§3 Universality

From now on assume:

A1 Either no $ \epsilon \Theta \in \text{Woodin} \text{ in an inner model or else } V_\Theta \text{ is closed under } \#.

A2 Let $ M \in V_\Theta $ be a 1-small premouse and $ I $ a normal iteration of $ M $ of length $ \Theta $. Then $ I $ has a cofinal branch.

A3 $ \Theta $ is a Mahlo cardinal.

Note: A1 subsumes our earlier A0. A1 is known to imply that $ K^c $ is iterable below $ \Theta $.

Note: A2 holds if $ V_\Theta \# $ exists or if $ \Theta $ is not Woodin in an inner model.

Note: A3 is assumed in order to insure a large supply of inaccessible $ \kappa \leq \Theta $ which can serve as critical points for the extenders in the $ K^c $ construction.
We prove:\n
Thm 5 \(K^c \) is universal wrt. 1-small premise in \(V_\Theta \) i.e. if \(\mathcal{N} \leq V_\Theta \) is a 1-small premise, then any coiteration of \(\mathcal{N}, K^c \) will terminate below \(\Theta \).

Note: A failure of well-foundedness is considered a termination. Hence the lemma would hold even without A1, which is used to ensure an iteration strategy for \(K^c \). The interesting case occurs when both sides have a normal iteration strategy, thus preventing a failure of well-foundedness.

We now prove Thm 5. Suppose not. Let \(\mathcal{Q} \in V_\Theta \) be a 1-small premise and let \(\langle \mathcal{Q}^Q, \mathcal{Q}^K \rangle \) be a coiteration of \(\mathcal{Q}, K^c \) of length \(\Theta \). Let:\n
\[
\gamma^Q = \langle \langle \mathcal{Q}^{i}, <\mathcal{K}^{i}_K >, <\mathcal{Q}^{i}_i >, <\pi^{i}_i >, T\mathcal{Q} > \\
\gamma^K = \langle \langle \mathcal{K}^{i}_K, <\mathcal{Q}^{i}_i >, <\mathcal{Q}^{i}_i >, <\pi^{i}_i >, T\mathcal{K} >.
\]

Making use of this we shall prove:
Lemma 5.1. There are a stationary \(\delta \subseteq \Theta \) and a commutative system \(\langle \tau_{\alpha \beta} \mid \alpha \leq \beta \text{ in } \delta \rangle \) s.t.

(i) \(\delta \) is inaccessible for \(\delta \in \Theta \)

(ii) Set \(\kappa_d = (\bigcup_{d} \kappa^c_{d} (\delta \in \Theta)) \).

Then \(\tau_{\alpha \beta} : \kappa_d \rightarrow \kappa_{\beta} \) cofinally; \(\tau_{\alpha \beta} \delta = \delta \); \(\tau_{\alpha \beta} (d) = \beta \) for \(\alpha \leq \beta \text{ in } \Theta. \)

Proof.

Let \(b \) be a cofinal branch in \(\Theta \). This has a transitive limit model \(\Theta_b \) and maps \(\tau_{\alpha} \Theta \) to \(\Theta_b \) for \(\alpha \in b \). There is \(\delta \in b \text{ s.t. no truncation occurs on } b \text{ above } \delta \). Hence \(\tau_{\alpha} \Theta \) is total on \(\Theta_b \) for \(\delta \leq \alpha \leq b \). For \(\delta \leq b \text{ s.t. } \delta \in b \text{ and } \kappa_{\delta} = \kappa_{\delta} \text{ as } \alpha \in (\tau_{\delta} \Theta) \).

A standard proof shows that there is a club \(C \subset b \setminus \delta \text{ s.t. if } \delta \subseteq C \), then \(\delta = \kappa_{\delta} \) and \(\tau_{\alpha \beta} (d) = \beta \) for \(\delta \leq \beta \subseteq C, \alpha \leq \beta \). It follows that \(\tau_{\alpha \beta} (d) = \Theta, \delta = \text{crit}(\tau_{\alpha \beta}) \text{ for } \delta \subseteq C. \)
Now let \(\kappa \in C \) be inaccessible. Then
\[\kappa \in Q_{\kappa} \cap K_{\kappa}, \]
since otherwise \(K_{\kappa} \)
would be a segment of \(Q_{\kappa} \) and
the coiteration would terminate.

