, ϕ) the following expression

b(ϕ, ϕ) =
∑

s=±

〈
σs(ε),

(
P − n

2
0

0 n
2
− P

)
σs(ε)

〉
,

which does not contain derivatives any more. Finally, we can express the quadratic
form associated to the Hodge-de Rham operator on Mε as

∫

Mε

|Dϕ|2d volgε
=

∑

s=±

∫ 1

ε

(
|σ′

s|2 +
1

t2
〈σs, (A+ A2)σs〉

)
dt

+

∫ L

0

(
|σ′|2 +

1

ε2
|A0σ|2

)
dt+

1

ε
b(ϕ, ϕ) (6)

for p−forms supported in Mε.
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4. Asymptotic estimates

4.1. Spectrum of the operator A + A2. The expression of A + A2 was given in
formula (4). We remark that the function

f(p) =
(n

2
− p

)(n
2
− p− 1

)

has zeros for the values n/2 and n/2 − 1. In particular, for p ∈ N we have always
f(p) ≥ 0 if n is even and f(p) ≥ −1/4 if n is odd. The value −1/4 is obtained only
for p = (n− 1)/2. Setting

ap :=
n+ 1

2
− p

we have the relation f(p) = a2
p+1 − 1/4.

The following lemma is a direct consequence of the Hodge decomposition theorem
for the compact manifold (Σ, h) and the expression of the operator A + A2 on each
of the subspaces given in the lemma:

Lemma 1. The space L2(Λp−1Σ) ⊕ L2(ΛpΣ) is the orthonormal sum of the following
five spaces, and A + A2 acts on these spaces as indicated:

H1 = {(β, 0); ∆Σβ = 0 }, (A+ A2)(β, 0) = (f(p− 2)β, 0),

H2 = {(0, α); ∆Σα = 0}, (A+ A2)(0, α) = (0, f(p)α),

H3 = {(β, 0); β exact }, (A+ A2)(β, 0) =
(
(∆Σ + f(p− 2))β, 0

)
,

H4 = {(0, α); α co-exact }, (A+ A2)(0, α) =
(
0, (∆Σ + f(p))α

)
,

H5 = {(β, α); β co-exact, α exact }, (A+ A2)(β, α) =

=
(
(∆Σ + f(p− 2))β − 2d∗0α, (∆Σ + f(p))α− 2d0β

)
.

In addition, this decomposition is preserved by A+ A2 and A2
0.

We can now compute explicitly the eigenvalues of the operator A2 + A in terms
of the spectrum of the Hodge-de Rham operator on Σ. Clearly, on the spaces Hi,
i = 1, . . . , 4, the operator A2 + A is already diagonalised provided α and β are
eigenforms of ∆Σ.

If (β, α) ∈ H5 is an eigenvector of A + A2 for the eigenvalue λ then they satisfy
the equations

(
∆Σ + f(p− 2) − λ

)
β = 2d∗0α (7)

(
∆Σ + f(p) − λ

)
α = 2d0β. (8)

Applying d0 to the first and
(
∆Σ + f(p − 2) − λ

)
to the second equation, and

substituting the β term, leads to the equation

4∆Σα =
(
∆Σ + f(p− 2) − λ

)(
∆Σ + f(p) − λ

)
α (9)

for α. If α is an exact eigenform with ∆Σα = µ2α then λ is a solution of the second
order polynomial equation

4µ2 =
(
µ2 + f(p− 2) − λ

)(
µ2 + f(p) − λ

)
. (10)
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A direct computation shows that the solutions of this equation are

λ±(µ2) = γ±(µ2)(γ±(µ2) + 1)

where

γ±(µ2) = −1

2
+

∣∣∣
√
µ2 + a2

p ± 1
∣∣∣. (11)

Now if (αk)k∈N is a complete family of exact eigenforms with corresponding eigen-
values (µ2

k)k∈N, then it is easily seen that the family
( 2

µk
2 + f(p− 2) − λs(µ

2
k)
d∗0αk, αk

)
k∈N,s=±

(12)

defines a basis of H5 of eigenvectors of A + A2 with corresponding eigenvalues
{λs(µ

2
k)}k∈N,s=±.

For further purpose, it will be very convenient to write the eigenvalues of A+A2 in
the form γ(γ+ 1), as we have already done in the above calculation of the spectrum
of A + A2 on H5. The spectrum of the restriction of A + A2 on H3 is given by
γ(µ2)(γ(µ2) + 1), where

γ(µ2) = −1

2
+

√
µ2 +

(n+ 3

2
− p

)2

= −1

2
+

√
µ2 +

(
ap + 1

)2

= −1

2
+

√
µ2 + a2

p−1

(13)

for µ2 running over the exact spectrum of ∆Σ acting on (p− 1)-forms.
Similarly, the spectrum of A + A2 restricted to H4 is given by γ(µ2)(γ(µ2) + 1),

where

γ(µ2) = −1

2
+

√
µ2 +

(n− 1

2
− p

)2

= −1

2
+

√
µ2 +

(
ap − 1

)2

= −1

2
+

√
µ2 + a2

p+1

(14)

for µ2 running over the co-exact spectrum of ∆Σ acting on p-forms.
The spectrum of A+ A2 on H1, is γ(γ + 1) with multiplicity bp−1(Σ) where

γ = −1

2
+ |ap−1| = −1

2
+

∣∣∣∣
n + 1

2
− p+ 1

∣∣∣∣ . (15)

The spectrum of A+ A2 on H2, is γ(γ + 1) with multiplicity bp(Σ) where

γ = −1

2
+ |ap+1| = −1

2
+

∣∣∣∣
n+ 1

2
− p− 1

∣∣∣∣ . (16)
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Remark 2. The decomposition given in Lemma 1 is also preserved by A2
0. Therefore,

the expression (6) of the quadratic form for a p-form supported in Mε shows that
the pointwise decomposition of a form is preserved by the quadratic form. Namely,
if ϕ =

∑
1≤i≤5 ϕ

i with ϕi(t) ∈ Hi for all t, then

∫
|Dϕ|2 =

∑

1≤i≤5

∫
|Dϕi|2.

For our asymptotic analysis below we need a spectral decomposition in a low and
high eigenvalue part. Namely, we need the decomposition

ϕ3 + ϕ4 + ϕ5 = ϕΛ + ϕΛ, (17)

where U±ϕΛ and UϕΛ belong (pointwise) to the orthogonal sum of the eigenspace
of A2

0 associated to the eigenvalues smaller that Λ2. Similarly, U±ϕ
Λ and UϕΛ

belong (pointwise) to the orthogonal sum of the eigenspace of A2
0 associated to the

eigenvalues strictly larger than Λ2.

4.2. Study of a sequence of eigenforms. We consider now a sequence εm con-
verging to 0 such that there is a sequence λm of eigenvalues of the Hodge-de Rham
operator ∆εm

on Mεm
and converging to some λ. Let ϕm be the corresponding

normalised p-eigenform. In the following we will write ε = εm. Thus

∆εϕm = λmϕm, ‖ϕm‖ = 1.

We want to understand the behaviour of ϕm when m → ∞. Since this sequence
is bounded in H1

loc and by elliptic regularity, after passing to a subsequence, we
can assume that ϕm converges to ϕ on M \ V in the H

1-topology and also in C
∞
loc.

Similarly, we can also assume that ϕm converge to ϕ on each of the cones C±
η for

fixed η > 0 such that εm ≤ η. The main difficulty is to understand the behaviour of
ϕm on Mε. For this purpose we introduce a smooth cut-off function χ with support
in Mε, 0 ≤ χ ≤ 1, and such that χ = 1 on Aε ∪ (C+

ε \ C+
1/2) ∪ (C−

ε \ C−
1/2).

On Mε we have the decomposition

ϕm = ϕ1
m + ϕ2

m + ϕm,Λ + ϕΛ
m (18)

of Lemma 1 and (17).

