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Abstract. In the present paper we consider Riemannian coverings (X, g) → (M, g)
with residually finite covering group Γ and compact base space (M, g). In particular,
we give two general procedures resulting in a family of deformed coverings (X, gε) →
(M, gε) such that the spectrum of the Laplacian ∆(Xε,gε) has at least a prescribed finite
number of spectral gaps provided ε is small enough.

If Γ has a positive Kadison constant, then we can apply results by Brüning and
Sunada to deduce that spec∆(X,gε) has, in addition, band-structure and there is an
asymptotic estimate for the number N (λ) of components of spec ∆(X,gε) that intersect
the interval [0, λ]. We also present several classes of examples of residually finite groups
that fit with our construction and study their interrelations. Finally, we mention several
possible applications for our results.

1. Introduction

Spectral properties of the Laplacian on a compact manifold is a well-established and
still active field of research. Much less is known on the spectrum of non-compact mani-
folds. We restrict ourselves here to the class of non-compact covering manifolds X → M
with compact quotient M , in which the covering group Γ plays an important role. In the
open problem section of [ScY94, Ch. IX, Problem 37], Yau posed the question about the
nature and the stability of the (purely essential) spectrum of such a covering X → M .

The aim of this paper is to provide a large class of examples of Riemannian coverings
X → M having spectral gaps in the essential spectrum of its Laplacian ∆X . Here, a
spectral gap is a non-void open interval (α, β) with (α, β) ∩ spec ∆X = ∅ and α, β ∈
spec ∆X . The manifolds X and M are d-dimensional, d ≥ 2, and we denote by D a
fundamental domain associated to this covering. The main idea for producing spectral
gaps is to construct a family of Riemannian metrics (gε)ε>0 on X such that the length
scale w.r.t. the metric gε is of order ε at the boundary of a fundamental domain D and
unchanged elsewhere (cf. Figure 1). If such a fundamental domain exists, we say that the
family of metrics (gε) decouples the manifold X. The covering X → M with a decoupling
family of metrics (gε) “converges” in a sense to be specified below to a limit covering
consisting of the infinite disjoint (“decoupled”) union of the limit quotient manifold N
which are again d-dimensional (see Subsection 1.3 and Section 3 for details). We stress
that the curvature does not remain bounded as ε → 0; in contrast to degeneration of
Riemannian metrics under curvature bounds developed e.g. in [Ch01]. All groups Γ are
assumed to be discrete and finitely generated throughout the present article.

1.1. Statement of the main results.

Main Theorem 1 (cf. Theorem 6.8). Suppose that X → M is a Riemannian covering
with residually finite covering group Γ and metric g. Then by a local deformation of g

Date: December 10, 2007.
Key words and phrases. covering manifolds, spectral gaps, residually finite groups, min-max principle.

1



2 FERNANDO LLEDÓ AND OLAF POST

we construct a family of metrics (gε) decoupling X, such that for each n ∈ N there exists
εn > 0 where spec ∆(X,gεn ) has at least n gaps, i.e. n + 1 components as subset of [0,∞).

Basically, we will give two different constructions for the family of manifolds (X, gε):
first, “adding small handles” to a given manifold (N, g) and second, a conformal pertur-
bation of g. As a set, (X, gε) converges to a limit manifold consisting of infinitely many
disjoint copies of the limit quotient manifold N as ε → 0.

A residually finite group is a countable discrete group such that the intersection of all
its normal subgroups of finite index is trivial. Roughly speaking, a residually finite group
has many normal subgroups of finite index. Geometrically, a covering with a residually
finite covering group can be approximated by a sequence of finite coverings Mi → M
(a tower of coverings). The class of residually finite groups is very large, containing
e.g. finitely generated abelian groups, type I groups (i.e. finite extensions of Zr), free
groups or finitely generated subgroups of the isometries of the d-dimensional hyperbolic
space Hd (cf. Section 6).

Denote by N (g, λ) the number of components of spec ∆(X,g) which intersect the interval
[0, λ]. Our result gives a lower bound on N (g, λ), in particular, we can reformulate the
Main Theorem 1 as follows: For each n ∈ N there exists g = gεn

such that N (g, λ) ≥ n+1.
Using the Weyl eigenvalue asymptotic on the limit d-dimensional manifold (N, g)

associated to the decoupling family (gε) on X → M , we obtain the following asymptotic
lower bound on the number of gaps (where ωd denotes the volume of the d-dimensional
Euclidean unit ball):

Main Theorem 2 (cf. Theorem 7.5). Assume that the covering group is residually finite
and that the spectrum of the Laplacian on the limit manifold (N, g) is simple, i.e. all
eigenvalues have multiplicity one. Then for each λ ≥ 0 there exists ε(λ) > 0 such that

lim inf
λ→∞

N (gε(λ), λ)

(2π)−dωd vol(N, g)λd/2
≥ 1.

The assumption on the spectrum of (N, g) is natural since N (g, λ) counts components
in the spectrum without multiplicity.

A priori, the number of gaps N (g, λ) could be infinite, e.g. if spec ∆(X,g) contains a
Cantor set. But Brüning and Sunada showed in [BS92] that for covering groups Γ with
positive Kadison constant C(Γ) > 0 (cf. Section 7) asymptotic upper bound

lim sup
λ→∞

N (g, λ)

(2π)−dωd vol(M, g)λd/2
≤ 1

C(Γ)

holds. In particular, N (g, λ) is finite, and the spectrum of ∆(X,g) does not contain
Cantor-like subsets. Applying these results to our situation we give a partial answer on
the question of Yau of the nature of the spectrum:

Main Theorem 3 (cf. Theorem 7.5). Suppose that X → M is a Riemannian Γ-covering
with decoupling family of metrics (gε), where Γ is a residually finite group that has positive
Kadison constant C(Γ) > 0. Then spec ∆(X,gε) has band-structure, i.e. N (gε, λ) < ∞
for all λ ≥ 0 and N (gε, λ) can be made arbitrary large provided ε is small and λ is large
enough.

Some examples of groups with positive Kadison constant and which are residually finite
are finitely generated, abelian groups, the free (non-abelian) group in r ≥ 2 generators
or fundamental groups of compact, orientable surfaces (see also Section 8).

1.2. Motivation and related work. A main motivation for our work comes from the
spectral theory of Schrödinger operators H = −∆ + V on R

d, d ≥ 2, with V periodic
w.r.t. the action of a discrete abelian group Γab = Zd on Rd. For such operators, it is a
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well known fact that if V has high barriers near the boundary of a fundamental domain
D, then gaps appear in the spectrum of H . In this way, the potential V essentially
decouples the fundamental domain D from its neighbouring domains (see [HP03] for an
overview on this subject).

A natural generalisation into a geometric context is to replace the periodic structure
(Rd, Zd) by a Riemannian covering X → M with a discrete (in general non-abelian)
group Γ. Our work shows that the decoupling effect of the potential V can be replaced
purely by geometry, in particular by the decoupling family of metrics (gε) on X → M .
From a quantum mechanical or probabilistic point of view, the correspondence seems to
be natural: One has a small probability to find a particle (with low energy) in a region
with a high potential barrier or where the manifold (X, gε) is very thin and the absolute
value of the curvature is very large.

It was already observed by, e.g., Brüning, Gruber, Kobayashi, Ono and Sunada
[BS92, Gr01, S90, KOS89] that many properties of the spectrum of a periodic Schrödinger
operator (e.g. band-structure, Bloch’s property etc.) generalise to the context of Rie-
mannian coverings. An important difference is the existence of L2-eigenvalues in the
context of manifolds (cf. [KOS89]). Such eigenvalues cannot occur in the spectrum of a
periodic Schrödinger operator on Rd (cf. [S90]).

The existence of (covering) manifolds with spectral gaps has also been established
by Brüning, Exner, Geyler and Lobanov in [BEG03, BGL05]. They couple compact
manifolds by points or line-segments with certain boundary condition at the coupling
points; the point coupling corresponds to the case ε = 0 in our situation (with decoupled
boundary condition). The case of abelian smooth coverings has been established in [P03]
(cf. also the references therein). Spectral gaps of Schrödinger operators on the hyperbolic
space have been analysed in [KaPe00]. For other manifolds with spectral gaps (not
necessarily periodic), we refer to [EP05, P06]. Under certain topological restrictions on
the middle degree homology group one can show the existence of spectral gaps also for
the differential form Laplacian on a Z-covering (see [ACP07]).

Some further interesting results on the group Γ and spectral properties of a Riemann-
ian Γ-covering were shown by Brooks [Br81], e.g. that Γ is amenable iff 0 ∈ spec ∆X .
Moreover, Brooks [Bro86] provided a combinatorial criterion whether the second eigen-
value of ∆Mi

is bounded from below as i → ∞, where Mi → M is a tower of coverings.
For physical applications of our results we refer to Section 9. Let us finish with two

consequences of our result giving partial answers to the question of Yau on the nature
and stability of the spectrum of ∆X :

Consequence 1 (Manifold with given spectrum). First, we can solve the following inverse
spectral problem: Given a compact (connected) manifold N of dimension d ≥ 3 and a
sequence of numbers 0 = λ1(0) < . . . < λn(0) it is possible to construct a metric g on N
having exactly the numbers λk(0) as first n eigenvalues with multiplicity 1 (cf. [CdV87]).
Then, applying our Main Theorem 3 and using the relation between spec ∆(X,gε) and
spec ∆(N,g) we can construct a covering X → M with decoupling family (gε) having
band spectrum close to the given points {λk(0)}, k = 1, . . . , n. The covering (X, gε) →
(M, gε) is obtained roughly by joining copies of N through small, thin cylinders (see first
construction mentioned below). In particular, we have constructed a covering manifold
with approximatively given spectrum in a finite spectral interval [0, λ], independently of
the covering group!