(1) \(\kappa \neq \prod_{i \in \kappa} \bar{\kappa} \) for any \(\bar{\kappa} < \kappa \).

Proof: Otherwise we could repeat
the proof that coiterations terminate
(§4 of [NFS]) to show that the
coiteration of \(Q, K \) must have
terminated below \(\kappa \). QED(1)

Hence:

(2) There is no truncation on the
branch \(\xi \mid i < \kappa \) \(\bar{\kappa} \). (Hence
\(\prod_{i \in \kappa} \bar{\kappa} \) is total for \(i < \kappa \).

Otherwise \(\kappa = \prod_{i \in \kappa} \bar{\kappa} \)
where \(\bar{\kappa} < \kappa \),
At follows easily that:

(3) \(\prod_{i \in \kappa} \bar{\kappa} (\bar{\kappa}) < \kappa \) for \(\bar{\kappa} < \kappa \),
hence:

(4) \(\prod_{i \in \kappa} \bar{\kappa} (\kappa) = \kappa \),
Let \(\tau = \kappa + K_{\kappa} \). Then
(5) \(\prod_{i \in \kappa} \bar{\kappa} (\tau) = \tau \),
Now let: \(\tilde{K}_\kappa = \bigcup E \kappa \) \(^* \); \(K_\kappa = \pi^{* \kappa} (\tilde{K}_\kappa) \).

At follow easily that:

1. \(\tilde{K}_\kappa = \bigcup E \kappa = \bigcup E \kappa^{* \kappa} \).

(Note that \(E = \kappa + \omega \kappa \)).

Set: \(\tilde{\pi}_\kappa = \pi^{* \kappa} \mid \tilde{K}_\kappa \). Then

2. \(\tilde{\pi}_\kappa \colon \tilde{K}_\kappa \to \tilde{\mathcal{E}}_0 \kappa \).

But by (1):

3. \(\tilde{\pi}_\kappa^{* \kappa} \colon \tilde{K}_\kappa \to \tilde{K}_\kappa^{* \kappa} \).

for \(\kappa, \kappa' \in \mathcal{C}', \kappa \leq \kappa' \),

where \(\mathcal{C}' = \{ \kappa \in \mathcal{C} : \kappa \text{ is inaccessible in } \mathcal{C} \} \).

We wish to define a stationary set \(S \subseteq \mathcal{C}' \). Let \(\tilde{\pi}^{* \kappa} \tilde{\pi}_\kappa \subseteq \tilde{\pi}_\kappa \). for \(\kappa, \kappa' \in S, \kappa \leq \kappa' \). Recalling that

\(\tilde{\pi}_\kappa = h(\tilde{K}_\kappa) \) for \(\kappa \in \mathcal{C}' \), we set

\(\tilde{\pi}^{* \kappa}_\kappa = h(\tilde{K}_\kappa) \) and note that:

(4) \(c(\tilde{\pi}_\kappa) = c(\tilde{\pi}^{* \kappa}_\kappa) = c(\tilde{\pi}^{* \kappa}_\kappa) \)

for \(\kappa, \kappa' \in \mathcal{C}', \kappa \leq \kappa' \).

By (2), (3).
Let \(\mu_k \leq \kappa \) for all \(\kappa < \theta \).

Pick \(\delta \kappa \) monotonically and cofinal in \(\theta \) for \(\kappa < \theta \). Assume w.l.o.g. that \(\kappa > \delta \) for \(\kappa < \theta \).

Then there is \(\delta(\kappa) < \kappa \) s.t.

\[
\delta(\kappa) \leq \kappa \text{ for } \delta = \delta(\kappa), \text{ Hence by Feferman}
\]

there is a stationary \(S' \subset \theta \) s.t.

\(\delta(\kappa) = \delta \) in constant for \(\kappa < S' \).

Set: \(h(\kappa) = \left< \prod_{\delta \kappa} \wedge_{\kappa} \frac{\beta}{\kappa} (\zeta \kappa) \right| \kappa < \theta > \).