4.2.1. Non-harmonic terms. We study here the behaviour of the last two terms.

Lemma 3. The high-energy component of the eigenforms can be estimated near the
handle by

‖ϕΛ
m‖2

L2(Aε) ≤ C
ε2

Λ2
and ‖ϕΛ

m‖2
L2(C±

ε \C±
η )

≤ C
η2

Λ2

provided Λ is large enough and ε = εm ≤ η. The estimate is uniform in m→ ∞.
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Proof. Let σm = UχϕΛ
m and σ±,m = U±χϕ

Λ
m, we have that

‖DχϕΛ
m‖2

L2 =

∫

Mε

|dχ|2|ϕΛ
m|2| +

∫

Mε

χ2|DϕΛ
m|2

≤ |dχ|2∞ + |χ|2∞
∫

Mε

|DϕΛ
m|2 ≤ |dχ|2∞ + |χ|2∞λm = Cχ(λm)

is uniformly bounded, but on the other hand

‖DχϕΛ
m‖2

L2 ≥
∑

s=±

∫ 1/2

ε

[
|σ′

±,m|2 +
〈(A2 + A)σ±,m, σ±,m〉

t2

]
dt

+

∫ L

0

[
|σ′

m|2 +
|A0σm|2
ε2

]
dt− n+ 1

2

[
|σm(0)|2 + σm(L)|2

]
. (19)

The boundary term can be estimated using the following optimal inequality
∫ L

0

[
|v′(t)|2 +

Λ2

ε2
|v(t)|2

]
dt ≥ Λ

ε
tanh

(ΛL

2ε

)[
|v(0)|2 + |v(L)|2

]
,

which is true for all v ∈ H1([0, L]). Namely, if we choose Λ > 0 sufficiently large such
that

Λ

ε
tanh

(ΛL

2ε

)
≥ (n+ 1)

for all ε ∈ ]0, 1], then the boundary term can be estimated in terms of the last
integral in (19). In addition, the spectrum of the restriction of the operator A2 + A
to the orthogonal sum of the eigenspaces of A2

0 associated to the eigenvalues strictly
larger that Λ2, is bounded from below by Λ2/2. Consequently, we obtain

Cχ(λm) ≥
∑

s=±

∫ 1/2

ε

[
|σ′

±,m|2 +
Λ2|σ±,m|2

2t2

]
dt+

1

2

∫ L

0

[
|σ′

m|2 +
|A0σm|2
ε2

]
dt

≥
∑

s=±

∫ 1/2

ε

Λ2|σ±,m|2
2t2

dt+

∫ L

0

Λ2|σm|2
2ε2

dt

≥
∑

s=±

∫ η

ε

Λ2|σ±,m|2
2η2

dt+

∫ L

0

Λ2|σm|2
2ε2

dt

and we are done with C = 4Cχ(λ) since λm → λ. �

The next lemma says that also the non-harmonic low energy part of ϕm goes to
zero on the handle when m→ ∞.

Lemma 4.

lim
m→∞

‖ϕm,Λ‖2
L2(Aε) = 0.
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Proof. Let Usχϕm = σs,m for s = ∅,+,−. Since ϕm,Λ is a finite sum of forms, which
transversally are (non-harmonic) eigenforms of A2 + A and A2

0, we can assume that
A2

0σs,m = µ2σs,m with µ 6= 0, and (A2 + A)σs,m = γ(γ + 1)σs,m where γ ≥ −1/2
depends on µ as in (11), (13) and (14).

On the handle, i.e., on [0, L], σm satisfies the (form-valued) equation

−σ′′
m(t) +

µ2

ε2
σm(t) = λmσm(t).

Consequently, if δm =
√
µ2/ε2 − λm, we can write

σm(t) =
1√
ε

[
ame−δmt + bme−δm(L−t)

]
,

where the coefficients am, bm are pairs of forms on Σ.
It is not hard to check that there is a constant C independent of m such that

C−1(|am|2 + |bm|2) ≤
∫ L

0

|σm(t)|2dt ≤ C(|am|2 + |bm|2)

where | · | denotes the L2-norm of pairs of forms on Σ.
Our aim is to show that am and bm converge to 0. To do so, we need also the

behaviour of solutions on the cones. Namely, on [ε, 1/2], the transformed eigenform
σ±,m solves the equation

−σ′′
±,m(t) +

γ(γ + 1)

t2
σ±,m(t) = λmσ±,m.

Hence we can express the solution of the equation in terms of Bessel’s functions. As
a result, there are entire functions Fγ and Gγ with Fγ(0) = Gγ(0) = 1, such that the
solutions are linear combinations of

fγ(t) = tγ+1Fγ(λmt
2)

gγ(t) =

{
t−γGγ(λmt

2) if γ + 1/2 /∈ N

t−γGγ(λmt
2) + a log(t)fγ(t) if γ + 1/2 ∈ N.

Namely, there exist pairs of forms c±,m, d±,m on Σ (independent of t), such that

σ±,m(t) = c±,mfγ(t) + d±,mgγ(t) (20)

In both cases, we obtain the estimate

C−1
(
|c±,m|2 + hγ(ε)|d±,m|2

)
≤

∫ 1/2

ε

|σ±,m(t)|2dt

≤ C
(
|c±,m|2 + hγ(ε)|d±,m|2

)
(21)

where

hγ(ε) ∼





ε−2γ+1 if γ > 1/2

| log(ε)| if γ = 1/2

1 if γ < 1/2.



14 COLETTE ANNÉ, GILLES CARRON, AND OLAF POST

We now use the transmission conditions (3) to combine the solutions on the handle
and the cones. Let

J =

(
− id 0
0 id

)
. (22)

Then the transmission conditions (3) read as

1√
ε

[
ame−δmL + bm

]
= σ+,m(ε) (23)

and
1√
ε

[
am + bme−δmL

]
= Jσ−,m(ε). (24)

Since am and bm belong to a compact set (namely, to a ball of the finite-dimensional
space of eigenforms of A2

0 below Λ2), we can assume (after passing to a subsequence)
that

lim
m→∞

am = a∞ and lim
m→∞

bm = b∞.

Recall that the main point is to show that a∞ = b∞ = 0.
The transmission conditions (23) and (24), the behaviour of δm ∼ µ/ε as ε goes

to 0, and the fact that the sequence c±,m is bounded (cf. (21)), imply that

lim
m→∞

d+,mε
−γ+1/2 = b∞ (25)

and
lim

m→∞
d−,mε

−γ+1/2 = Ja∞. (26)

We conclude from these last equalities together with (21) that a∞ = b∞ = 0 in the
case γ < 1

2
. A similar argument holds in the case γ = 1

2
.

It remains to consider the case γ > 1
2
. From the transmission condition of first

order (5) we obtain

δm√
ε

[
−ame−δmL + bm

]
= σ′

+,m(ε) − 1

ε

(n
2
− P

)
Jσ+,m(ε) (27)

for σ+,m and

δm√
ε

[
−am + bme−δmL

]
= −Jσ′

−,m(ε) +
1

ε

(n
2
− P

)
σ−,m(ε) (28)

for σ−,m.
In the remaining part of the proof, we want to show that b∞ = 0 using (27). The

argument for a∞ = 0 follows similarly from (28). Namely, from (27), we obtain the
additional information

b∞ = lim
m→∞

√
ε

δm

(
−γε−γ−1d+,m −

(n
2
− P

)
ε−γ−1Jd+,m

)

for b∞. This equality combined with (25) give the necessary condition on b∞, namely

(µ+ γ)b∞ =

(
n
2
− p+ 1 0

0 p− n
2

)
b∞.
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Using now the result of the following sublemma, we conclude that b∞ = 0. Indeed
we restrict ourself to the case where γ > 1/2, so the last case γ = 1/2 − µ is not
possible with µ ≥ 0. �

Sublemma 1. Let b be an eigenform of A(A + 1) with eigenvalue γ(γ + 1) relative
to a non-zero eigenvalue µ2 of ∆Σ and denote

Nγ,µ,p = γ + µ+
(n

2
− P

)
J = γ + µ−

(
n
2
− p+ 1 0

0 p− n
2

)
.

The operator Nγ,µ,p restricted to Hj is identically 0 iff j = 5, γ = γ−(µ2) and
p = (n+ 1)/2. In this case, µ ∈ ]0, 1] and γ = 1/2 − µ.

In all other cases, i.e., if b ∈ Hj, j = 3, 4, or b ∈ H5 and γ = γ+(µ2) or γ = γ−(µ2)
but p 6= (n+ 1)/2 or µ > 1, then Nγ,µ,p(b) = 0 implies b = 0.

Proof. We distinguish the three cases b ∈ H3, b ∈ H4 and b ∈ H5.
If b ∈ H3 then we have

b =

(
b1
0

)

and

γ = −1

2
+

√
µ2 +

(n + 3

2
− p

)2

.

So Nγ,µ,p(b) = 0 means
(
µ+

√
µ2 +

(n+ 3

2
− p

)2
)
b1 =

(n+ 3

2
− p

)
b1.

Since µ > 0, it follows that b1 = 0.
If b ∈ H4 then we have

b =

(
0
b2

)

and

γ = −1

2
+

√
µ2 +

(n− 1

2
− p

)2

.

Consequently, we obtain if Nγ,µ,p(b) = 0,
(
µ+

√
µ2 +

(n− 1

2
− p

)2
)
b2 =

(
p− n− 1

2

)
b2,

hence b2 = 0 since again, µ > 0.
It remains to treat the case where b ∈ H5. Here, we have

b =

(
b1
b2

)
.