Consequence 2 (Instability of gaps). Suppose X = Hd is the d-dimensional (d ≥ 3)
hyperbolic space (or more generally, a simply connected, complete, symmetric space of
non-compact type) with its natural metric g. It is known, that ∆(X,g) has no spectral
gaps, in particular spec ∆(X,g) = [λ0,∞) for some constant λ0 ≥ 0 (see e.g. [Don79]).
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X Dε

Figure 1. A covering manifold X with fundamental domain D. The
junctions between different translates of D are of order ε.

Let Γ be a finitely generated subgroup of the isometries of X such that M = X/Γ is
compact. Note that such groups are residually finite. The second construction described
below allows us to find a decoupling family (gε) on X where gε = ρ2

εg is conformally
equivalent to g. We then apply Main Theorem 1 and obtain for each n ∈ N a metric gεn

such that the corresponding Laplacian has at least n gaps. In particular, the number
of gaps is not stable, even under uniform conformal changes of the metric. Note that
the conformal factor ρε can be chosen in such a way that ρε → ρε0

uniformly as ε → ε0

provided ε0 > 0. Nevertheless, the band-gap structure remains invariant due to Main
Theorem 3, once Γ has a positive Kadison constant.

1.3. An outline of the argument. In the rest of the introduction we will present the
main ideas of the construction of the decoupling metrics and mention the strategy for
showing the existence of spectral gaps.

The first construction starts from a compact Riemannian manifold N of dimension
d ≥ 2 (for simplicity without boundary) and a group Γ with generators γ1, . . . , γr. We
choose 2r different points x1, y1, . . . , xr, yr. For each generator, we endow xi and yi

with a cylindrical end of radius and length of order ε > 0 (by changing the metric
appropriately on D := N \ {x1, y1, . . . , xr, yr}). If we join Γ copies of these decorated
manifolds (D, gε) according to the Cayley graph of Γ associated to γ1, . . . , γr, we obtain
a Γ-covering X → M with a decoupling family of metrics (gε) (cf. Figure 1).

The second construction starts with an arbitrary covering (X, g) → (M, g) (with
compact quotient) of dimension d ≥ 3 and changes the metric conformally, i.e. gε :=
ρ2

εg, in such a way, that ρε is still periodic and of order ε close to the boundary of a
fundamental domain D; more details can be found in Section 3. In the case of abelian
coverings these constructions have already been used in [P03].

Once the construction of the family of decoupling metrics (gε) has been done, the
strategy to show the existence of spectral gaps goes as follows. We consider first the
Dirichlet (+) and Neumann (−) eigenvalues λ±

k (ε) of the Laplacian on the fundamental
domain (D, gε). One can show that λ±

k (ε) converges to the eigenvalues λk(0) of the
Laplacian on the limit manifold (N, g) (see [P03] and references therein). In other
words, the Dirichlet-Neumann intervals

Ik(ε) := [λ−
k (ε), λ+

k (ε)]

converge to a point as ε → 0. Therefore, if ε is small enough, the union

I(ε) :=
⋃

k∈N

Ik(ε)

is a closed set having at least n gaps, i.e. n + 1 components as a subset of [0,∞).
The rest of the argument depends on the properties of the covering group Γ:
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(i) For abelian groups Γab, the inclusion spec ∆(X,gε) ⊂ I(ε) is given by the Floquet
theory (cf. Section 4 or [K93, S88]). Basically, one shows that ∆(X,gε) is unitary
equivalent to a direct integral of operators on (D, gε) acting on ρ-equivariant
functions, where ρ runs through the set of irreducible unitary representations

Γ̂ab (characters). Note that in the abelian case all ρ are one-dimensional and Γ̂ab

is homeomorphic to (disjoint copies of) the torus Tr. The Min-max principle
ensures that the k-th eigenvalue of the equivariant operator lies in Ik(ε).

(ii) If the group is non-abelian but still has only finite-dimensional irreducible repre-
sentations, then one can show that the spectrum of the ρ-equivariant Laplacian
is still included in I(ε). In this case the (non-abelian) Floquet theory guarantees
again that spec ∆(X,gε) ⊂ I(ε). The class of groups which satisfy the previous
condition are type I groups, i.e finite extensions of abelian groups. These groups
have a dual object Γ̂ which is a nice measure space (smooth in the terminology
of [Mac76, Chapter 2]).

(iii) If the group is residually finite (a much wider class of groups including type
I groups), then one can construct a so-called tower of coverings consisting of
finite coverings Mi → M “converging” to the original covering X → M . The
inclusion of the spectrum of ∆(X,gε) in the closure of the union over all spectra
of ∆(Mi,gε) was shown in [AdSS94, Ad95]. For the finite coverings Mi → M we
again have the inclusion spec ∆(Mi,gε) ⊂ I(ε).

(iv) For non-amenable groups (i.e. groups, for which spec ∆(M,gε) is not included in
spec ∆(X,gε)), cf. Remark 5.3, we have to assure that any of the intervals Ik(ε)
intersects spec ∆X non-trivially. This will be done in Theorem 3.3.

Organisation of the paper. In the following section we set up the problem, present
the geometrical context and state some results and conventions that will be needed
later. In Section 3 we present in detail the two procedures for constructing covering
manifolds with a decoupling family of metrics. In this case the set I(ε) defined above
will have at least a prescribed finite number of spectral gaps. Each procedure is well
adapted to a given initial geometrical context (cf. Remark 3.8 as well as Examples 8.3
and 8.4). In Section 4 we show the inclusion of the spectrum of equivariant Laplacians
into the union of the Dirichlet-Neumann intervals Ik(ε) and review briefly the Floquet
theory for non-abelian groups. The Floquet theory is applied in Section 5 for coverings
with type I groups. In Section 6 we study a class of covering manifolds with residually
finite groups. In Section 7 we consider residually finite groups Γ that in addition have
a positive Kadison constant. In Section 8 we illustrate the results obtained with some
classes of examples and point out their mutual relations. Subsection 8.3 contains an
interesting example of a covering with an amenable, not residually finite group which
cannot be treated with our methods. We expect though that in this case one can still
generate spectral gaps by the construction presented in Section 3. Finally, we conclude
mentioning several possible applications for our results.

2. Geometrical preliminaries: covering manifolds and Laplacians

We begin fixing our geometrical context and recalling some results that will be useful
later on. We denote by X a non-compact Riemannian manifold of dimension d ≥ 2 with
a metric g. We also assume the existence of a finitely generated (infinite) discrete group
Γ of isometries acting properly discontinuously and cocompactly on X, i.e. for each x ∈ X
there is a neighbourhood U of x such that the sets γU and γ′U are disjoint if γ 6= γ′

and M := X/Γ is compact. Moreover, the quotient M is a Riemannian manifold which
also has dimension d and is locally isometric to X. In other words, π : X −→ M is a
Riemannian covering space with covering group Γ. We call such a manifold Γ-periodic
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or simply periodic. All groups Γ appearing in this paper will satisfy the preceding
properties.

We also fix a fundamental domain D, i.e. an open set D ⊂ X such that γD and γ′D
are disjoint for all γ 6= γ′ and

⋃
γ∈Γ γD = X. We always assume that D is compact

and that ∂D is piecewise smooth. If not otherwise stated we also assume that D is
connected. Note that we can embed D ⊂ X isometrically into the quotient M . In the
sequel, we will not always distinguish between D as a subset of X or M since they are
isometric. For details we refer to [Ra94, §6.5].

As a prototype for an elliptic operator we consider the Laplacian ∆X on a Riemannian
manifold (X, g) acting on a dense subspace of the Hilbert space L2(X) with norm ‖·‖X .
For the formulation of the Theorems 5.4 and 6.8 and at other places, it is useful to denote
explicitly the dependence on the metric, since we deform the manifold by changing the
metric. In this case we will write ∆(X,g) for ∆X or L2(X, g) for L2(X).

The positive self-adjoint operator ∆X can be defined in terms of a suitable quadratic
form qX (see e.g. [K95, Chapter VI], [RS80] or [Dav96]). Concretely we have

qX(u) := ‖du‖2
X =

∫

X

|du|2, u ∈ C
∞
c (X) (2.1)

where the integral is taken with respect to the volume density measure of (X, g). In
coordinates we write the pointwise norm of the 1-form du as

|du|2(x) =
∑

i,j

gij(x)∂iu(x) ∂ju(x),

where (gij) is the inverse of the metric tensor (gij) in a chart. Taking the closure of the
quadratic form we can extend qX onto the Sobolev space

H
1(X) = H

1(X, g) = { u ∈ L2(X) | qX(u) < ∞}.

As usual the operator ∆X is related with the quadratic form by the formula 〈∆Xu, u〉 =
qX(u), u ∈ C∞

c (X). Since the metric on X is Γ-invariant, the Laplacian ∆X (i.e. its
resolvent) commutes with the translation on X given by

(Tγu)(x) := u(γ−1x), u ∈ L2(X), γ ∈ Γ. (2.2)

Operators with this property are called periodic.
For an open, relatively compact subset D ⊂ X with sufficiently smooth boundary ∂D

(e.g. Lipschitz) we define the Dirichlet (respectively, Neumann) Laplacian ∆+
D (resp.,

∆−
D) via its quadratic form q+

D (resp., q−D) associated to the closure of qD on C
∞
c (D), the

space of smooth functions with compact support, (resp., C∞(D), the space of smooth
functions with continuous derivatives up to the boundary). We also use the notation
H1

◦(D) = dom q+
D (resp., H1(D) = dom q−D). Note that the usual boundary condition

of the Neumann Laplacian occurs only in the operator domain via the Gauß-Green
formula. Since D is compact, ∆+

D has purely discrete spectrum λ+
k , k ∈ N. It is written

in ascending order and repeated according to multiplicity. The same is true for the
Neumann Laplacian and we denote the corresponding purely discrete spectrum by λ−

k ,
k ∈ N.