Then \(h(\kappa) \in \Delta_\delta \). Hence there is stationary \(S' \subset S \) s.t. \(h \) is constant on \(S \). But then:

(5) \(\prod_{\kappa} \wedge_{\kappa} \frac{\beta}{\kappa} (\zeta \kappa) = \frac{\beta}{\kappa}(\zeta \kappa) \)

for \(\kappa \in S \). Hence \(\delta(\kappa) \)

(6) \(\frac{\beta}{\kappa} \leq \frac{\beta}{\kappa} \) for \(\kappa, \kappa' \in S, \kappa \leq \kappa' \).

Proof

\[
\frac{\beta}{\kappa} \leq \frac{\beta}{\kappa} \leq \frac{\beta}{\kappa} \text{ for } \kappa, \kappa' \in S, \kappa \leq \kappa'.
\]
Hence:

\[
\pi_k \subseteq \pi_{k'} \quad \text{for} \quad k, k' \in S, \quad a \leq k, k'.
\]

Let \(x \in \tilde{\kappa}_k \). Then \(x \in \bigcup_{i \leq k} E_i \) for some \(i \leq k \), where \(E = E_k \). Let \(f = f_k = \pi_k \). The \(\tilde{\kappa}_k \)-least \(f : k \longrightarrow \bigcup_{i \leq k} E_i \) for \(a = f(v) \) for a \(v \leq k \). We have:

\[
\bar{\pi}_k(f) = \text{the } \kappa^i_k \text{-least } f : k \longrightarrow \bigcup_i E_k^{\bar{i}} \quad \text{such that } \bar{f}(v) \in E_k^{\bar{i}},
\]

\[
\bar{\pi}_k(f) = \text{the } \kappa^i_k \text{-least } f' : k' \longrightarrow \bigcup_i E_k^{\bar{i}} \quad \text{such that } \bar{f}'(v) \in E_k^{\bar{i}}.
\]

\[
= \bar{\pi}_k'(f_k).
\]

Hence:

\[
\pi_{k'} \subseteq \bar{\pi}_k'(f_k) = \bar{\pi}_k'(f(v)) = \bar{\pi}_k'(f_k(v)) = \bar{\pi}_k'(f_k'(v)) = \bar{\pi}_k'(f_k(v)) \leq \pi_{k'}(v).
\]

(Note \(\bar{\pi}_k(v) = \pi_{k'}(v) \) by (6)). QED (7)

Now set: \(\pi_{k'} = \pi_{k'} \subseteq \pi_k \). Then:

\[
\pi_{k'} : \bar{\kappa}_k \longrightarrow \bar{\kappa}_k', \quad \text{cofinally. Moreover}, \quad \pi_{k'}(k) = id \text{ by (6)} \quad \text{and } \pi_{k'}(k) = k'.
\]

QED (Lemma 5, 1)
-44-

Now let \(\tilde{\kappa} \), \(\langle \tilde{\pi}_a \mid a \in S \rangle = \lim_{\alpha \in \beta} (\tilde{\pi}_\alpha, \overline{\pi}_\alpha) \) for all \(\alpha \in S \). Clearly \(cf(\alpha^+ \omega^c) = \delta \) for all \(\alpha \in S \) where \(\delta > \omega \), \(\delta < \min(S) \).

Hence \(cf(h + (\tilde{\kappa})) = \delta < \theta \). Hence \(\tilde{\kappa} \in H_\theta \). Let \(\theta \in H < H_{\theta^+} \) s.t.

\(\bar{H} = \theta \), \(H \) is transitive, \(\tilde{\kappa}, \langle \tilde{\pi}_a \mid a \in S \rangle \in H \).

Let \(f : \theta \rightarrow H \) and set \(i : X_\theta = f^{-1} \) for \(a \leq \theta \). Set \(i : C = \text{the set of} \)

\(a \leq \theta \) s.t. \(\tilde{\kappa}, \langle \tilde{\pi}_a \mid a \in S \rangle \in X_\theta \). Then \(C \) is \(c \in i \) \(\Theta \)

Pick \(\kappa \in C \cap S \), Let \(\sigma : N \rightarrow X_\kappa \).