Moreover, we know that b1 = 0 if and only if b2 = 0 due to the expression (12) for
the eigenforms. In addition,

γ± = −1

2
+

∣∣∣∣

√
µ2 +

(n+ 1

2
− p

)2

± 1

∣∣∣∣.
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Then, Nγ,µ,p(b) = 0 means
(
µ+

∣∣∣∣

√
µ2 +

(n + 1

2
− p

)2

± 1

∣∣∣∣
)
b1 =

(n+ 3

2
− p

)
b1

and also (
µ+

∣∣∣∣

√
µ2 +

(n+ 1

2
− p

)2

± 1

∣∣∣∣
)
b2 =

(
p− n− 1

2

)
b2.

If b 6= 0, we obtain first, that
(
p− n−1

2

)
=

(
n+3

2
− p

)
, or p = n+1

2
(i.e. ap = 0) and

secondly, that µ+ |µ± 1| = 1.
So assume that p = n+1

2
. Since µ > 0, we have µ+ |µ+1| > 1 and as a consequence

Nγ+(µ2),µ, n+1

2

(b) = 0 ⇒ b = 0.

As well, if µ > 1, then µ+ |µ− 1| = 2µ− 1 > 1, so we have also

µ > 1 and Nγ−(µ2),µ, n+1

2

(b) = 0 ⇒ b = 0.

In the remaining case µ ∈ ]0, 1], we obtain µ+ |µ−1| = 1 (and γ−(µ2) = 1/2−µ),
and Nγ−(µ2),µ,(n+1)/2 = 0. �

We study now the behaviour of the low energy forms ϕm,Λ on the cones C±
ε :

Lemma 5. On C±
ε , we have

U±χϕm,Λ = um + vm

where
lim

m→∞
‖vm‖L2(C±

ε ) = 0

and um is given as follows:

(i) If p 6= (n + 1)/2 or if there is no eigenvalue of ∆Σ for exact p-forms in the
interval ]0, 1[, then

um =
∑

γ

cγ(m)tγ+1Fγ(λmt
2)σγ

where the sum is finite over γ ∈ [−1
2
,∞[, and the sequence (cγ(m))m is

bounded. Moreover, Fγ ∈ C∞([0,∞[) and Fγ(0) = 1. Finally, (σγ)γ is
independent of t and is an orthonormal family in L2(Λp−1T ∗Σ)⊕L2(ΛpT ∗Σ).

(ii) If p = (n+ 1)/2 and if there is an eigenvalue µ2 of ∆Σ for exact p-forms in
the interval ]0, 1[, then we have

um =
∑

γ

cγ(m)tγ+1Fγ(λmt
2)σγ +

∑

µ

cµ(m)tµ−1/2Gγ(λmt
2)σµ,

where the first sum satisfies the same properties as in (i) but we only have
γ ∈ {−1

2
} ∪ [1

2
,∞[. In addition, the second sum is finite and runs over µ ∈

]0, 1[ such that µ2 is an exact eigenvalue of ∆Σ, and the sequence (cµ(m))m

is bounded. In addition, Gγ ∈ C
∞([0,∞[) with Gγ(0) = 1. Moreover, the

family {U−1
± σγ}γ ∪ {U−1

± σµ}µ is orthonormal.



GAPS IN THE DIFFERENTIAL FORMS SPECTRUM ON CYCLIC COVERINGS 17

Proof. We continue with the same notation as in Lemma 4. We will only work on
the behaviour on C+

ε since the other is similar. We assume that U+(ϕm,Λ) = σm is a
common eigenvector of both A2

0 and A2 + A for each t, i.e.,

A2
0σm = µ2σm and (A2 + A)σm = γ(γ + 1)σm,

where we have dropped the subscript +. The expression of σm is given in (20).
From (21), (25) and Lemma 4 we conclude that for γ > 1

2
we have

‖dmgγ‖2 ≃ hγ(ε)|dm|2 = o(1),

if m tends to ∞.
We concentrate now on the case where γ ∈ [−1

2
, 1

2
]. Equations (27) and (23) imply,

by elimination of bm, that for a certain constant c we have

δmσm(ε) − σ′
m(ε) +

1

ε

(n
2
− P

)
Jσm(ε) = O

(
e−c/ε

)
. (29)

But from (20) we conclude that for γ ∈ ]−1
2
, 1

2
[ we have

σ′
m(ε) = cmε

γ(γ + 1)Fγ(λmε
2) + 2cmε

γ+2λmF
′
γ(λmε

2)

− γdmε
−γ−1Gγ(λmε

2) + 2dmε
−γ+1λmG

′
γ(λmε

2).

and if γ = ±1/2 we obtain

σ′
m(ε) = εγ

(
(cm + adm log ε)(γ + 1) + dma

)
Fγ(λmε

2)

+ 2εγ+2(cm + dma log ε)λmF
′
γ(λmε

2)

− γdmε
−γ−1Gγ(λmε

2) + 2dmε
−γ+1λmG

′
γ(λmε

2).

Note that δm also depends on ε, namely, δm(ε) = µ/ε+O(ε). Therefore, equation (29)
together with the fact that the sequences {cm}m and {dm}m are bounded and the
previous expressions for σ′

m(ε) leads to

(
γ + µ+

(n
2
− P

)
J
)
ε−γ−1Gγ(λε

2)dm =

{
O(εγ) if γ 6= 1

2

O(ε
1

2 | log ε|) if γ = 1
2

for γ ∈ ]−1
2
, 1

2
] and
(
γ + µ+

(n
2
− P

)
J
)
ε−

1

2 (log ε)aFγ(λε
2)dm = O(ε−

1

2 )

for γ = −1/2. Using the operator Nγ,µ,p introduced in Sublemma 1 we have obtained

Nγ,µ,p(dm) =





O(ε1+2γ) if γ > −1/2 and γ 6= 1/2

O(ε2| log ε|) if γ = 1/2

O(| log ε|−1) if γ = −1/2.

Hence, if the operator Nγ,µ,p is invertible, we have the same type of estimates for dm

itself and limm→∞ hγ(ε)|dm|2 = 0 or

lim
m→∞

‖σm − cmfγ‖ = 0.
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The result of Sublemma 1 shows that the operator Nγ,µ,p is invertible except in the
case where dm is in H5, p = (n + 1)/2 and γ = γ−(µ2) = 1/2 − µ. The last equality
imposes µ ∈ ]0, 1]. In particular, we have γ ∈ [−1

2
, 1

2
[. Returning to Equation (29)

we conclude then that

σ′
m(ε) +

1
2
− µ

ε
σm(ε) +O(ε)σm(ε) = O(e−c/ε)

or equivalently

ε−γ d

dt

(
tγσm(t)

)∣∣∣
t=ε

+O(ε)σm(ε) = O(e−c/ε).

Hence, if γ = −1/2, we obtain

dm = O(ε2 log ε)

and as before limm→∞ dm = 0 and limm→∞ ‖σm − cmfγ‖ = 0.
If γ ∈ ]−1

2
, 1

2
[, we have

ε−γ d

dt

(
tγσm(t)

)∣∣∣
t=ε

= cm(2γ + 1)εγFγ(λmε
2) + cm2εγ+2λmF

′
γ(λmε

2)

+ ε−γ+12λmG
′
γ(λmε

2)dm.

and therefore
cm = O(ε−2γ+1), i.e. lim

m→∞
cm = 0.

�

4.2.2. Harmonic terms. It remains now to describe the behaviour of the harmonic
components ϕ1

m and ϕ2
m. We restrict our analysis to the space H1, since H1 and H2

are dual by the Hodge-∗ operator.
Again, we let (βs,m, 0) = Usχϕ

1
m for s = ∅,+,− be the transformed pair of forms

corresponding to the the handle and the cones, respectively. We know that on the
handle, βm satisfies the equation

−β ′′
m = λmβm on [0, L], (30)

whereas on the cones, β±,m fulfills

−β ′′
±,m +

ν(ν + 1)

t2
β±,m = λmβ±,m, with ν = n/2 − p+ 1. (31)

If ν 6= 0 we put γ = −1
2

+
∣∣n+3

2
− p

∣∣ = −1
2

+
∣∣ν + 1

2

∣∣ as in (13) with µ = 0. The
transmission conditions (3) and (5) now reads as

βm(L) = β+,m(ε), βm(0) = −β−,m(ε) (32)

and

β ′
m

(L± L

2

)
= β ′

±,m(ε) +
ν

ε
β±,m(ε) = ε−ν d

dt

(
tνβ±,ε(t)

)∣∣∣
t=ε
. (33)

Since the L2-norm of βs,m is bounded, it follows from equation (30) and the trans-
mission conditions (32) and (33), that βm(0), βm(L), β ′

m(0), β ′
m(L) and β±,m(ε) are

all bounded sequences. Hence after passing to a subsequence, we can assume that
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these sequences converge. Moreover, from the quadratic form expression (6), we also
know that there is a uniform constant C such that

∑

s=±

(∫ 1

ε

(
|β ′

s,m|2 +
ν(ν + 1)

t2
|βs,m|2

)
dt− 1

ε
ν|βs,m(ε)|2

)
+

∫ L

0

|β ′
m|2dt ≤ C. (34)

We express the solutions of (31) as in (20):

β±,m(t) = c±,mfγ(t) + d±,mgγ(t).