One of the advantages of the quadratic form approach is that one can easily read off
from the inclusion of domains an order relation for the eigenvalues. In fact, by the the
min-max principle we have

λ±
k = inf

Lk

sup
u∈Lk\{0}

q±D(u)

‖u‖2
, (2.3)
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where the infimum is taken over all k-dimensional subspaces Lk of the corresponding
quadratic form domain dom q±D, cf. e.g. [Dav96]. Then the inclusion

dom q+
D = H

1
◦(D) ⊂ H

1(D) = dom q−D (2.4)

implies the following important relation between the corresponding eigenvalues

λ+
k ≥ λ−

k . (2.5)

This means, that the Dirichlet k-th eigenvalue is in general larger than the k-th Neumann
eigenvalue and this justifies the choice of the labels +, respectively, −.

3. Construction of periodic manifolds

In the present section we will give two different construction procedures (labelled by
the letters ‘A’ and ‘B’) for covering manifolds, such that the corresponding Laplacian
will have a prescribed finite number of spectral gaps. In contrast with [P03] (where only
abelian groups were considered) we will base the construction on the specification of the
quotient space M = X/Γ. By doing this, the spectral convergence result in Theorem 3.1
becomes manifestly independent of the fact whether Γ is abelian or not.

Both constructions are done in two steps: first, we specify in two ways the quotient
M together with a family of metrics gε. Second, we construct in either case the covering
manifold with covering group Γ which has r generators. In the last section we will
localise the spectrum of the covering Laplacian in certain intervals given by an associated
Dirichlet, respectively, Neumann eigenvalue problem. Some reasons for presenting two
different methods (A) and (B) are formulated in a final remark of this section.

3.1. Construction of the quotient. In the following two methods we define a family
of Riemannian manifolds (M, gε) that converge to a Riemannian manifold (N, g) of the
same dimension (cf. Figure 2). In each case we will also specify a domain D ⊂ M (in the
following section D will become a fundamental domain of the corresponding covering):

(1A) Attaching r handles: We construct the manifold M by attaching r handles dif-
feomorphic with C := (0, 1)× Sd−1 to a given d-dimensional compact orientable
manifold N with metric g. For simplicity we assume that N has no boundary.
Concretely, for each handle we remove two small discs of radius ε > 0 from N ,
denote the remaining set by Rε and identify {0} × Sd−1 with the boundary of
the first hole and {1} × Sd−1 with the boundary of the second hole. We denote
by D the open subset of M where the mid section {1/2} × Sd−1 of each handle
is removed.

One can finally define a family of metrics (gε)ε, ε > 0, on M such that the
diameter and length of the handle is of order ε (see e.g. [P03, ChF81]). In this
situation the handles shrink to a point as ε → 0. Note that (Rε, g) can be
embedded isometrically into (N, g), resp., (M, gε). This fact will we useful for
proving Theorem 3.3.

(1B) Conformal change of metric: In the second construction, we start with an
arbitrary compact d-dimensional Riemannian manifold M with metric g. We
consider only the case d ≥ 3 (for a discussion of some two-dimensional examples
see [P03]). Moreover, we assume that N and D are two open subsets of M such
that (i) ∂N is smooth, (ii) N ⊂ D, (iii) D = M and (iv) D \ N can completely
be described by Fermi coordinates (i.e. coordinates (r, y), r being the distance
from N and y ∈ ∂N) up to a set of measure 0 (cf. Figure 2 (B)). The last
assumption assures that N is in some sense large in D.

Suppose in addition, that ρε : M −→ (0, 1], ε > 0, is a family of smooth
functions such that ρε(x) = 1 if x ∈ N and ρε(x) = ε if x ∈ M \ N and
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dist(x, ∂N) ≥ εd. Then ρε converges pointwise to the characteristic function of
N . Furthermore, the Riemannian manifold (M, gε) with gε := ρ2

εg converges to
(N, g) in the sense that M \ N shrinks to a point in the metric gε.

(B)(A)

r

y
Rε

C = (0, 1) × Sd−1

(N, g)

β1 (mid section)

α1

N

D \ N

ρε(x) = O(ε)

ρε(x) = 1

Figure 2. Two constructions of a family of manifold (M, gε), ε > 0: In
both cases, the grey area has a length scale of order ε in all directions.
(A) We attach r handles (here r = 1) of diameter and length of order ε to
the manifold (N, g). We also denoted the two cycles α1 and β1. (B) We
change the metric conformally to gε = ρ2

εg. The grey area D \ N (with
Fermi coordinates in the upper left corner) shrinks conformally to a point
as ε → 0 whereas N remains fixed. Note that the opposite sides of the
square are identified (to obtain a torus as manifold M).

Now we can formulate the following spectral convergence result which was proven
in [P03]:

Theorem 3.1. Suppose (M, gε) and D ⊂ M are constructed as in parts (1A) or (1B)
above. In Case (1B) we assume in addition that d ≥ 3. Then

λ±
k (ε) → λk(0)

as ε → 0 for each k. Here, λ±
k (ε) denotes the k-th Dirichlet, resp., Neumann eigenvalue

of the Laplacian on (D, gε) whereas λk(0) is the k-th eigenvalue of (N, g) (with Neumann
boundary conditions at ∂N in Case (1B)).

3.2. Construction of the covering spaces. Given (M, gε) and D as in the previous
subsection, we will associate a Riemannian covering π : (X, gε) −→ (M, gε) with covering
group Γ such that D is a fundamental domain. Note that we identify D ⊂ M with a

component of the lift D̃ := π−1(D). Moreover, Γ is isomorphic to a normal subgroup of
the fundamental group π1(M).

(2A) Suppose that Γ is a discrete group with r generators γ1, . . . , γr. We will construct
a Γ-covering (X, gε) → (M, gε) with fundamental domain D where D and (M, gε)
are given as in Part (1A) of the previous subsection. Roughly speaking, we glue
together Γ copies of D along the handles according to the Cayley graph of Γ
w.r.t. the generators γ1, . . . , γr. For convenience of the reader, we specify the
construction:

The fundamental group of M is given by π1(M) = π1(N) ∗ Z∗r in the case
d ≥ 3. Here, G1 ∗G2 denotes the free product of G1 and G2, and Z∗r is the free
group in r generators α1, . . . , αr. If d = 2 we know from the classification result
for 2-dimensional orientable manifolds that N is diffeomorphic to an s-holed
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torus. In this case the fundamental group is given by

π1(M) = 〈α1, β1, . . . , αr+s, βr+s | [α1, β1] · . . . · [αr+s, βr+s] = e〉, (3.1)

where [α, β] := αβα−1β−1 is the usual commutator. We may assume that αi

represents the homotopy class of the cycle transversal to the section of the i-th
handle and that βi represents the section itself (i = 1, . . . , r) (cf. Figure 2 (A)).

One easily sees that there exists an epimorphism ϕ : π1(M) −→ Γ which maps
αi ∈ π1(M) to γi ∈ Γ (i = 1, . . . , r) and all other generators to the unit element
e ∈ Γ. Note that this map is also well-defined in the case d = 2, since the
relation in (3.1) is trivially satisfied in the case when the βi’s are mapped to e.

Finally, Γ ∼= π1(M)/ ker ϕ, and X → M is the associated covering with respect

to the universal covering M̃ → M (considered as a principal bundle with discrete
fibre Γ) and the natural action of Γ on π1(M).

Then X → M is a normal Γ-covering with fundamental domain D constructed
as in (1A) of the preceding subsection. Here we use the fact that αi is transversal
to the section of the handle in dimension 2.

(2B) Suppose (X, g) → (M, g) is a Riemannian covering with fundamental domain
D such that ∂D is piecewise smooth. Then D = M , where we have embedded
D into the quotient, cf. [Ra94, Theorem 6.5.8]. According to (1B) we can con-
formally change the metric on M , to produce a new covering (X, gε) → (M, gε)
that satisfies the required properties.

In both cases, we lift for each ε > 0 the metric gε from M to X and obtain a Riemannian
covering (X, gε) → (M, gε). Note that the set D specified in the first step of the previous
construction becomes a fundamental domain after the specification of the covering in
the second step.

The following statement is a direct consequence of the spectral convergence result in
Theorem 3.1:

Theorem 3.2. Suppose (X, gε) → (M, gε) (ε > 0) is a family of Riemannian coverings
with fundamental domain D constructed as in the previous parts (2A) or (2B). Then for
each n ∈ N there exists ε = εn > 0 such that

I(ε) :=
⋃

k∈N

Ik(ε), with Ik(ε) := [λ−
k (ε), λ+

k (ε)], (3.2)

is a closed set having at least n gaps, i.e. n + 1 components as subset of [0,∞). Here,
λ±

k (ε) denotes the k-th Dirichlet, resp., Neumann eigenvalue of the Laplacian on (D, gε).

Proof. First, note that { λ±
k (ε) | k ∈ N }, ε ≥ 0, has no finite accumulation point, since

the spectrum is discrete. Second, Theorem 3.1 shows that the intervals Ik(ε) reduce to
the point {λk(0)} as ε → 0. Therefore, I(ε) is a locally finite union of compact intervals,
hence closed. �

3.3. Existence of spectrum outside the gaps. In the following subsection we will as-
sure that each Neumann-Dirichlet interval Ik(ε) contains at least one point of spec ∆(X,gε)

provided ε is small enough. In our general setting described below (cf. Theorems 5.4
and 6.8) we will show the inclusion

spec ∆(X,gε) ⊂
⋃

k∈N

Ik(ε). (3.3)

It is a priori not clear that each Ik(ε) intersects the spectrum of the Laplacian on (X, gε),
i.e. that gaps in

⋃
k∈N

Ik(ε) are also gaps in spec ∆(X,gε). If the covering group is amenable,
the k-th eigenvalue of the Laplacian on the quotient (M, gε) is always an element of
Ik(ε) ∩ spec(∆X , gε) (cf. the argument in the proof of Theorem 5.4). In general, this
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need not to be true. Therefore, we need the following theorem which will be used in
Theorems 6.8 and 7.5:

Theorem 3.3. With the notation of the previous theorem, we have

Ik(ε) ∩ spec ∆(X,gε) 6= ∅ (3.4)

for all k ∈ N.

We begin with a general criterion which will be useful to detect points in the spectra
of a parameter-dependent family of operators using only its sesquilinear form. A similar
result is also stated in [KK05, Lemma 5.1].