Set \(: F^x = \sigma^{-1} \mathcal{P}(\kappa) \). Then \(F^x \) is an extender on \(N \) and \(\sigma : N \rightarrow F^x \), \(\mathcal{H}. \)

(Hence \(F^x \in H = \text{Ult}(N, F^x) \).) Clearly \(N = \mathcal{F} C \) and \(\mathcal{N} \subseteq N \).

At it easily seen that

\(\sigma (\langle \tilde{\pi}_a \mid a < \kappa \in S \rangle) = \langle \tilde{\pi}_a \mid a < \kappa \in S \rangle \),

Hence since \(\tilde{\kappa}, \langle \tilde{\pi}_a \mid a \in S \cap \kappa > \rangle = \lim_{\alpha \in \beta} \langle \tilde{\pi}_\alpha, \overline{\pi}_\alpha \rangle \), we have .
(9) \(\sigma(\tilde{\pi}_x) = \tilde{\pi}_x \) (\(x \in \kappa \times S \)). Hence:

(10) \(\sigma(\tilde{\pi}_x) = \tilde{\pi}_x \), since \(\sigma(\tilde{\pi}_x(\kappa)) = \tilde{\pi}_x(\kappa) = \tilde{\pi}_x(\kappa) \).

Set \(F' = F \star \tilde{\pi}_x = \tilde{\pi}_x \star \tilde{\pi}_x \). Then \(\langle \tilde{\pi}_x, F' \rangle \) satisfies all premouse conditions except the initial segment condition.

We shorten \(F' \) so as to satisfy this condition: Let \(\lambda < \Theta \) be least such that \(\sigma(f)(\lambda) < \lambda \) whenever \(f : \kappa \rightarrow \kappa \), \(f \in \tilde{\pi}_x \) and \(\lambda < \Theta \). Set \(F = F' \star \lambda \).

Let \(\tilde{\pi}_x \rightarrow \tilde{\pi}_x \rightarrow \kappa \), \(\langle \tilde{\pi}_x, F \rangle \) is easily seen to be a 1-small premouse.

(11) \(\tilde{\pi}_x \) is an initial segment of \(\tilde{\pi}_x \) (hence of \(K^c \)).

Proof:

Let \(k : \tilde{\pi}_x \rightarrow \tilde{\pi}_x \) be defined by:

\[k(\tilde{\pi}(f)(\alpha)) = \tilde{\pi}_x(f)(\alpha). \]

Then \(k \) is a cofinal \(\subseteq \) preserving map and \(k \star \lambda = \text{id} \), \(k(\lambda) = k(\tilde{\pi}_x(\kappa)) = \tilde{\pi}_x(\kappa) = \Theta \).

Let \(\lambda < \delta < \text{ht}(\tilde{\pi}_x) \) and \(\omega \subseteq \delta \). Then:

\(\delta \) and \(\tilde{\pi}_x \) are cofinal in \(\text{ht}(\tilde{\pi}_x) \).

Set \(Q = J^{\tilde{\pi}_x}_\delta \), \(\bar{Q} = \tilde{\pi}_x(\bar{Q}) = J^{\tilde{\pi}_x}_\delta \), \(k' = k(\tilde{\pi}_x) \). Then \(\bar{Q}, \bar{Q} \) are round.
and $k': Q \xrightarrow{e_k} Q$ where $wp\overline{Q} = \text{crit}(k')$.

We apply §8 Lemma 4 of [NES].

(a) is impossible since $k \neq i Q + \alpha$ in round

(b) is impossible since $wp\overline{Q} \geq \text{crit}(k')$.

Hence (b) holds i.e. \overline{Q} is a sequent of Q, hence of \overline{R}. QED

47

We note that λ is a limit cardinal in \overline{R} by the definition of λ. Hence:

\begin{align*}
12: \quad \Sigma^*_{\lambda} &= \int_{\lambda} E^{1', \lambda}, \quad \text{where } \lambda \text{ is a limit cardinal in } R.
\end{align*}

13: $\langle N, F^* \rangle$ is a certificate for $\langle \overline{R}, F \rangle$.

Moreover, if $f : \lambda \rightarrow \text{dom}(E)$, $\lambda < \kappa$, then $f \in N$.

Proof:

$\langle N, F^* \rangle$ is trivially a certificate.