As a consequence of the estimate (21) on the L
2-norm of β±,m, we obtain

c±,m = O(1) and d±,m =





O
(
εγ−1/2

)
if γ > 1/2,

O
(
| log ε|−1/2

)
if γ = 1/2,

O(1) if γ < 1/2.

(35)

Again, after passing to a subsequence, we can assume that the sequences {c±,m}m

converge to c±,∞.
But now from the transmission condition (32) we know that β±,m(ε) and c±,m are

bounded, and as a consequence, (dmgγ(ε))m is also bounded so

γ ≥ 0 implies d±,m = O(εγ). (36)

In particular, we have

Corollary 6. If γ > 0, i.e., ν /∈ {−1,−1/2, 0}, then

‖β±,m − c±,∞fγ‖L2 → 0.

Proof. By the estimate (21), there exists a constant C > 0 such that

‖β±,m − c±,∞fγ‖L2 ≤ C
√
hγ(ε)|d±,m|.

By the preceding remark and (21), we arrive at

‖β±,m − c±,∞fγ‖L2 =

{
O(

√
ε) if γ > 1/2

O(
√
ε| log ε|) if γ = 1/2.

�

We study now the limit boundary conditions.

Lemma 7. If p− 1 ≥ n+1
2

or ν ≤ −1/2 (and therefore γ = −1− ν), then we obtain,
at the limit, the Dirichlet boundary conditions:

lim
m→∞

βm(0) = 0 and lim
m→∞

βm(L) = 0.

Proof. If ν < −1/2 then ν(ν + 1) ≥ 0 and the estimate of the quadratic form (34)
gives

βε(0) = −β−,ε(ε) = O(
√
ε), βε(L) = β+,ε(ε) = O(

√
ε).

Now suppose that ν = −1/2. In this case the estimate (34) gives
∫ 1

ε

|β ′
±,m(t)|2dt−

∫ 1

ε

1

4t2
|β±,m(t)|2dt+

1

2ε
|β±,m(ε)|2 ≤ C.
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However, after integration by parts, the left hand side of this inequality is
∫ 1

ε

t
∣∣∣ d
dt

(
t−1/2β±,m(t)

)∣∣∣
2

dt.

Let v ∈ C∞
c ([ε, 1[) and let ϕ(t) =

√
| log t| v(t), then we have

∫ 1

ε

t|ϕ′(t)|2dt =

∫ 1

ε

|v(t)|2 dt

4t| log t| +

∫ 1

ε

|v′(t)|2| log(t)|dt−
∫ 1

ε

v(t)v′(t) dt

≥ −
∫ 1

ε

v(t)v′(t) dt

=
1

2
|v(ε)|2.

Applying the former estimate with v(t) = (t| log t|)−1/2β(t), we obtain

β±,m(ε) = O
(√

ε| log ε|
)

which proves the claim. �

We focus now on the case where ν > 0 and consequently γ = ν.

Lemma 8. If p − 1 ≤ n−1
2
, or ν ≥ 1

2
(and therefore γ = ν), then we obtain, at the

limit, the Neumann boundary conditions

lim
m→∞

β ′
m(0) = 0 and lim

m→∞
β ′

m(L) = 0.

Proof. The first order transmission conditions (33) imply that we have to look at the
limit of the sequence formed by

ε−ν d

dt

(
tνβ±,ε(t)

)∣∣∣
t=ε
.

But the limit of this sequence is
{

limm→∞ d±,mε
1−νλmG

′
γ(λmε

2) if ν ≥ 1,

limm→∞ 2ad±,mε
1/2(log ε)Fγ(λmε

2) if ν = 1/2.

Now following (36), d±,m = O(εν), and we obtain finally

∣∣∣β ′
m

(L± L

2

)∣∣∣ =

{
O(ε) if ν > 1/2,

O(ε| log ε|) if ν = 1/2

and the result follows. �

Corollary 9. If Hn/2(Σ) = 0, then we have

U(ϕm,1) = (c±,mfγ , 0) + rm

on C±
ε , where

lim
m→∞

‖rm‖L2 = 0,

the sequence c±,m converges to c±,∞ and fγ is given by (20) with γ = −1
2
+

∣∣n+3
2

−p
∣∣.
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Proof. With the preceding notations we have to show that

‖β±,m − c±,∞fγ‖L2 → 0.

Recall that γ = −1
2
+

∣∣ν+ 1
2

∣∣ with ν = n/2−p+1. Corollary 6 fulfills the case γ > 0.
If γ ≤ 0 then, by the estimate (21), ‖β±,m − c±,∞fγ‖L2 is controlled by |d±,m|. It
remains to show that limm→∞ d±,m = 0 if γ ≤ 0 (and ν 6= 0 by hypothesis).

The case γ = 0 corresponds only to ν = −1. The boundedness of the quadratic
form gives then β±,m(ε) = O(

√
ε). But this implies, by the expression of the solutions

of (31), that
d±,m = O(

√
ε).

The case γ = −1/2 corresponds to ν = −1/2. In this case we have already seen
that

β±,m(ε) = O
(√

ε| log ε|
)
.

The expression of the solutions of (31) for γ = −1/2 implies that

d±,m = O

(
1√

| log ε|

)

and the result follows. �

Remark 10. If the cohomology group Hn/2(Σ) is non-trivial, what happens in the
case ν = 0, i.e., for forms of degree p = n/2 + 1? The quadratic form (34) becomes

∑

s=±

∫ 1

ε

|β ′
s,m|2 +

∫ L

0

|β ′
m|2.

Actually, we are just on intervals and the transmission condition gives the limit
situation. From the sequence {βm}m, which is bounded in H1 on the global interval,
one can extract a sequence which converges to an eigenform on M with eigenvalue λ,
and the boundary values β±(0) and β ′

±(0) must satisfy the transmission conditions

β−(0) = −β(0), β+(0) = β(L); β ′
−(0) = β ′(0), β ′

+(0) = β ′(L) (37)

for β satisfying −β ′′ = λβ on [0, L].
For instance if we come from the situation where M = R/Z × Σ is a 3-torus and

Σ = R2/Z2 a generating torus, the limit problem described here is not decoupling.

5. The limit problem

We first recall the results of [7] and [16] concerning the closed extensions of the
operator D = d+d∗ on the manifold with conical singularities M . They are classified
by the spectrum of its Mellin symbol, which is here the operator with parameter A+z.
In our case, we need two copies of A + z, since we have two conical singularities.
Recall that A is the operator defined in (3) by

A =



n

2
− P −D0

−D0 P − n

2


 .



22 COLETTE ANNÉ, GILLES CARRON, AND OLAF POST

If spec(A) ∩ ]−1
2
, 1

2
[ is empty then Dmax = Dmin. In particular, D is essentially

selfadjoint on the space of smooth functions with compact support away from the
conical singularities. Otherwise, the quotient dom(Dmax)/ dom(Dmin) is isomorphic
to

B+ ⊕ B− where B± :=
⊕

γ∈]− 1

2
, 1
2
[

Ker(A− γ).

More precisely, by Lemma 3.2 of [7], there is a surjective linear map

L = L+ ⊕ L− : dom(Dmax) → B+ ⊕B−

with kerL = dom(Dmin). Furthermore, we have the estimate

‖u±(t) − t−AL±(ϕ)‖L2(Σ) ≤ C(ϕ)|t log t|1/2

for ϕ ∈ dom(Dmax) and u± = U±(ϕ), where U± is defined in Section 3.
Now to any subspace W ⊂ B+ ⊕B−, we associate the operator DW with domain

dom(DW ) := L−1(W ). As a result of [7], all closed extensions of Dmin are obtained
by this way. Remark that each DW defines a selfadjoint extension (DW )∗ ◦ DW of
the Hodge-Laplace operator, and we have (DW )∗ = DI(W⊥), where

I =

(
0 id

− id 0

)
, ie., I(β, α) = (α,−β).