Suppose that Hε is a self-adjoint, non-negative, unbounded operator in a Hilbert space
Hε for each ε > 0. Denote by H1

ε := dom hε the Hilbert space of the corresponding
quadratic form hε associated to Hε with norm ‖u‖1 := (hε(u) + ‖u‖Hε

)1/2 and by H−1
ε

the dual of H1
ε . Note that Hε : H1

ε −→ H−1
ε is continuous. In the next lemma we

characterise for each ε certain spectral points of Hε.

Lemma 3.4. Suppose there exist a family (uε) ⊂ H1
ε and constants λ ≥ 0, c > 0 such

that
‖(Hε − λ)uε‖−1 → 0 as ε → 0 (3.5)

and ‖uε‖ ≥ c > 0 for all ε > 0, then there exists δ = δ(ε) → 0 as ε → 0 such that

λ + δ(ε) ∈ spec Hε.

Proof. Suppose that the conclusion is false. Then there exist a sequence εn → 0 and a
constant δ0 > 0 such that

Iλ ∩ spec Hεn
= ∅ with Iλ := (λ − δ0, λ + δ0)

for all n ∈ N. Denote by Et the spectral resolution of Hε. Then

‖(Hε − λ)uε‖2
−1 =

∫

R+\Iλ

(t − λ)2

(t + 1)
d〈Etuε, uε〉

≥ δ2
0

λ + δ0 + 1

∫

R+\Iλ

d〈Etuε, uε〉 ≥
cδ2

0

λ + δ0 + 1

since Iλ does not lie in the support of the spectral measure. But this inequality contra-
dicts (3.5). �

Remark 3.5. Eq. (3.5) is equivalent to the inequality

|hε(uε, vε) − λ〈uε, vε〉| ≤ o(1)‖vε‖1 for all vε ∈ H1
ε (3.6)

as ε → 0. Note that o(1) could depend on uε. The advantage of the criterion in the
previous lemma is that one only needs to find a family (uε) in the domain of the quadratic
form hε.

We will need the following lemma in order to define a cut-off function with convergent
L2-integral of its derivative. Its proof is straightforward.

Lemma 3.6. Denote by h(r) := r−d+2 if d ≥ 3 and h(r) = ln r if d = 2. For ε ∈ (0, 1)
define

χε(r) :=





0, 0 < r ≤ ε
h(r)−h(ε)

h(
√

ε)−h(ε)
, ε ≤ r ≤ √

ε

1,
√

ε ≤ r

(3.7)

then χε ∈ H1((0, 1)) and

‖χ′
ε‖2 :=

∫ 1

0

|χ′
ε(r)|2rd−1 dr = o(1)
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as ε → 0.

Remember that (N, g) is the unperturbed manifold as in Figure 2. In Case A of
Subsection 3.1, we denoted by Rε the manifold N with a closed ball of radius ε removed
around each point where the handles have been attached (note that Rε is also contained
in D) and denote by (r, y) the polar coordinates around such a point (r = ε corresponds
to a component of ∂Rε).

Proof of Theorem 3.3. Let ϕ be the k-th eigenfunction of the limit operator ∆N with
eigenvalue λ = λk(0). We will treat Cases A and B of Subsection 3.1 separately.
(3A) Set uε(r, y) := χε(r)ϕ(r, y) in the polar coordinates described above and uε := ϕ on
R√

ε. Now, ‖ϕ‖2
R√

ε
≥ c since ‖ϕ‖2

R√

ε
→ ‖ϕ‖2

N > 0 as ε → 0. In addition, uε ∈ H1
◦(Rε) ⊂

H1(X, gε) and

|〈duε, dvε〉 − λ〈uε, vε〉|

=
∣∣∣
∫

Rε

[
〈dϕ, d(χεvε)〉 − λϕχεv

]
+

∫

Rε

ϕ〈dχε, dvε〉 −
∫

Rε

v〈dϕ, dχε〉
∣∣∣

for all vε ∈ H
1(Dε). Now the first integral vanishes since ϕ is the eigenfunction with

eigenvalue λ on N . Note that χεv ∈ H1
◦(Rε) can be interpreted as function in H1(N).

The second and third integral can be estimated from above by

sup
x∈N

[
|ϕ(x)| + |dϕ(x)|

]
‖χ′

ε‖‖vε‖1 = o(1)‖vε‖1

since ϕ is a smooth function on an ε-independent space and due to Lemma 3.6.
(3B) Set uε := ϕ on N and uε(r, y) := χ̃ε(r)ϕ(0, y), r > 0, i.e. on D \ N with χ̃ε(r) :=
χε(

√
ε+εd−r), where χε is defined in (3.7) with d = 2. Note that χ̃′

ε(r) 6= 0 only for those
r = dist(x, ∂N) where the conformal factor ρε(x) = ε. Now, uε ∈ H1

◦(D, gε) ⊂ H1(X, gε).
Furthermore, for vε ∈ H1(D, gε) we have

|〈duε, dvε〉 − λ〈uε, vε〉| ≤
∫

D\N

[∣∣χ̃′
ε(r)ϕ(0, y)∂rvε

∣∣ρd−2
ε

+
∣∣χ̃ε(r)〈dyϕ(0, y), dyvε〉

∣∣ρd−2
ε + λχ̃ε(r)|ϕ(0, y)vε|ρd

ε

]
dr dy

≤ C
[(

√
ε+εd−ε∫

εd

|χ̃′
ε(r)|2εd−2 dr

) 1

2

+
(

√
ε∫

0

|χ̃ε(r)|2ρd−2
ε dr

) 1

2

+
(

√
ε∫

0

|χ̃ε(r)|2ρd
ε dr

) 1

2
]
‖vε‖1

where we have used that ϕ is the Neumann eigenfunction on N . Furthermore, C depends
on the supremum of ϕ and dϕ and on λ. Note that the conformal factor ρε equals ε
on the support of χ̃′

ε, therefore, the first integral converges to 0 since d ≥ 3. Finally,
estimating χ̃ε and ρε by 1, the second and third integral are bounded by ε1/4. �

We finally can define formally the meaning of “decoupling”:

Definition 3.7. We call a family of metrics (gε)ε on X → M decoupling, if the conclu-
sions of Theorems 3.2 and 3.3 hold, i.e., if there exists a fundamental domain D such
that for each n there exists εn > 0 such that I(εn) in (3.2) has at least n+1 components
and if (3.4) holds for all k ∈ N.
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Remark 3.8. In the present section we have specified two constructions of decoupling
families of metrics on covering manifolds, such that the corresponding Laplacians will
have at least a prescribed number of spectral gaps (cf. Sections 5 and 6). The con-
struction specified in method (A) is feasible for every given covering group Γ with r
generators. Note that this method produces fundamental domains that have smooth
boundaries (see e.g. Example 8.3 below).

The construction in (B) applies for every given Riemannian covering (X, g) → (M, g),
since, by the procedure described, one can modify conformally this covering in order to
satisfy the spectral convergence result of Theorem 3.1 (cf. Example 8.4).

4. Floquet theory for non-abelian groups

The aim of the present section is to state a spectral inclusion result (cf. Theorem 4.3)
and the direct integral decomposition of ∆X (cf. Theorem 4.5) for certain non-abelian
discrete groups Γ. These results will be used to prove the existence of spectral gaps in
the situations analysed in the next two sections. A more detailed presentation of the
results in this section may be found in [LP07].

4.1. Equivariant Laplacians. We will introduce next a new operator that lies “be-
tween” the Dirichlet and Neumann Laplacians and that will play an important role in
the following. Suppose ρ is a unitary representation of the discrete group Γ on the
Hilbert space H, i.e. ρ : Γ −→ U(H) is a homomorphism. We fix a fundamental domain
D for the Γ-covering X → M .

We now introduce the space of smooth ρ-equivariant functions

C
∞
ρ (D,H) := { h↾D | h ∈ C

∞(X,H), h(γx) = ργh(x), γ ∈ Γ, x ∈ X }. (4.1)

This definition coincides with the usual one for abelian groups, cf. [LP07]. Note that we
need vector-valued functions h : X −→ H since the representation ρ acts on the Hilbert
space H, which, in general, has dimension greater than 1.

We define next the so-called equivariant Laplacian (w.r.t. the representation ρ) on
L2(D,H) ∼= L2(D) ⊗H: Let a quadratic form be defined by

‖dh‖2
D :=

∫

D

‖dh(x)‖2
H dX(x) (4.2)

for h ∈ C∞
ρ (D,H), where the integrand is locally given by

‖dh(x)‖2
H =

∑

i,j

gij(x) 〈∂ih(x), ∂jh(x)〉H, x ∈ D.

This generalises Eq. (2.1) to the case of vector-valued functions. We denote the domain
of the closure of the quadratic form by H

1
ρ(D,H). The corresponding non-negative,

self-adjoint operator on L2(D,H), the ρ-equivariant Laplacian, will be denoted by ∆ρ
D,H

(cf. [K95, Chapter VI]).

4.2. Dirichlet-Neumann bracketing. We study in this section the spectrum of a
ρ-equivariant Laplacian ∆ρ associated with a finite-dimensional representation ρ. In
particular, we show that spec ∆ρ is contained in a suitable set determined by the spec-
trum of the Dirichlet and Neumann Laplacians on D. The key ingredient in dealing with
non-abelian groups is the observation that this set is independent of ρ.

We begin with the definition of certain operators acting in L2(D,H) and its eigenvalues.
We denote by λ−

m(H), λρ
m(H), resp., λ+

m(H) the m-th eigenvalue of the operator ∆−
D,H,

∆ρ
D,H, resp., ∆+

D,H corresponding to the quadratic form (4.2) on H1
◦(D,H), H1

ρ(D,H),

resp., H1(D,H). Recall that H1
◦(D,H) is the H1-closure of the space of smooth functions
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h : D −→ H with support away from ∂D and H1(D,H) is the closure of the space of
smooth functions with derivatives continuous up to the boundary.