Since $\overline{\kappa} \in N$, there is $n \in N$ such that $\overline{\kappa} = \overline{\kappa}_n$. Set $\overline{f} = g^{-1}f$.

Then $\overline{f} \in \overline{V}_\overline{\kappa} \subset N$, since κ is regular.

Hence $f = g\overline{f} \in N$. QED (13)
By §11 Lemma 2.1, 2.4 it follows from (13) that for \(\delta = \delta(\lambda) = \sup \{ \xi \mid \text{\(\lambda^\xi < \lambda \)} \}
 we have:

\[
(14) \quad M_\delta = N_\delta = \langle J_\lambda^{E^K}, \varphi \rangle \quad \text{and} \quad \text{\(\tilde{\lambda}_\delta = \lambda \).}
\]

Now let \(\text{\(\text{\(\tilde{K} = \bigcup \text{\(J_\lambda^{E^K} = J_\lambda^{E^K} \) \)}} \)} \). Since \(\lambda \) is the largest cardinal in \(\text{\(\text{\(\tilde{K} \) \)}} \), \(\lambda \) is cardinally absolute in \(\text{\(\text{\(\tilde{K} \) \)}} \). By §11 Lemma 2.2 we conclude that for \(\delta = \delta(\lambda) \) we have:

\[
(15) \quad M_{\delta', \lambda} = N_{\delta', \lambda} = \langle \text{\(\tilde{K} \), \(\varphi \) \rangle}.
\]

Hence by (13) \(N_{\delta'+1} = \langle \text{\(\text{\(\tilde{K} \), \(\varphi \) \rangle} \rangle \rangle \). Hence \(\text{\(\wp^\omega = \lambda \).} \) This is a contradiction.

\[\text{Corollary 6.1} \quad \text{Let} \ Q \in V_\theta \ \text{be a normally iterable premouse in} \ V_\theta. \text{Then} \ Q \ \text{is iterable in} \ V_\theta.\]
proof of Corollary 6.1

Consider Q, K^c to Q', K'. Since K^c is pseudo-die, the usual proofs tell us that one side of the iteration must be simple and that the simple side must be a segment of the non-simple side, if this occurs. K' cannot be a proper segment of Q', since the K'-side would then have to be non-simple and K' would be unbounded. Thus Q' is a segment of K'. Hence Q' is a moose. Hence Q is a moose, since $\pi : Q \rightarrow \Sigma \times Q'$, where π is the iteration map. QED (6.11)

Corollary 6.2 If Q is an A-small MS moose in $T\beta$, then Q is a moose in $T\beta$.

We now prove a refinement of Corollary 6.1.
(Since otherwise Q coiterates out to a segment of a mouse and is therefore a mouse in W.)

Proof. Suppose not. Then Q is not a tail, i.e. it is not definable in W. Hence there must be a failure of the Θ rule on the Θ rule.

On the Θ-rule we employ the "economical" strategy: At time \(x \) there is no continued to length \(x + 1 \) if possible. The \(K \)-rule, we suppose \(K \) is definable in W. Hence there must be a failure of the Θ rule on the Θ rule.

Theorem 7. Let \(Q \) be a countable A-normal
\[\langle y^q, y^K \rangle \in X < V_\theta, \bar{X} = \omega. \]

Let \(\sigma : \bar{V} \rightarrow X \), where \(\bar{V} \) is transitive. Let \(\sigma(\langle y^q, y^K \rangle) = \langle y^q, y^K \rangle \). Let:

\[y\bar{q} = \langle \langle \bar{q}_i \rangle, \langle \bar{v}_i \rangle, \ldots, \bar{t} \bar{q} \rangle, \]

\[y\bar{K} = \langle \langle \bar{K}_i \rangle, \langle \bar{v}_i \rangle, \ldots, \bar{t} \bar{K} \rangle, \]

Let \(\sigma(\bar{X}) = \lambda \).

\[\langle y\bar{q}, y\bar{K} \rangle \] is then a countable coiteration.

If \(\delta < \bar{X} \) is a limit ordinal, then we know that \(\{ i : i \in \bar{q} \delta \} \) is the unique cofinal well-founded branch through \(\bar{q} \delta \) in the sense of \(\bar{V} \), but not necessarily in \(V \).