This extension is associated to the quadratic form ϕ 7→ ‖Dϕ‖2 with domain
dom(DW ). We have already computed the spectrum of the operator A2 + A re-
stricted to the spaces H1, . . . , H5 in Section 4.1. It is expressed for each space Hi

in the form γ(γ + 1) with γ ≥ −1/2, where γ is given in (11) and (13)–(16).
Hence the spectrum of A is among the values γ±,−1−γ± where γ± is given by (11),

and the γ,−1 − γ, for the γ appearing in (13)–(16).1 We have to take care of the
fact that the spaces are not all stable under the action of A. Indeed H1 and H2 are
stable by the action of A and consequently the spectrum of A contains n

2
−p+1 with

multiplicity bp−1(Σ) and p− n
2

with multiplicity bp(Σ) where p runs over 0, ..., n, H5

also is stable by A, but H3 and H4 are not. Nevertheless we remark that A satisfies
the relation A ◦ I = −I ◦ A, and, if Au = γu with u ∈ H5, then A(Iu) = −γIu with
Iu living in the H3 ⊕ H4 components of other degrees. Then, considering all the
degrees together,

∑
p(H3 ⊕H4) is stable under the action of A and its spectrum on

this component is the opposite of its spectrum on H5. Thus the spectrum of A is
determined by its restriction on H1, H2, and H5.

For our concern we have the following result:

Lemma 11. Let n be odd. Then the eigenvalues γ of A restricted to H5 with γ ∈
]−1

2
, 1

2
[ are precisely the values γ = γ−(µ2) entering in the description of the spectrum

of A(A+ 1) with ap = 0, i.e., p = (n + 1)/2, and µ ∈ ]0, 1[, thus γ−(µ2) = µ− 1
2
.

1Using [7], we can calculate explicitely the spectrum of A. In fact, spec(A) consists of the values

γ = ± 1

2
±

√
µ2 + a2

p+1, where µ2 runs over the spectrum of ∆Σ acting on co-closed p-forms.
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Proof. Let σ = (β, α) ∈ H5 and denote the degree of α by p. Then A is given by

A =

(
p− 1 − n

2
−d∗0

−d0
n
2
− p

)
,

so that Aσ = γσ is equivalent to(
p− 1 − n

2
− γ

)
β = d∗0α and

(n
2
− p− γ

)
α = d0β, i.e.,

∆Σα =
((1

2
+ γ

)2 − a2
p

)
α and ∆Σβ =

((1

2
+ γ

)2 − a2
p

)
β.

In particular, the latter equalities mean that there exists

µ2 ∈ spec(∆p
Σ,c) ∩ spec(∆p−1

Σ,cc) with γ = −1

2
±

√
µ2 + a2

p

where ∆Σ,c resp. ∆Σ,cc denotes the Laplacian acting on closed resp. co-closed, forms.
Now, γ ∈ ]−1

2
, 1

2
[ implies γ = −1

2
+

√
µ2 + a2

p with ap = 0 and µ2 ∈ ]0, 1[ or with

ap = ±1
2

and µ2 ∈ [0, 3
4
[. Since we assumed that n is odd, the unique possibility is

ap = 0, i.e., p = (n + 1)/2, and therefore γ = µ − 1
2

since µ2 ∈ ]0, 1[. Reciproquely,

if ap = 0 and ∆p
Σ,cα = µ2α with µ2 ∈ ]0, 1[, then A(β, α) = (µ − 1

2
)(β, α) with β =

−d∗0α/µ, and also ∆p−1
Σ,ccβ = µ2β. Then σ = σµ, with the notations of Lemma 5. �

In fact we have proved more, namely: spec(A) ∩ ]−1
2
, 1

2
[ = ∅ if and only if

• the spectrum of ∆Σ on exact (n+ 1)/2-forms (or co-exact (n− 1)/2-forms)
does not meet the interval ]0, 1[, for n odd,

• the spectrum of ∆Σ on n/2-forms does not meet the interval [0, 3
4
[, for n

even.

Indeed, in the last alternative, for ap = ±1
2
, i.e., p ∈ {n

2
, n

2
+ 1}, if ∆p

Σ,cα = µ2α with

µ 6= 0, then γ = −1
2

+
√
µ2 + 1

4
> 0 and again A(β, α) = γ(β, α) with β = − d∗

0
α

1

2
± 1

2
+γ

,

and also ∆p−1
Σ,ccβ = µ2β; we remark that either α is an exact n/2-form, or β is a

co-exact n/2-form. The case µ = 0 corresponds in fact to components in H1 for
p = n

2
+ 1 and H2 for p = n

2
. They have already been described and correspond to

n/2-harmonic forms.
We can now describe the extensions of the Laplacian obtained for the limit oper-

ator; they depend on p:

• If p 6∈ {(n+ 1)/2, n/2, n/2 + 1} or if p ∈ {n/2, n/2 + 1} and bn/2(Σ) = 0 or
if p = (n+ 1)/2 and the spectrum of ∆Σ on exact (n+ 1)/2-forms does not
meet the interval ]0, 1[, then on the manifold part M the limit operator is
the Friedrichs extension of the Hodge-Laplace operator, that is Dmax ◦Dmin

restricted to L2(ΛpT ∗M). It is the Friedrichs extension of the Laplacian
defined by the quadratic form σ 7→ ‖Dσ‖2 with domain dom(Dmin).

• If p = (n+1)/2 and ∆Σ has exact (n+1)/2-eigenvalues in the interval ]0, 1[,
then the limit operator is (on the manifold part) Dmin ◦Dmax restricted to

L2(Λ
n+1

2 T ∗M). It is the Friedrichs extension of the Laplacian defined by the
quadratic form ϕ 7→ ‖Dϕ‖2 with domain dom(Dmax).
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• In the case when Hn/2(Σ) 6= {0}, and p = n
2

or p = n
2

+1, the limit operator
does not come from a selfadjoint extension of the Hodge-Laplace operator
for the conical manifold M but from a selfadjoint extension of an operator
acting on

C
∞
c (ΛpT ∗M \ S, g0) ⊕ C

∞
c (]0, L[,Hp−1(Σ) ⊕Hp(Σ)) ,

where Hp(Σ) denotes the space of harmonic p-forms on Σ and S is the sin-
gular part of M , that is two points corresponding to the shrunken manifold
Σ at the tip of each cone. This operator acts as the Laplacian on the first
component and by −d2/dt2 on the last component.

– Suppose that p = n/2, then the limit operator is associated to the
quadratic form

(ϕ, σ) 7→ q(ϕ, σ) :=

∫

M

(
|dϕ|2 + |d∗ϕ|2

)
d vol +

∫ L

0

|σ′(t)|dt

with the domain dom(q) where (ϕ, σ) ∈ dom(q) if and only if the fol-
lowing conditions are satisfied:

ϕ ∈ L
2(Λn/2T ∗M) ∩ dom(Dmax)

L±(ϕ) = (0, α±) ∈ {0} ⊕ Hn/2(Σ) ⊂ kerA

σ = (β, α) ∈ H
1
(
[0, L],Hn/2−1(Σ) ⊕Hn/2(Σ)

)

α− = α(0) and α+ = α(L)

(38)

– Suppose that p = n/2 + 1, then the limit operator is associated to the
quadratic form

(ϕ, σ) 7→ q(ϕ, σ) :=

∫

M

(
|dϕ|2 + |d∗ϕ|2

)
d vol +

∫ L

0

|σ′(t)|dt

with the domain dom(q) where (ϕ, σ) ∈ dom(q) if and only if the fol-
lowing conditions are satisfied:

ϕ ∈ L
2(Λn/2+1T ∗M) ∩ dom(Dmax)

L±(ϕ) = (β±, 0) ∈ Hn/2(Σ) ⊕ {0} ⊂ kerA

σ = (β, α) ∈ H
1
(
[0, L],Hn/2−1(Σ) ⊕Hn/2(Σ)

)

β− = −β(0) and β+ = β(L).

(39)

Proof of Theorem C. We are now able to prove our main convergence result,
namely Theorem C. More generally, we show the following:

Theorem 12. If we drop the condition Hn/2(Σ) = 0, the convergence results are the
same as in Theorem C except for the degrees p = n/2 and p = n/2 + 1 where the
spectrum of the Hodge-de Rham operator of the manifold Mε acting on these p-forms
converges to the spectrum of the limit problem described in (38)–(39).
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Proof. By duality it is sufficient to consider p < n/2 + 1. Let {µN}, N ≥ 1, be
the sequence of the eigenvalues, counted with multiplicity, of the limit operator as
described by the theorem in this degree.

Upper bound. We show first that lim supε→0 λ
p
N(ε) ≤ µN by transplanting the cor-

responding eigenforms onMε. The formula is then just a consequence of the minimax
formula. Let us describe how the different type of eigenforms are transplanted.