The proof of the next lemma follows, as in the abelian case (cf. Eqs. (2.4) and (2.5)),
from the reverse inclusions of the quadratic form domains

H
1(D,H) ⊃ H

1
ρ(D,H) ⊃ H

1
◦(D,H) (4.3)

and the min-max principle (2.3).

Lemma 4.1. We have
λ−

m(H) ≤ λρ
m(H) ≤ λ+

m(H)

for all m ∈ N.

¿From the definition of the quadratic form in the Dirichlet, resp., Neumann case we
have that the corresponding vector-valued Laplacians are a direct sum of the scalar op-
erators. Therefore the eigenvalues of the corresponding vector-valued Laplace operators
consist of repeated eigenvalues of the scalar Laplacian. We can arrange the former in
the following way:

Lemma 4.2. If n := dimH < ∞ then

λ±
m(H) = λ±

k , m = (k − 1)n + 1, . . . , kn,

where λ±
k denotes the (scalar) k-th Dirichet/Neumann eigenvalue on D.

Proof. Note that ∆±
D,H is unitarily equivalent to an n-fold direct sum of the scalar opera-

tor ∆±
D on L2(D) since there is no coupling between the components on the boundary. �

Recall the definition of the intervals Ik := [λ−
k , λ+

k ] in Eq. (3.2) (for simplicity, we omit
in the following the index ε). From the preceding two lemmas we may collect the n
eigenvalues of ∆ρ

D,H which lie in Ik:

Bk(ρ) := { λρ
m(H) |m = (k − 1)n + 1, . . . , kn } ⊂ Ik, n := dimH. (4.4)

Therefore, we obtain the following spectral inclusion for equivariant Laplacians. This
result will be applied in Theorems 5.4 and 6.8 below.

Theorem 4.3. If ρ is a unitary representation on a finite-dimensional Hilbert space H
then

spec ∆ρ
D,H =

⋃

k∈N

Bk(ρ) ⊆
⋃

k∈N

Ik

where ∆ρ
D,H denotes the ρ-equivariant Laplacian.

4.3. Non-abelian Floquet transformation. Consider first the right, respectively, left
regular representation R, resp., L on the Hilbert space ℓ2(Γ):

(Rγa)eγ = aeγγ , (Lγa)eγ = aγ−1eγ , a = (aγ)γ ∈ ℓ2(Γ), γ, γ̃ ∈ Γ. (4.5)

Using standard results we introduce the following unitary map (see e.g., [LP07, Section 3
and the appendix] and references cited therein)

F : ℓ2(Γ) −→
∫ ⊕

Z

H(z) dz (4.6)

for a suitable measure space (Z, dz). The map F is a generalisation of the Fourier trans-
formation in the abelian case. Moreover, it transforms the right regular representation
R into the following direct integral representation

R̂γ = FRγF
∗ =

∫ ⊕

Z

Rγ(z) dz, γ ∈ Γ. (4.7)
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Remark 4.4. Let R be the von Neumann algebra generated by all unitaries Rγ , γ ∈ Γ,
i.e.

R = {Rγ | γ ∈ Γ }′′, (4.8)

where R′ denotes the commutant of R in L(ℓ2(Γ)). Then we decompose R with respect
to a maximal abelian von Neumann subalgebra A ⊂ R′ (for a concrete example see
Example 4.6). The space Z is the compact Hausdorff space associated, by Gelfand’s
isomorphism, to a separable C∗-algebra C, which is strongly dense in A. Furthermore,
dz is a regular Borel measure on Z. We may identify the algebra A with L∞(Z, dz) and
since it is maximal abelian, the fibre representations R(z) are irreducible a.e. (see [W92,
Section 14.8 ff.]).

The generalised Fourier transformation introduced in Eq. (4.6) can be used to decom-
pose L2(X) into a direct integral. In particular, we define for a.e. z ∈ Z:

(Uu)(z)(x) :=
∑

γ∈Γ

u(γx)Rγ−1(z)v(z), (4.9)

where v := Fδe ∈ ℓ2(Γ), u ∈ C
∞
c (X) and x ∈ D. The map U extends to a unitary map

U : L2(X) −→
∫ ⊕

Z

L2(D,H(z)) dz ∼=
∫ ⊕

Z

H(z) dz ⊗ L2(D),

the so-called Floquet or partial Fourier transformation. Moreover, operators commuting
with the translation T on L2(X) are decomposable, in particular, we can decompose ∆X

since its resolvent commutes with all translations (2.2).
We denote by C∞

eq(D,H(z)) the set of smooth R(z)-equivariant functions defined
in (4.1) and ∆eq

D (z) is the R(z)-equivariant Laplacian in L2(D,H(z)). One can show
in this context (cf. [S88, LP07]):

Theorem 4.5. The operator U maps C
∞
c (X) into

∫ ⊕
Z

C
∞
eq(D,H(z)) dz. Moreover, ∆X

is unitary equivalent to
∫ ⊕

Z
∆eq

D (z) dz and

spec ∆X ⊆
⋃

z∈Z

spec ∆eq
D (z). (4.10)

If Γ is amenable (cf. Remark 5.3), then we have equality in (4.10).

Example 4.6. Let us illustrate the above direct integral decomposition in the case of
the free group Γ = Z ∗ Z generated by α and β. Let A ∼= Z be the cyclic subgroup
generated by α. We can decompose the algebra R given in (4.8) w.r.t. the abelian
algebra A := {La ∈ L(ℓ2(Γ)) | a ∈ A } ⊂ R′, and, in this case, we have Z = S1. Since
the set { aγa−1 | a ∈ A } is infinite provided γ /∈ A, the algebra is maximal abelian in
R′ (i.e. A = A′ ∩ R′), and therefore, each fibre representation R(z) is irreducible in
H(z). Moreover, since La ∈ A′ (a ∈ A) we can also decompose these operators w.r.t the
previous direct integral.

We can give a more concrete realisation of the abstract Fourier transformation F = FΓ

(see e.g. [Ro83, Section 19]): We interprete Γ → A \ Γ as covering space with abelian
covering group A acting on Γ from the left; the corresponding translation action Ta on
ℓ2(Γ) coincides with the left regular representation La (a ∈ A). The (abelian) Floquet
transformation U = UA gives a direct integral decomposition

FΓ = UA : ℓ2(Γ) −→
∫ ⊕

bA

H(χ) dχ,
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where H(χ) ∼= ℓ2(A \ Γ) is the space of χ-equivariant sequences in ℓ2(Γ). Note that H(χ)
is infinite dimensional. A straightforward calculation shows that

Rγ
∼=

∫ ⊕

bA

Rγ(χ) dχ and La
∼=

∫ ⊕

bA

La(χ) dχ,

where Rγ(χ)u(γ̃) = u(γ̃γ) and La(χ)u(γ̃) = χ(a)u(γ̃) for u ∈ H(χ). Note that Lγ , γ /∈ A,
does not decompose into a direct integral over Z since it mixes the fibres. Furthermore,
one sees that v = (Uδe)(χ) is the unique normalised eigenvector of Ra(χ) with eigenvalue
χ(a). This follows from the fact that the set of cosets {Aγa | a ∈ A } ⊂ A \ Γ is infinite
provided γ /∈ A. From the previous facts one can directly check that each R(χ) is
an irreducible representation of Γ in H(χ) and that these representations are mutually
inequivalent. Finally, R(χ) is also inequivalent to any irreducible component of the direct
integral decomposition obtained from a different maximal abelian subgroup B 6= A.

5. Spectral gaps for type I groups

We will present in this section the first method to show that the Laplacian of the
manifolds constructed in Section 3 with (in general non-abelian) type I covering groups
have an arbitrary finite number of spectral gaps. We begin recalling the definition of
type I groups in the context of discrete groups.

Definition 5.1. A discrete group Γ is of type I if Γ is a finite extension of an abelian
group, i.e. if there is an exact sequence

0 −→ A −→ Γ −→ Γ0 −→ 0,

where A ⊳ Γ is abelian and Γ0
∼= Γ/A is a finite group.

Remark 5.2. (i) In the previous definition we have used a simple characterisation
of countable, discrete groups of type I due to Thoma, cf. [Th64]. Moreover, all
irreducible representations of a type I group Γ are finite-dimensional and have
a uniform bound on the dimension (see [Th64, Mo72]). Therefore, the following
properties are all equivalent: (a) there is a uniform bound on the dimensions
of irreducible representations of Γ, (b) all irreducible representations of Γ are
finite-dimensional, (c) Γ is a finite extension of an abelian group, (d) Γ is CCR
(completely continuous representation, cf. [W92, Ch. 14]), (e) Γ is of type I.
Recall also that Γ is of type I iff the von Neumann algebra R generated by Γ
(cf. Eq. (4.8)) is of type I (cf. [Kan69]).

Note that for our application it would be enough if Γ has a decomposition over
a measure space (Z, dz) as in Remark 4.4 such that almost every representation
ρ(z) is finite-dimensional. But such a group is already of type I: indeed, if
the set { z ∈ Z | dimH(z) = ∞} has measure 0, then it follows from [Dix81,
Section II.3.5] that the von Neumann Algebra R (cf. Eq. (4.8)) is of type I. By
the above equivalent characterisation this implies that Γ is of type I.

(ii) The following criterion (cf. [Kan69, Kal70]) will be used in Examples 8.4 and
8.5 to decide that a group is not of type I: The von Neumann algebra R is of
type II1 iff Γfcc has infinite index in Γ. Here,

Γfcc := { γ ∈ Γ |Cγ is finite } (5.1)

is the set of elements γ ∈ Γ having finite conjugacy class Cγ. In particular
such a group is not of type I. Even worse: Almost all representations in the
direct integral decomposition (4.7) are of type II1 ([Dix81, Section II.3.5]) and
therefore infinite-dimensional (see e.g. Example 4.6).
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Remark 5.3. The notion of amenable discrete groups will be useful at different stages of
our approach. For a definition of amenability of a discrete group Γ see e.g. [Day57] or
[Br81]. We will only need the following equivalent characterisations: (a) Γ is amenable.
(b) 0 ∈ spec ∆X [Br81]. (c) spec ∆M ⊂ spec ∆X [S88, Propositions 7–8]. Here, X → M
is a covering with covering group Γ. Note that discrete type I groups are amenable since
they are finite extensions of abelian groups (extensions of amenable groups are again
amenable, cf. [Day57, Section 4]).