Set: \(\bar{X} = \) the least \(\bar{X} \leq \bar{X} \) such that for all \(\delta < \bar{X} \), \(\{ i : i \in \bar{q} \delta \} \) is the unique cofinal well-founded branch in \(\bar{q} \delta \). Then

(1) \(\lim (\bar{X}) \)

Mf. Suppose not. Let \(\bar{X} = \bar{h} + 1 \). Then \(\bar{X} = \bar{X} \) and \(\bar{V} \) thinks that the coiteration cannot be continued. Since \(\bar{X} \) is countable and we have followed the unique iteration strategy for \(\bar{q} \), and \(\bar{q} \) is countably normally iterable, then it can be continued. Hence \(\bar{V} \) thinks so by an easy absoluteness
argument. QED (1)

\(T \) must have a well founded cofinal branch \(b \) since \(Q \) is countably normal iterable. Choose \(b \) s.t.
the limit model \(Q_b \) has minimal height.

Case 1 \(\text{ht}(Q_b) \in \overline{V} \).

Case 1.1 \(b \) is the unique cofinal branch.

Then \(\overline{x} = x \) and \(\overline{y}^Q \) has no well founded cofinal branch. Hence \(\overline{V} \) thinks that \(\overline{y}^Q \) has no such branch. We derive a contradiction. Let \(\overline{z} = \overline{z} \in \overline{V} \) s.t.

\(L_S[\overline{y}^Q] \) is admissible and \(\text{ht}(Q_b) \in \overline{S} \).

Let \(\overline{z} = \text{ht}(Q_b) \), \(\overline{z} = L_S, \overline{z} = L_S, \overline{z} = \overline{L_S, \overline{z}} = \overline{L_S, \overline{z}, \overline{y}^Q} \) be the following infinitary language on \(L_S[\overline{y}^Q] \):

- Predicates: \(\epsilon, = \), Constant: \(x \) \((x \in L_S[\overline{y}^Q]) \), \(b \).

- Axioms: \(\exists \overline{z} \neg \); \(\forall \overline{z}\overline{x}(\overline{z} \epsilon \overline{x} \iff \overline{z} \epsilon \overline{x} \) \)

\((x \in L_S[\overline{y}^Q]) \); \(b \) is a cofinal branch in \(\overline{y}^Q \) \(b \) has a transitive limit model \(Q_b \) s.t. \(\text{ht}(Q_b) = \overline{z} \).
Clearly L is consistent. Every model M of L is isomorphic to one which is good in the sense that its well-founded core is a transitive ε-structure. Hence we may work only with good models. We then have $x^{M} = x$ for $x \in L_{b}[y_{1}]$. But then b^{M} is really a well-founded cofinal branch in y_{1}; hence $b^{M} = b$.

By the completeness theorem for countable admissible it follows that:

$\forall \, b \in b \implies L = \{ x \in b \}$. Hence $b \in \bigcup \bar{V}$.

Contr! QED (Case 1.1)

Case 1.2 y_{1} has another well founded cofinal branch.

By 56 and the minimality of $h^{+}(Q_{b})$, Q_{b} has the form J_{δ}^{E}, where $N = J_{\delta}^{E}$, $\delta = \sup_{i \leq \delta} y_{i}$ and $N = \bigcup_{i < \delta} J_{\delta}^{E}$. Moreover δ is Woodin in Q_{b} if $\delta > \delta$.

Claim 1 \bar{R}_{X} is not a proper segment of Q_{b}.

Suppose not. Then there is no truncation on the main branch to \bar{R}_{X}, since
otherwise \(\overline{R}_x \) would be uncounted. Hence \(h^+ (\overline{R}_x) = \text{ann} \cap \overline{V} > h^+ (Q_b) \), Contrad!

Claim 2 \(Q_b \) is a segment of \(\overline{R}_x \).

Suppose not. There is \(n \) s.t. \(5 < n \leq 2 \) and \(E_{\overline{R}_x} \neq \emptyset \), where \(5 \) is round in \(\text{ann} \cap \overline{V} \). At follows easily that \(\overline{R}_x \) is not \(1 \)-small. Contrad! \(\Box \) QED (Claim 2).