Eigenforms in dom(Dmin) on M . These are the easiest because if ϕ ∈ dom(Dmin)
then by definition, we find a sequence ϕl ∈ C∞

c (Λ•T ∗M \ S) such that

lim
l→∞

‖ϕl − ϕ‖ + ‖Dϕl −Dϕ‖ = 0.

These ϕl are transplanted easily on the manifold Mεl
.

Eigenforms of Dmax ∩ L2(Λ(n+1)/2T ∗M) on M . Any such form ϕ can be written as

ϕ = ϕ0 + ϕ1 = ϕ0 + ϕ+ + ϕ−

where ϕ0 ∈ dom(Dmin) and ϕ+, ϕ− have support in C±
0 and

U±(ϕ±) =
∑

γ

t−γc±,γσγ

where c±,γ ∈ C and each σγ ∈ H5 satisfies Aσγ = γσγ for a γ ∈ ]−1/2, 1/2[ associated
to µγ an exact p-eigenvalue of ∆Σ. We only need to explain how we construct the
transplantation ϕ1,ε of ϕ1 on Mε.

On Mε \ Aε we let ϕ1,ε = ϕ1 and on the handle Aε, we define ϕ1,ε by

U(ϕ1,ε) =
∑

γ

ε−γ
(
c+,γσγχ0(L− t)e−

µγ

ε
(L−t) + Jc−,γσγχ0(t)e

−µγ

ε
(t)

)
,

where χ0 is a cut-off function χ0 which satisfies χ0(t) = 1 for 0 < t < L/4 and
χ0(t) = 0 for L/3 < t.

It is an easy calculation to show that
∫
Aε

(
|Dϕ1,ε|2 + |ϕ1,ε|2)

)
= O(ε1−2δ), for a

certain δ ∈ ]−1/2, 1/2[.

Eigenforms of the interval with harmonic values in Σ. If we express the forms in
terms of σ, as described at the beginning of Section 3, the Dirichlet spectrum of the
interval corresponds to a form like (0, f(t)α) with α a p-form harmonic on Σ and f
an eigenfunction for the Dirichlet Laplacian on the interval, it can be prolongated by
0. The Neumann spectrum of the interval corresponds to a form like (f(t)β, 0) with
β a (p− 1)-form harmonic on Σ and f an eigenfunction for the Neumann Laplacian
on the interval (or its dual by the Hodge-∗ operator in the case p = (n+1)/2) it can
be prolongated by

σ+ = (εn/2+1−pξ(t)f(L)tp−1−n/2β, 0)

where ξ is a fixed cut-off function, 0 ≤ ξ ≤ 1, ξ = 1 on [0, 1/4] and ξ = 0 on
[3/4, 1], and with the same type of expression on the other end. The q-norm of the
prolongation given here is of order O(

√
ε), except in the case p = (n + 1)/2 where

we obtain O(
√
ε| log ε|) (the calculus is the same as in [3, Eq. (2.1)]).
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Special case Hn/2(Σ) 6= 0. In this case, the eigenforms of degree p = n/2 belonging
to the limit problem, can be transplanted as follows. Let (ϕ, σ) ∈ dom(q); we know
that, as before, ϕ = ϕ0 +ϕ1 = ϕ0 +ϕ+ +ϕ− where ϕ0 ∈ dom(Dmin) and ϕ+, ϕ− have
support in C±

0 and U±(ϕ±) = (0, α±) where α ∈ Hn/2(Σ) is constant on [0, 1/2] and
σ = (β, α) ∈ H1([0, L],Hn/2−1(Σ) ⊕Hn/2(Σ)) satisfies α(0) = α− and α(L) = α+.

We extend β as before for the Neumann spectrum of the interval, and because
U±(ϕ±) is constant on [0, 1/2] it is easy to transplant (ϕ1, σ) on Mε for ε ≤ 1/2.

Conclusion. Now, for any rank N , let ϕ1, . . . , ϕN be an orthonormal basis of the
total eigenspace EN of the limit problem, corresponding to the N first eigenvalues.
For any ε > 0 we define a linear operator Tε from EN to the domain of the quadratic
form on Mε by demanding that Tε(ϕj) is the transplanted form as described above.
The preceding estimates show that 〈Tε(ϕ), Tε(ψ)〉 = 〈ϕ, ψ〉 + o(1) and also that
q(Tε(ϕ), Tε(ψ)) = q(ϕ, ψ) + o(1). Evaluating the Rayleigh-Ritz quotient on the
image Tε(EN) gives then, with the minimax formula,

λp
N(ε) ≤ µN + o(1).

Lower bound. To show the other inequality, namely lim infε→0 λ
p
N(ε) ≥ µN , we use

the estimates provided in Section 4. The eigenvalues inequality is then a consequence
of the minimax principle applied to the limit of a subsequence for an orthonormal
family of the N first eigenforms of Mε.

We give the argument first for one eigenvalue. For simplicity, we assume that
Hn/2(Σ) = 0. The same proof, with a slight modification of the arguments, also
works in the case when Hn/2(Σ) is non-trivial.

We consider a subsequence λm = λp
N(εm) such that

lim
m→∞

λm = lim inf
ε→0

λp
N(ε) = λ

and denote the corresponding normalised eigenforms by ϕm, namely, (in the following
we write ε = εm)

D2ϕm = λmϕm and ‖ϕm‖L2 = 1.

For ε > 0 small enough, we will construct a form

ψm ∈ L
2(ΛpT ∗M) ⊕ L

2([0, L],Hp−1(Σ) ⊕Hp(Σ))

which is in the domain of the quadratic form of the associated limit operator. Here
again, Hp(Σ) denotes the space of harmonic p-forms on (Σ, h). Recall that we have
denoted the spectrum of the limit operator by {µN}N . Moreover, the correspondence
ϕm 7→ ψm will be an almost isometry. We begin to define ψm (or more precisely Uψm

on [0, L]). From Lemmas 3 and 4 we conclude that on the handle

ϕm = hm + km

where limm→∞ ‖km‖L2 = 0, D2hm = λmhm and hm is transversally harmonic.
Moreover, by Lemmas 7 and 8, we can decompose hm = hD

m + hN
m where

UhD
m

(L± L

2

)
= O

(√
ε| log ε|

)
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and
d

dt
(UhN

m)
(L± L

2

)
= O(ε| log ε|).

Since hm satisfies the eigenvalue equation, we conclude that uD
m = UhD

m and uN
m =

UhN
m both satisfy the equation

−u′′ = λmu,

hence there is a constant (independent of m) such that

|uD
m(t)| +

∣∣∣uD
m

′
(t)

∣∣∣ ≤ C‖uD
m‖L2 and |uN

m(t)| +
∣∣∣uN

m

′
(t)

∣∣∣ ≤ C‖uN
m‖L2

for all t ∈ [0, L]. We will modify uD
m in order to satisfy the Dirichlet boundary

condition: for η =
√
ε| log ε| we define

χm(t) =





t/η if t ∈ [0, η],

1 if t ∈ [η, L− η],

(L− t)/η if t ∈ [L− η, L]

and we define ψm via
Uψm = χmu

D
m + uN

m.

We have
‖ϕm − ψm‖2

L2 = ‖km‖2
L2 + ‖(1 − χm)uD

m‖2
L2

hence
lim

m→∞
‖ϕm − ψm‖L2 = 0.

Moreover ∫ L

0

|(Uψm)′(t)|2dt =

∫ L

0

|(χmu
D
m)′(t)|2dt+

∫ L

0

|uN
m

′
(t)|2dt.

But ∫ L

0

|(χmu
D
m)′(t)|2dt =

∫ L

0

|χ′
m(t)|2|uD

m(t)|2dt+

∫ L

0

〈 d

dt

(
χ2

mu
D
m

)
,
d

dt
uD

m

〉
dt

=

∫ L

0

|χ′
m(t)|2|uD

m(t)|2dt+ λm

∫ L

0

|χmu
D
m(t)|2dt

and ∫ L

0

|χ′
m(t)|2|uD

m(t)|2dt = O(
√
ε| log ε|).

Similarly, we have
∫ L

0

|uN
m

′
(t)|2dt = λm

∫ L

0

|uN
m(t)|2dt+

[
uN

mu
N
m

′]L

0

= λm

∫ L

0

|uN
m(t)|2dt+O(ε| log ε|).