We want to stress that Theorem 3.3 is no contradiction to the fact that Γ is amenable
iff 0 ∈ spec ∆(X,gε) although the first interval I1(gε) = [0, λ+

k (gε)] tends to 0 as ε → 0.
Note that we have only shown that I1(gε) ∩ spec ∆(X,gε) 6= ∅ and not 0 = λ1(M, gε) ∈
spec ∆(X,gε) which is only true in the amenable case.

The dual of Γ, which we denote by Γ̂, is the set of equivalence classes of unitary
irreducible representations of Γ. We denote by [ρ] the (unitary) equivalence class of a
unitary representation ρ on H. Note that the spectrum of a ρ-equivariant Laplacian and
dimH only depend on the equivalence class of ρ.

If Γ is of type I, then the dual Γ̂ becomes a nice measure space (“smooth” in the

terminology of [Mac76, Chapter 2]). Furthermore, we can use Γ̂ as measure space in
the direct integral decomposition defined in Subsection 4.3. In particular, combining the
results of Section 2 and 4 we obtain the main result for type I groups:

Theorem 5.4. Suppose X → M is a Riemannian Γ-covering with fundamental domain
D, where Γ is a type I group and denote by g the Riemannian metric on X. Then

spec ∆(X,g) ⊂
⋃

k∈N

Ik(g), and Ik(g) ∩ spec ∆(X,g) 6= ∅, k ∈ N,

where Ik(g) := [λ−
k (D, g), λ+

k (D, g)] is the Neumann-Dirichlet interval defined as in (3.2).
In particular, for each n ∈ N there exists a metric g = gεn

constructed as in Subsec-
tion 3.2 such that spec ∆(X,g) has at least n gaps, i.e. n + 1 components as subset of
[0,∞).

Proof. We have

spec ∆X =
⋃

[ρ]∈bΓ

spec ∆ρ
D,H ⊆

⋃

k∈N

Ik(g) =
⋃

k∈N

Ik(g),

where we used the Theorem 4.5 with Z = Γ̂ for the first equality and Theorem 4.3 for the
inclusion. Note that Γ is amenable and that the latter theorem applies since all (equiv-
alence classes of) irreducible representations of a type I group are finite-dimensional
(cf. Remark 5.2 (1)). The existence of gaps in

⋃
k Ik(g) follows from Theorem 3.2.

Since Γ is amenable, spec ∆M ⊂ spec ∆X (cf. (c) in Remark 5.3). Moreover, from
Eq. (4.4) with ρ the trivial representation on H = C, we have that λk(M) ∈ Ik. Note
that functions on M correspond to functions on D with periodic boundary conditions.
Therefore, we have shown that every gap of the union

⋃
k Ik(g) is also a gap of spec ∆X .

�

6. Spectral gaps for residually finite groups

In this section, we present a new method to prove the existence of a finite number
of spectral gaps of ∆X . The present approach is applicable to so-called residually finite
groups Γ, which is a much larger class of groups containing type I groups (cf. Section 8).
Roughly speaking, residually finite means that Γ has a lot of normal subgroups with finite
index. Geometrically, this implies that one can approximate the covering π : X −→ M
with covering group Γ by finite coverings pi : Mi −→ M , where the Mi’s are compact.



EXISTENCE OF SPECTRAL GAPS AND RESIDUALLY FINITE GROUPS 17

Since the present section is central to the paper we will give for completeness proofs
of known results, namely for Theorem 6.6 (see [AdSS94, Ad95]).

6.1. Subcoverings and residually finite groups. Suppose that π : X −→ M is a
covering with covering group Γ (as in Section 2). Corresponding to a normal subgroup
Γi ⊳ Γ we associate a covering πi : X −→ Mi such that

X

	�
�

�
�

�
πi

Γi

@
@

@
@

@

π
Γ

R

Mi

pi

Γ/Γi

- M

(6.1)

is a commutative diagram. The groups under the arrows denote the corresponding
covering groups.

Definition 6.1. A (countable, infinite) discrete group Γ is residually finite if there exists
a monotonous decreasing sequence of normal subgroups Γi ⊳ Γ such that

Γ = Γ0 ⊲ Γ1 ⊲ · · · ⊲ Γi ⊲ · · · ,
⋂

i∈N

Γi = {e} and Γ/Γi is finite. (6.2)

Denote by RF the class of residually finite groups.

Suppose now that Γ is residually finite. Then there exists a corresponding sequence of
coverings πi : X −→ Mi such that pi : Mi −→ M is a finite covering (cf. Diagram (6.1)).
Such a sequence of covering maps is also called tower of coverings.

Remark 6.2. We recall also the following equivalent definitions of residually finite groups
(see e.g. [Mag69] or [Rob82, Section 2.3]).

(i) A group Γ is called residually finite if for all γ ∈ Γ \ {e} there is a group
homomorphism Ψ: Γ −→ G such that Ψ(γ) 6= e and Ψ(Γ) is a finite group.

(ii) Let F denote the class of finite groups. Then Γ is residually finite, iff the so-
called F-residual

RF(Γ) :=
⋂

N⊳Γ
Γ/N∈F

N (6.3)

is trivial, i.e. RF(Γ) = {e}.
Next we give some examples for residually finite groups (cf. the survey article [Mag69]):

Example 6.3. (i) Abelian and finite groups are residually finite. (ii) Free products of
residually finite groups are residually finite, in particular, the free group in r generators
Z∗r is residually finite. (iii) Finitely generated linear groups are residually finite (for
a simple proof of this fact cf. [Al87]; a group is called linear iff it is isomorphic to a
subgroup of GLn(C) for some n ∈ N.) In particular, SLn(Z), fundamental groups of
closed, orientable surfaces of genus g or, more generally, finitely generated subgroups of
the isometry group on the hyperbolic space Hd are residually finite.

Next we need to introduce a metric on the discrete space Γ:

Definition 6.4. Let G be a set which generates Γ. The word metric d = dG on Γ is
defined as follows: d(γ, e) is the minimal number of elements in G needed to express γ
as a word in the alphabet G; d(e, e) := 0 and d(γ, γ̃) := d(γγ̃−1, e).

Geometrically, residually finiteness means that, given any compact set K ⊂ X, there
exists a finite covering pi : Mi −→ M and a covering πi : X −→ Mi which is injective on
K (cf. [Bro86]). This idea is used in the following lemma:
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Lemma 6.5. Fix a fundamental domain D for the covering π : X −→ M and suppose
that πi : X −→ Mi (i ∈ N) is a tower of coverings as above. Then for each covering
πi : X −→ Mi there is a fundamental domain Di (not necessarily connected) such that

D0 := D ⊂ D1 ⊂ · · · ⊂ Di ⊂ · · · and
⋃

i∈N

Di = X.

Proof. It is enough to show the existence of a family of representants Ri ⊂ Γ of Γ/Γi,
i ∈ N, satisfying

R0 := {e} ⊂ R1 ⊂ · · · ⊂ Ri ⊂ · · · and
⋃

i∈N

Ri = Γ.

In this case the fundamental domains are given explicitly by

Di := int
⋃

r∈Ri

r−1D,

where int denotes the topological interior.
Let d be the word metric on Γ with respect to the set of generators G := { γ ∈

Γ | γD ∩ D 6= ∅ }, which is naturally adapted to the fundamental domain D. Note that
G is finite and generates Γ since D is compact (cf. [Ra94, Theorems 6.5.10 and 6.5.11]).

We choose a set of representants Ri of Γ/Γi that have minimal distance in the word
metric to the neutral element, i.e. if r ∈ Ri, then d(r, e) ≤ d(rΓi, e). Note that since
Γi+1 ⊂ Γi we have Ri+1 ⊃ Ri. To conclude the proof we have to show that every γ ∈ Γ is
contained in some Ri, i ∈ N. Since Γ is finitely generated, there exists n ∈ N such that
γ ∈ Bn := {γ ∈ Γ | d(γ, e) ≤ n}. Moreover, since B2n is finite and Γ residually finite we
also have B2n ∩ Γi = {e} for i large enough. Therefore, any other element γ̃ = γγ−1

i in
the class γΓi with γi ∈ Γi \ {e} has a distance greater than n, since

d(γ̃, e) = d(γγ−1
i , e) = d(γ, γi) ≥ d(e, γi) − d(γ, e) > 2n − n = n.

This implies that γ ∈ Ri by the minimality condition in the choice of the representants.
�

Theorem 6.6. Suppose Γ is residually finite with the associated sequence of coverings
πi : X −→ Mi and pi : Mi −→ M as in (6.1). Then

spec ∆X ⊆
⋃

i∈N

spec ∆Mi
,

and the Laplacian ∆Mi
w.r.t. the finite covering pi : Mi −→ M has discrete spectrum.

Equality holds iff Γ is amenable.

Proof. (Cf. [Ad95]) If λ ∈ spec ∆X , then for each ε > 0 there exists u ∈ C∞
c (X) such

that
‖(∆X − λ)u‖2

X

‖u‖2
X

< ε.

Applying Lemma 6.5 there is an i = i(ε) such that supp u ⊂ Di. Furthermore, since
Di →֒ Mi = X/Γi is an isometry, u can be written as the lift of a smooth f on Mi, i.e.
f ◦ πi = u. Therefore,

‖(∆Mi
− λ)f‖2

Mi

‖f‖2
Mi

=
‖(∆X − λ)u‖2

X

‖u‖2
X

< ε,

which implies λ ∈ ⋃
i∈N

spec ∆Mi
. Finally, since Mi → M is a finite covering and M

is compact, spec ∆Mi
is discrete. For the second assertion cf. [Ad95] or [AdSS94]. One

basically uses the characterisation due to [Br81] that Γ is amenable iff 0 ∈ spec ∆X (cf.
Remark 5.3). �
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Next we analyse the spectrum of the finite covering Mi → M . Note that D is also
isometric to a fundamental domain for each finite covering Mi → M , i ∈ N.