Now on M \ (C+
0 ∪ C−

0 ) we set
ψm = ϕm
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and on C±
ε , we know that

ϕm = U∗(u±,m + v±,m) + ϕΛ
±,m

where u±,m is described in Lemma 5 and the corresponding assertion on the harmon-
ics parts in Corollary 9. In particular, u±,m has a well defined extension u±,m which
is in the domain of the limit operator. Moreover, we know that

lim
m→∞

‖v±,m‖L2(C±
ε ) = 0

and for a certain constant C we have

‖ϕΛ
±,m‖2

L2(C±
ε \C±

η )
≤ Cη2

for each η > ε. Moreover

UD2U∗u±,m = λmu±,m, UD2U∗v±,m = λmv±,m and D2ϕΛ
±,m = λmϕ

Λ
±,m.

We consider two cut off functions

ξ0(t) =





1 if t ≥ 1/2,

4t− 1 if t ∈ [1/4, 1/2],

0 if t ≤ 1/4

and, with ε = εm,

ξm(t) =





1 if t ≥ 2
√
ε,

log(2ε) − log(t)

log(
√
ε)

if t ∈ [2ε, 2
√
ε],

0 if t ≤ 2ε.

On C±
0 , we define

ψm = U∗(u±,m + ξ0v±,m) + ξmϕ
Λ
±,m.

There exists a δ > 0 such that

‖ψm‖L2(C±
0
\C±

ε ) = O(εδ).

Moreover

‖ψm − ϕm‖L2(M) ≤ O(εδ) +
∑

s=±

[
‖vs,m‖L2(Cs

ε) + ‖ϕΛ
s,m‖L2(Cs

ε\Cs
2
√

ε
)

]
.

Hence

lim
m→∞

‖ψm − ϕm‖L2(M ) = 0

and the correspondence ϕm 7→ ψm is almost isometric.
We now deal with the quadratic form expression. Namely, we want to show that

‖(d+ d∗)ψm‖2
L2(M)

≤ λm‖ψm‖2
L2(M)

+ o(1). (40)

After an integration by part,we get

‖(d+ d∗)ψm‖2
L2(M\(C+

0
∪C−

0
))

= λm‖ψm‖2
L2(M\(C0

0
∪C−

0
))

+BT (41)
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where BT is a certain boundary integral over the regular part of ∂C+
0 ∪ ∂C−

0 . Indeed
the behaviour of us,m implies that

‖(d+ d∗)u±,m‖2
L2(C±

0
)
= λm‖u±,m‖2

L2(C±
0

)
+BT±,u (42)

where BT±,u is a certain boundary integral over ∂C±
0 . Similarly, we have

‖(d+ d∗)(ξ0v±,m)‖2
L2(C±

0
)
=

∫

C±
0

|dξ0|2|v±,m|2d vol+
〈
(d+ d∗)(ξ2

0v±,m), (d+ d∗)v±,m

〉

=

∫

C±
0

|dξ0|2|v±,m|2d vol+λm

∫

C±
0

|ξ0v±,m|2d vol +BT±,v

= λm

∫

C±
0

|ξ0v±,m|2d vol +o(1) +BT±,v (43)

where again BT±,v is a certain boundary integral over ∂C±
0 . Similarly, we get

‖(d+ d∗)(ξmϕ
Λ
±,m)‖2

L2(C±
0

)

=

∫

C±
0

|dξm|2|ϕΛ
±,m|2d vol+

〈
(d+ d∗)(ξ2

mϕ
Λ
±,m), (d+ d∗)ϕΛ

±,m

〉

=

∫

C±
0

|dξm|2|ϕΛ
±,m|2d vol +λm

∫

C±
0

|ξmϕΛ
±,m|2d vol +BT±,Λ (44)

where BT±,Λ is a certain boundary integral over ∂C±
0 . Furthermore, we set M(r) =

‖ϕΛ
±,m‖2

L2(C±
ε \C±

r )
. By Lemma 3, M(r) is of order O( r2

Λ2 ), and we have

∫

C±
0

|dξm|2|ϕΛ
±,m|2d vol =

4

| log ε|2
∫ 2

√
ε

2ε

1

r2
dM(r)

=
4

| log ε|2
[
M(2

√
ε)

4ε
− M(2ε)

4ε2
+ 2

∫ 2
√

ε

2ε

M(r)

r3
dr

]

= O

(
1

| log ε|

)
.

We also have

BT +BT+,u +BT−,u +BT+,v +BT−,v +BT+,Λ +BT−,Λ = 0

and the square of the L
2-norm of (d + d∗)ψm on M is the sum of (41)–(44). Hence

we obtain (40).
The argument for the first N eigenvalues is as follows: Let ϕk

m := ϕk
m(εm), k =

1, . . . , N , be an orthonormal family of eigenforms for the eigenvalues λk(εm) (we
drop here the index p) such that λ1(εm) ≤ · · · ≤ λN(εm) and limm→∞ λN(εm) =
lim infε→0 λN(ε) for limm→∞ εm = 0. We have just seen that to each ϕk

m we have
associated a ψk

m in the domain of the limit quadratic form. Then the fact that the
map ϕm → ψm is almost an isometry, shows that

|〈ψk
m(εm), ψl

m(εm)〉 − δ(k, l)| = o(1)
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as m tends to infinity for all k, l, where δ(k, l) denotes the Kronecker symbol.
Now if we calculate the Rayleigh-Ritz quotient for an element ψ of the vector space

with base {ψk
m, k = 1, . . . , n}, it follows from the two preceding estimates and (40)

applied for each ψk
m that

‖(d+ d∗)ψ‖2 ≤ (λN(εm) + o(1))‖ψ‖2.

The conclusion follows then from the minimax formula, namely µN ≤ λN(εm)+ o(1)
for all m ∈ N and at the limit: µN ≤ lim infε→0 λN(ε). �

6. Covering manifolds

In this section we explain how the convergence argument of the preceding section
can be used also for a covering manifold in order to show the existence of spectral
gaps. Let us first describe the covering manifold and the Floquet decomposition of a
periodic operator on the covering.

Let X be an (n + 1)-dimensional non-trivial covering manifold, with quotient M
and covering group Z. This covering defines a non-trivial element c ∈ H1(M,Z). To
each element of H1(M,Z) corresponds a homotopy class of functions fc : M → S

1

and if c 6= 0 then fc is surjective. It can be chosen smooth, so we know, by the Sard’s
theorem, that fc has a regular value y. Therefore, Σ = f−1

c (y) is a hypersurface of
M such that F := M \Σ is a fundamental domain for X. Let {gε}ε be the family of
metrics on M constructed in Section 2. We denote the lift of gε onto X also by gε.

Let χ ∈ Ẑ be a character of the group Z, i.e., a group homomorphism χ : Z −→ S1.
Clearly, such a homomorphism is given by χ(γ) = eiγθ for some θ ∈ [0, 2π]. We will
identify χ and θ in the sequel.

We can associate a complex line bundle E0
θ → M to the Z-covering X → M

since the covering X →M is a principal bundle with discrete fibre Z. Similarly, we
denote by Ep

θ → M the bundle associated to the Z-covering ΛpT ∗X → ΛpT ∗M . A
smooth section ω in Ep

θ can be considered as a smooth section in ΛpT ∗X satisfying
the so-called equivariance condition

ω(γ + x) = eiγθω(x) (45)

for x ∈ X and γ ∈ Z where we write the action of Z on X additively. Clearly,
such a section is determined on a fundamental domain F ⊂ X. The L2-space of θ-
equivariant sections with respect to the metric g will be denoted by L2(Ep

θ , gε). Since
L2-functions do not “feel” the condition (45) on a fundamental domain, L2(Ep

θ , gε) is
unitarily equivalent to L2(ΛpT ∗F, gε), independently of θ.

Using Floquet theory (see e.g. [21, XIII.16]), the L2-space of forms on (X, gε) can
be transformed into

L
2(ΛpT ∗X, gε) ∼=

∫

Ẑ

L
2(Ep

θ , gε) dθ. (46)

The Gauß-Bonnet operator D acting on (X, gε) can be decomposed under this direct
integral representation as

D ∼=
∫

Ẑ

Dθ dθ (47)
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where the domain of Dθ consists of those forms ω having a θ-equivariant continuation
in H1

loc(X). For our purposes, it will be convenient to use the fundamental domain
corresponding to F = Mε \ {2} × Σ, i.e., we cut along the right end of the collar
neighbourhood U = ]−2, 2[ × Σ. The domain of D is then given by forms ω, such
that their components are piecewise in H

1 and satisfy the boundary conditions

ω− = eiθω+ (48)

where ω− denotes the limit of ω on {2}×Σ ⊂ U and ω+ the limit from the opposite
side M \ U .

The Hodge-de Rham operator ∆p
ε = D2 acting on p-forms on (X, gε) decomposes

similarly, where the domain of ∆p
ε,θ = D2

θ consists of those forms ω such that their

components are piecewise in H2 and satisfy additionally to (48) the first order bound-
ary conditions

ω′
− = −eiθω′

+, (49)

where ω′
− denotes the outward normal derivative of ω on {2}×Σ ⊂ U and similarly,

ω′
+ the outward normal derivative from the opposite side.
The spectrum of the Hodge-de Rham operator ∆p

ε,θ is purely discrete and will

be denoted by λp
k,θ(ε), ordered in increasing order and repeated according to the

multiplicity. From the direct integral representation (and the continuous dependence
on θ) it follows that the spectrum of the Hodge-de Rham operator ∆p

ε on X is given
as

spec ∆p
ε =

⋃

k∈N

Bp
k(ε) where Bp

k(ε) = { λp
k,θ(ε) ; θ ∈ [0, 2π] } (50)

are compact intervals, called bands.
Our convergence result Theorem C holds also for the θ-equivariant eigenvalues

λp
k,θ(ε). Although we have shown this convergence only for θ = 0, all arguments

remain the same noting that the arguments are local in V or rely on elliptic regularity
elsewhere. Let Λ > 0, then by continuity of the map θ 7→ λp

k,θ(ε), we know that there

is some θ±ε such that

Bp
k(ε) ∩ [0,Λ] = [λp

k,θ−ε
(ε), λp

k,θ+
ε
(ε)]

provided λp
k(0) < Λ and ε > 0 small enough. Applying the preceding convergence

result to λp

k,θ−ε
(ε) and λp

k,θ−ε
(ε), we obtain that

lim
ε→0

λp

k,θ±ε
(ε) = λp

k(0)

where λp
k(0) denotes the spectrum of the limit operator on p-forms.

Hence the limit does no longer depend on the Floquet parameter θ. This means,
that the bands Bp

k(ε) shrink to a point {λp
k(0)}, where λp

k(0) denotes the spectrum
of the limit operator.

We therefore have shown our main result (remind that n + 1 is the dimension of
X):
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Theorem 13. Assume that n is odd or Hn/2(Σ) is trivial. Given N ∈ N there is a
metric g = gN such that the Hodge-de Rham operator on the Z-covering (X, gN) has
at least N gaps in its (essential) spectrum.

If n is even and Hn/2(Σ) 6= 0 then the result remains true for the Hodge-de Rham
operator acting on p-forms providing that p 6= n/2 and p 6= n/2 + 1.

Proof of Theorem D. Let us now have a look at the Dirac operator on a spin
manifold M . It is a consequence of [22] that the spectrum of the Dirac operator on
the periodic manifold is the whole real line if αn(Σ) 6= 0. For the other implication,
the same calculations as before, but with simpler expressions. Let us sketch the
ideas here. If αn(Σ) = 0 then, by the result of [1], there exists a metric h on Σ such
that the corresponding Dirac operator has no harmonic spinor. We endow M with
a metric such that its restriction to Σ coincides with h. Let Λ > 0 be such that the
spectrum of the Dirac operator D0 on Σ does not intersect the interval [−Λ,Λ]. By
a scale of the metric h we can always suppose that Λ is large enough such that the
Dirac operator D is essentially self adjoint on the limit manifold M (see Section 5).

The precise behaviour of the Dirac operator on cones can be found in [11]. If
(Mε, gε) is isometric to Iε×Σ endowed with the warped product metric dτ 2+fε(τ)

2h
where Iε = ]−(L/2+1− ε), L/2+1− ε[, then the Dirac operator on Mε is unitarily
equivalent to

(
0 1
−1 0

)
·
(
∂τ +

1

fε(τ)

(
0 −D0

−D0 0

) )

on Mε using the isometry U : L2(Mε, gε) −→ L2(Iε, L
2(Σ, h)) as in Section 3. Here,

fε can be chosen either continuous and piecewise smooth as before, or smooth on
the whole interval by the argument described in Section 2. Anyway, we can redo the
previous calculus with A = A0, and there is no more boundary term in the expression
of the quadratic form (6) or (19).

For εm → 0, let ϕm be a family of eigenspinors on Mεm
corresponding to the

eigenvalues λεm
→ λ. Due to our choice of h and Λ, the decomposition (18) of the

eigenspinor ϕm on Mεm
is reduced to the last term, and Lemma 3 applies directly

to ϕm: There exists a constant C > 0 such that

‖ϕm‖2
L2(Aε) ≤ C

ε2

Λ2
and ‖ϕm‖2

L2(C±
ε \C±

η )
≤ C

η2

Λ2

as soon as εm ≤ η. Thus, the L2-norm of the eigenspinors on the handle converges
to 0. Moreover, the limit spectrum will consist only on the spectrum of the Dirac
operator with minimal domain Dmin on M . The proof of Theorem C can now be
followed verbatim: for the ‘upper bound’, the proof is reduced to the easiest part,
namely eigenspinors in dom(Dmin), and for the ‘lower bound’ we use the cut-off
function ξm(t) on the cones defined there.

The limit spectrum is the same for the operator involving the Floquet parameter.
Finally, the result of Theorem D follows.
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7. Harmonic forms and small eigenvalues

Returning to the situation of Section 5, we can ask for the multiplicity of the zero
eigenvalue, which is given by the cohomology. The calculation made there shows
that “small eigenvalues” can occur, i.e. λε 6= 0 such that limε→0 λε = 0.

We suppose here that if n is even then Hn/2(Σ) = 0 and if n is odd that ∆Σ has
no eigenvalue in ]0, 1[ then the only limit operator involved is Dmax ◦Dmin, and we
know by the works of Cheeger that the kernel of Dmax ◦ Dmin coincides with the
intersection cohomology of the manifold with conical singularities. Let N be the
number of small, or null eigenvalues. By the precedent result we know that

N = dim IHp(M) + dimHp−1(Σ) for p < (n+ 1)/2,

N = dim IHp(M) + dimHp(Σ) for p > (n+ 1)/2,

N = dim IHp(M) + dimHp−1(Σ) + dimHp(Σ) for p = (n+ 1)/2.

The manifold Mε is covered by the two open sets U0 = M \ (]−1, 1[ × Σ) and
the collar U = ]−2, 2[ × Σ. The Mayer-Vietoris argument gives then a long exact
sequence

· · · → Hq
c (U)

j→ Hq(Mε)
r→ Hq(U0) → Hq+1

c (U) → . . .

But since U is a cylinder, Hq
c (U) = Hq−1(Σ) for all q. On the other hand Hq(U0) =

IHq(M) for q ≤ n/2, the long exact sequence gives then that

dimHq(Mε) ≤ dim IHq(M) + dimHq−1(Σ)

and the equality is obtained if and only if r in surjective and j is injective.
So, for p < (n + 1)/2 there are small eigenvalues as soon as j is not injective or

r is not surjective. In particular for p = 0 the three spaces IH0(M), H0(U0) and
H0(Mε) are isomorphic to R and there is no small eigenvalue.

For p > (n + 1)/2 we use that IHq(M) = Hq
c (U0) for q ≥ 1 + n/2 so we look at

the long exact sequence

· · · → Hq
c (U0)

j→ Hq(Mε)
r→ Hq(U) → Hq+1

c (U0) → . . .

and use the identity Hq(U) = Hq(Σ).
For p = (n+ 1)/2 we have to look at the more complicate diagram

· · · → H
n−1

2 (Σ)
δ→H

n+1

2
c (U0)

j→ H
n+1

2 (Mε)
r→H

n+1

2 (Σ) → H
n+3

2
c (U0) → . . .

yι 	 q q

· · · → H
n−1

2 (Σ− ∪ Σ+)
δ→H

n+1

2
c (U0) ։ IH

n+1

2 (M) → 0 → H
n+3

2
c (U0) → . . .

Here ι(ω) = (ω, ω) ∈ H
n−1

2 (Σ− ∪Σ+) =
(
H

n−1

2 (Σ)
)2

. The long exact sequence gives
then

dimH
n+1

2 (Mε) ≤ dimH
n+1

2 (Σ) + dimH
n+1

2
c (U0) − dim Rg(δ)

≤ dimH
n+1

2 (Σ) + dim IH
n+1

2 (M) + dim Rg(δ) − dim Rg(δ).
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But dim Rg(δ) − dim Rg(δ) ≤ dimH
n−1

2 (Σ) and the equality

dimH
n+1

2 (Mε) = dimH
n+1

2 (Σ) + dimH
n−1

2 (Σ) + dim IH
n+1

2 (M)

holds if and only if r is surjective and dim Rg(δ) = dimRg(δ) + dimH
n−1

2 (Σ), this

last relation means that ker δ ⊂ ι(H
n−1

2 (Σ)).
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