Lemma 6.7. We have
spec ∆Mi

=
⋃

[ρ]∈cGi

spec ∆ρ
D,H(ρ),

where ∆ρ is the equivariant Laplacian introduced in Subsection 4.1 and Gi := Γ/Γi is a

finite group and Ĝi its dual.

Proof. Applying the results of Subsection 4.3 to the finite group Gi and the finite measure

space Z := Ĝi with the counting measure all direct integrals become direct sums. By
Peter-Weyl’s theorem (see e.g. [HR70, §27.49]) we also have

F : ℓ2(Gi) −→
⊕

[ρ]∈cGi

n(ρ)H(ρ),

where each multiplicity satisfies n(ρ) = dimH(ρ) < ∞. Finally,

∆Mi

∼=
⊕

[ρ]∈cGi

∆ρ
D,H(ρ)

and the result follows. �

We now can formulate the main result of this section:

Theorem 6.8. Suppose X → M is a Riemannian Γ-covering with fundamental domain
D, where Γ is a residually finite group and denote by g the Riemannian metric on X.
Then

spec ∆(X,g) ⊂
⋃

k∈N

Ik(g), Ik(g) ∩ spec ∆(X,g) 6= ∅, k ∈ N,

where Ik(g) := [λ−
k (D, g), λ+

k (D, g)] is defined as in (3.2). In particular, for each n ∈ N

there exists a metric g = gεn
, constructed as in Subsection 3.2, such that spec ∆(X,g) has

at least n gaps, i.e. n + 1 components as subset of [0,∞).

Proof. We have

spec ∆X ⊆
⋃

i∈N

spec ∆Mi
=

⋃

i∈N

[ρ]∈cGi

spec ∆ρ
D,H(ρ) ⊆

⋃

k∈N

Ik(g) =
⋃

k∈N

Ik(g),

where we used Theorem 6.6, Lemma 6.7 and Theorem 4.3. Note that the latter theorem
applies since all (equivalence classes of) irreducible representations of the finite groups Gi,
i ∈ N, are finite-dimensional. The existence of gaps in

⋃
k Ik(g) follows from Theorem 3.2.

Finally, by Theorem 3.3, a gap of
⋃

k Ik(g) is in fact a gap of spec ∆X . �

7. Kadison constant and asymptotic behaviour

In the present section we will combine our main result stated in Theorem 6.8 with
some results by Sunada and Brüning (cf. [S92, Theorem 1] or [BS92]), to give a more
complete description of the spectrum of the Laplacian ∆X , where X → M is the Γ-
covering constructed in Section 3. For this, we need a further definition:

Definition 7.1. Let Γ be a finitely generated discrete group. The Kadison constant of
Γ is defined as

C(Γ) := inf{ trΓ(P ) |P non-trivial projection in C∗
red(Γ,K) },

where trΓ(·) is the canonical trace on C∗
red(Γ,K) , the tensor product of the reduced

group C∗-algebra of Γ and the algebra K of compact operators on a separable Hilbert
space of infinite dimension (see [S92, Section 1] for more details.)
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In this section, we assume that Γ is is residually finite and has a strictly positive
Kadison constant, i.e. C(Γ) > 0. For example, the free product Z∗r ∗ Γ1 ∗ · · · ∗ Γa with
finite groups Γi satisfies both properties (cf. e.g. [Mag69], [S92, Appendix]). Another
such group is the fundamental group (cf. Eq. (3.1)) of a (compact, orientable) surface of
genus g (see [MM99]).

Remark 7.2. Suppose that K is an integral operator on L2(X) commuting with the group
action, having smooth kernel k(x, y) and satisfying

k(x, y) = 0 for all x, y ∈ X with d(x, y) ≥ c

for some constant c > 0. Then K can be interpreted as an element of C∗
red(Γ,K) and

one can write the Γ-trace as

trΓ K =

∫

D

k(x, x) dx

(see [S92, Section 1] as well as [At76] for further details), where D is a fundamental
domain of X → M .

If we consider the spectral resolution of the Laplacian ∆X
∼=

∫ ⊕
λ dE(λ), then it

follows that
E(λ2) − E(λ1) ∈ C∗

red(Γ,K)

if λ1 < λ2 and λ1, λ2 6∈ spec ∆X (cf. [S92, Section 2]).

Denote by N (g, λ) the number of components of spec ∆(X,g)∩ [0, λ]. From [BS92, S92]
we obtain the following asymptotic estimate on N (g, λ):

Theorem 7.3. Suppose (X, g) → (M, g) is a Riemannian Γ-covering where Γ has a
positive Kadison constant, i.e. C(Γ) > 0 then

lim sup
λ→∞

N (g, λ)

(2π)−dωd vol(M, g)λd/2
≤ 1

C(Γ)
. (7.1)

In particular, the spectrum of ∆X has band-structure, i.e. N (g, λ) < ∞ for all λ ≥ 0.

Remark 7.4. Note that Theorem 7.3 only gives an asymptotic upper bound on the number
of components of spec ∆X ∩ [0, λ], not on the whole spectrum itself. Therefore, we have
no assertion about the so-called Bethe-Sommerfeld conjecture stating that the number
of spectral gaps for a periodic operator in dimensions d ≥ 2 remains finite.

Combining Theorem 7.3 with our result on spectral gaps we obtain more information
on the spectrum and a lower asymptotic bound on the number of components:

Theorem 7.5. Suppose (X, g) → (M, g) is a Riemannian Γ-covering where Γ is a
residually finite group and where g = gε is the family of decoupling metrics constructed
in Section 3. Then we have:

(i) For each n ∈ N there exists g = gεn
such that spec ∆(X,g) has at least n gaps. If

in addition C(Γ) > 0 then there exists λ0 > 0 such that

n + 1 ≤ N (g, λ) < ∞
for all λ ≥ λ0, i.e. spec ∆(X,g) has band-structure.

(ii) Suppose in addition that the limit manifold (N, g) has simple spectrum, i.e. all
eigenvalues λk(0) have multiplicity 1 (cf. Theorem 3.1). Then for each λ ≥ 0
there exists ε(λ) > 0 such that

lim inf
λ→∞

N (gε(λ), λ)

(2π)−dωd vol(N, g)λd/2
≥ 1.

Here, gε denotes the metric constructed in Section 3.
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Proof. (i) follows immediately from Theorems 6.8 and 7.3. (ii) Suppose λ /∈ spec ∆N ,
then λk(0) < λ < λk+1(0) for some k ∈ N. Let ε = ε(λ) ∈ (0, 1] be the largest number
such that N (λ, gε) is (at least) k, in other words, N (λ, gε) ≥ k = N (λ, ∆N) where the
latter number denotes the number of eigenvalues of ∆N below λ. We conclude with the
Weyl theorem,

lim
λ→∞

N (λ, ∆N)

(2π)−dωd vol(N, g)λd/2
= 1,

where ωd denotes the volume of the d-dimensional Euclidean unit ball. �

To conclude the section we remark that generically, ∆(N,g) has simple spectrum
(cf. [U76]). The assumption on the spectrum of (N, g) is natural since N (g, λ) counts
the components without multiplicity.

8. Examples

8.1. Relation between the approaches presented in Sections 5 and 6. We begin
comparing the two main approaches presented in this paper which assure the existence
of spectral gaps (cf. Sections 5 and 6).

One easily sees from Definition 6.1 that a finite extension of a residually finite group is
again residually finite. In particular, type I groups are residually finite as finite extensions
of abelian groups (cf. Definition 5.1). Therefore, for type I groups one can also produce
spectral gaps by the approximation method with finite coverings introduced in Section 6.
Nevertheless we believe that the direct integral method will be useful when analysing
further spectral properties:

Example 8.1. One of the advantages of the method described in Section 5 is that one
has more information about the bands. Suppose Γ is finitely generated and abelian, i.e.

Γ ∼= Zr ⊕ Γ0, where Γ0 is the torsion subgroup of Γ. Then Γ̂ is the disjoint union of
finitely many copies of Tr. From the continuity of the map ρ → λρ

k (cf. [BJR99] or [S90]),
we can simplify the characterisation of the spectrum in Theorem 4.5 and obtain

spec ∆X =
⋃

k∈N

Bk, where Bk := { λρ
k | ρ ∈ Γ̂ } ⊆ Ik, (8.1)

the k-th band. Since Γ̂ is compact, Bk is also compact, but in general, Bk need not to

be connected (recall that Γ̂ is connected iff Γ is torsion free, i.e. Γ = Zr). Note also that
Bk has only finitely many components. For non-abelian groups this approach may be
generalised in the direction of Hilbert C*-modules (cf. [Gr01]).

In principle one could also consider a combination of the methods of Section 5 and 6:
denote by T1 the class of type I groups and by RT1 the class of residually type I groups,
i.e. Γ ∈ RT1 iff the T1-residual RT1

(Γ) is trivial (cf. Eq. (6.3)). Similarly we denote by
RF the class of residually finite groups (cf. Definition 6.1). If we consider a covering
with a group Γ ∈ RT1, then instead of the finite covering pi : Mi −→ M considered
in Eq. (6.1) we would have a covering with a type I group. For these groups, we can
replace Lemma 6.7 by the direct integral decomposition of Theorem 4.5. Nevertheless
the following lemma shows that the class of residually finite and residually type I groups
coincide.

Lemma 8.2. From the inclusion F ⊂ T1 ⊂ RF it follows that the corresponding resid-
uals for the group Γ coincide, i.e. RF (Γ) = RT1

(Γ). Moreover, RF = RT1.

Proof. From the inclusion F ⊂ T1 it follows immediately that RF(Γ) ⊃ RT1
(Γ). To

show the reverse inclusion one uses the following characterisation: a group is residually
F iff it is a subcartesian product of finite groups (cf. [Rob82, § 2.3.3]). Finally, from the
equality of the residuals it follows that RF = RT1. �
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8.2. Examples with residually finite groups. In the rest of this subsection we
present several examples of residually finite groups which are not type I. They show
different aspects of our analysis.

For the next example recall the construction (A) described in Section 3.

Example 8.3 (Fundamental groups of oriented, closed surfaces). Suppose that N := S2 is
the two-dimensional sphere with a metric such that ∆N has simple spectrum (cf. [U76]
for the existence of such metrics). Suppose, in addition, that M is obtained by adding
r handles to N as described in Section 3, Case A. The fundamental group Γ of M
(cf. Eq. (3.1) with s = 0) is residually finite (recall Example 6.3 (iii)). Moreover, from
the proof of Proposition 2.16 in [MM99], it follows that Γ has a positive Kadison constant.

Therefore, Theorem 7.5 applies to the the universal cover X := M̃ → M with the metric
gε specified in Section 3.

The following example uses the construction (B) in Section 3.

Example 8.4 (Heisenberg group). Let Γ := H3(Z) be the discrete Heisenberg group, where
H3(R) denotes the set of matrices

Ax,y,z :=




1 x y
0 1 z
0 0 1


 (8.2)

with coefficients x, y, z in the ring R. A covering with group Γ is given e.g. by X := H3(R)
with compact quotient M := H3(R)/H3(Z). Note that X is diffeomorphic to R3. Clearly,
Γ is a finitely generated linear group and therefore residually finite (cf. Example 6.3 (iii)).
Now, by Theorem 6.8 one can deform conformally a Γ-invariant metric g as in Case (B)
of Section 3, such that spec ∆X has at least n spectral gaps, n ∈ N.

In this case, Γ is also amenable as an extension of amenable groups (cf. Remark 5.3).
In fact, Γ is isomorphic to the semi-direct product Z ⋉ Z2, where 1 ∈ Z acts on Z2 by
the matrix (

1 1
0 1

)
.

Therefore, we have equality in the characterisation of spec ∆X in Theorems 4.5 and 6.6.
Note finally that the group Γ is not of type I since Γfcc = {A0,y,0 | y ∈ Z } has infinite

index in Γ (cf. Remark 5.2 (2)). Thus, our method in Section 5 does not apply since the
measure dz in (4.6) is supported only on infinite-dimensional Hilbert spaces. Curiously,

one can construct a finitely additive measure on the group dual Γ̂ supported by the set

of finite-dimensional representations of Γ̂ (cf. [Py79]). The group dual Γ̂ is calculated
e.g. in [Kan68, Beispiel 1].

Example 8.5 (Free groups). Let Γ = Z
∗r be the free group with r > 1 generators. Then Γ

is residually finite (recall Example 6.3 (ii)) and has positive Kadison constant (cf. [S92,
Appendix]). Therefore, Theorem 7.5 applies to the Γ-coverings X → M specified in
Section 3.

Note that Γ is not of type I since Γfcc = {e} (cf. Remark 5.2 (2)). Such groups are called
ICC (infinite conjugacy class) groups. Again, for any direct integral decomposition (4.6),
almost all Hilbert spaces H(z) are infinite-dimensional. Finally, Γ is not amenable.

8.3. An example with an amenable, non-residually finite group. Kirchberg men-
tioned in [Ki94, Section 5] an interesting example of a finitely generated amenable group
which is not residually finite: Denote by S0 the group of permutations of Z which leave
unpermuted all but a finite number of integers. We call A0 the normal subgroup of
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even permutations in S0. Let Z act on S0 as shift operator. Then the semi-direct prod-
uct Γ := Z ⋉ S0 is (finitely) generated by the shift n 7→ n + 1 and the transposition
interchanging 0 and 1. Note that Γ and S0 are ICC groups.

Lemma 8.6. The group Γ is amenable. Moreover, RF (Γ) = A0, hence Γ is not residually
finite.

Proof. The group S0 is amenable as inductive limit of amenable groups; therefore, Γ is
amenable as semi-direct product of amenable groups (cf. [Day57, Section 4]).

The equality RF (Γ) = A0 follows from the fact that A0 is simple. �

Proposition 8.7. Every finite-dimensional unitary representation ρ of Γ leaves A0 ele-
mentwise invariant, i.e. ρ(γ) = 1 for all γ ∈ A0.

Proof. Let E be the class of countable subgroups of U(n), n ∈ N, and FG the class of
finitely generated groups. Note that F ⊂ E∩FG and that finitely generated linear groups
are residually finite (cf. Example 6.3 (iii)), i.e. E ∩FG ⊂ RF . Arguing as in the proof of
Lemma 8.2 we obtain from the inclusions F ⊂ E ∩ FG ⊂ RF that RE∩FG(Γ) = RF (Γ).
Now by Lemma 8.6 the F -residual of Γ is A0. Finally, since Γ itself is finitely generated
(i.e. Γ ∈ FG), we have

RE(Γ) = RE∩FG(Γ) = A0.

This concludes the proof since ρ is a finite-dimensional unitary representation iff im(ρ) ∼=
Γ/ ker ρ ∈ E , i.e. RE(Γ) is the intersection of all ker ρ, where ρ are the finite-dimensional,
unitary representations of Γ. �

In conclusion, we cannot analyse the spectrum of ∆X by none of the above methods
since Γ is not residually finite (and therefore neither of type I). Nevertheless, equal-
ity holds in (4.10), but we would need infinite-dimensional Hilbert spaces H(z) in the
direct integral decomposition in order to describe the spectrum of the whole covering
X → M and not only of the subcovering X/A0 → M (with covering group Z × Z2, cf.
Diagram (6.1)).

Remark 8.8. Coverings with transformation groups as in the present subsection cannot
be treated with the methods developed in this paper. It seems though reasonable that
even for non-residually finite groups the construction specified in Section 3 still produces
at least n spectral gaps, n ∈ N. To show this one needs to replace the techniques of
Section 4 that use the min-max principle in order to prove the existence of spectral gaps
for these types of covering manifolds.

9. Conclusions and applications

Given a Riemannian covering (X, g) → (M, g) with a residually finite transformation
group Γ we constructed a deformed Γ-covering (X, gε) → (M, gε) such that spec ∆(X,gε)

has n spectral gaps, n ∈ N. Intuitively one decouples neighbouring fundamental domains
by deforming the metric g → gε in such a way that the junctions of the fundamental
domains are scaled down (cf. Figure 1). Therefore, our construction may serve as a
model of how to use geometry to remove unwanted frequencies or energies in certain
situations which may be relevant for technological applications.

For instance, the Laplacian on (X, gε) may serve to give an approximate description of
the energy operator of a quantum mechanical particle moving along the periodic space
X. Usually, the energy operator contains additional potential terms coming form the
curvature of the embedding in some ambient space, cf. [FH00], but, nevertheless, ∆(X,gε)

is still a good approximation for describing properties of the particle. A spectral gap in
this context is related to the transport properties of the particle in the periodic medium,
e.g., an insulator has a large first spectral gap.
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Another application are photonic crystals, i.e. optical materials that allow only certain
frequencies to propagate. Usually, one has to consider differential forms in order to
describe the propagation of classical electromagnetic waves in a medium. Nevertheless,
if we assume that the Riemannian density is related to the dielectric constant of the
material, one can use the scalar Laplacian on a manifold as a simplified model. For more
details, we refer to [K01, FK98] and the references therein.

A further interesting line of research would be to consider the opposite situation as in
the present paper; that means the use of geometry to prevent the appearance of spectral
gaps (cf. [Fr91, Maz91]). In fact, these authors proved that λ−

k+1(D) ≤ λ+
k (D) for all

k ∈ N, i.e, that Ik ∩ Ik+1 6= ∅ for all k ∈ N provided D is an open subset of Rn or a
Riemannian symmetric space of non-compact type. On such a space, we have a priory
no information on the existence of gaps.

It would also be interesting to connect the number of gaps with geometric quantities,
e.g., isoperimetric constants or the curvature. We want to stress that the curvature of
(X, gε) is not bounded as ε → 0 (cf. [P03]) in contrast to the degeneration of Riemannian
metrics under curvature bounds (cf. e.g. [Ch01]).

In the present paper we have considered ∆X as a prototype of an elliptic operator
and have avoided the use of a potential V . In this way we isolate the effect of geometry
on spec ∆X . Of course, our methods and results may also be extended to more general
periodic structures that have a “reasonable” Neumann Laplacian as a lower bound and
satisfy the spectral “localisation” result in Theorem 4.3. For example, one can also
study periodic operators like ∆X + V , operators on quantum wave guides, more general
periodic elliptic operators or operators on metric graphs (cf. e.g. [EP05] for examples of
periodic metric graphs with spectral gaps).

Finally, we conclude mentioning that we can not apply directly our result to disprove
the Bethe-Sommerfeld conjecture on manifolds, which says that the number of spectral
gaps for a periodic operator in dimensions d ≥ 2 remains finite. Even if we know that
the spectrum of the Laplacian on (X, gε) converges to the discrete set { λk | k ∈ N } as
ε → 0, we cannot expect a uniform control of the spectral convergence on the whole
interval [0,∞) since there are topological obstructions (cf. [ChF81]). Note that a uniform
convergence would immediately imply that spec ∆(X,gε) would have an infinite number
of spectral gaps. Nevertheless, we hope that our construction will contribute to the
clarification of the status of this conjecture.
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[ACP07] C. Anné, G. Carron, and O. Post, Gaps in the differential forms spectrum on cyclic coverings,
Preprint (arXiv:0708.3981) (2007).

[Ad95] T. Adachi, On the spectrum of periodic Schrödinger operators and a tower of coverings, Bull.
London Math. Soc. 27 (1995), 173–176.

[Al87] R. C. Alperin, An elementary account of Selberg’s lemma, Enseign. Math. (2) 33 (1987),
269–273.

[AdSS94] T. Adachi, T. Sunada, and P. W. Sy, On the regular representation of a group applied to the
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