But then \(Q_b \) is a monotone in \(V_\delta \). \(Q_b \) is a simple iterate of \(Q \), since otherwise \(Q_b \) could not be a proper segment of \(\overline{R}_x \). Hence \(\overline{R}_x \) is not a simple iterate of \(\overline{R} \). Contradiction! Hence \(\overline{x}_b^Q : Q \xrightarrow{\delta} Q_b \) and \(Q \) is a monotone in \(V \). Contrad! \(\Box \) QED (Case 1.2)

Case 2 Case 1 fails. (Hence \(\overline{x} = \overline{x} \).)

We repeat an argument of Woodin. Let \(F = \{ \gamma \in \overline{V} \text{ which are admissible in } \gamma \} \). For \(\gamma \in F \).

Let \(L_\gamma = L_\gamma \gamma \). \(\overline{y}_\gamma \) be the following theory in the infinitary language of \(L_\gamma [\gamma \overline{q}] \).
Predicates: $\varepsilon_1 = \cdot$, Constants $\bar{x} \in L_\bar{\theta}[\bar{YQ}]$.

and b^*. Axioms ZF^-, $\forall \bar{\sigma} \sigma (\exists \bar{x} \bar{\sigma} \rightarrow \forall \bar{z} \bar{\sigma} \exists \bar{z} \bar{\sigma})$

($x \in L_\bar{\theta}[\bar{YQ}]$), b^* is a cofinal well-founded branch through \bar{YQ}, $\bar{z} \in Qb^* (\exists < \bar{x})$.

Clearly $L_{\bar{\theta}}$ is consistent. By Ville's Lemma $L_{\bar{\theta}}$ has a good model \bar{Q}

where well-founded core has rank

exactly \bar{x}. (As above, good means

that the well-founded core is a transitive

\in-model.) Let $b_\bar{y} = b^\bar{Q}$. Then

$b_\bar{y}$ is a cofinal branch through \bar{YQ}

and $\bar{Q}_\bar{y} = (Qb^*)^{\bar{Q}}$ is a good limit

model whose well-founded core has

rank exactly \bar{y}. But then $b_\bar{y} \neq b_{\bar{y}}$, for $\bar{x}, \bar{y} \in \bar{\Gamma}$, $\bar{x} < \bar{y}$.

Repeating some arguments from §6 we see

that if $\bar{\sigma} = \sup \bar{\nu}_i$ and $N = \bar{\sigma}_\bar{E} =

\bigcup_{\bar{i} < \bar{x}} \bar{E} \bar{\nu}_i$, then $\bar{\sigma}$ is Woodin

in $\bar{E}^\bar{Q}$. But this holds for arbi-

trarily large $\bar{\nu} \in \bar{\nu}$. Hence

$\bar{\sigma}$ is Woodin in $L_{\bar{\theta}}^{\bar{E}^\bar{Q}}$, where $\bar{\theta} = \text{On}(\bar{V})$.
Let $\sigma(E) = E'$, $\sigma(\delta) = \delta'$. Then δ' is Woodin in L^E', hence in L^E, since E' is inaccessible. Hence by A1, T_θ is closed under $\#$.
Hence \overline{T} is closed under $\#$. Now let $ht(Q_b) = \bar{3}$ and let $\bar{\delta} > \bar{3}$ be admissible in $\overline{y\bar{a}}$. Let $\overline{L} = L_{\bar{\delta}, \bar{3}, \overline{y\bar{a}}}$ be as in Case 1.2. Then \overline{L} is consistent. $T_\bar{\delta}$ is the first indiscernible for $L[\overline{y\bar{a}}]$ given by $(y\bar{a})^\#$, then $L[\overline{y\bar{a}}] \models L[\overline{y\bar{a}}]$. Hence there are $\bar{\delta}, \bar{\delta} < \bar{\delta}$, $\overline{L} = L_{\bar{\delta}, \bar{\delta}, \overline{y\bar{a}}}$ is consistent.
Let \overline{M} be a good model of \overline{L} and let $\overline{b} = b^{\overline{M}}$. Then \overline{b} is a cofinal well founded branch through $\overline{y\bar{a}}$ and $ht(Q_{\overline{b}}) = \bar{3} < \bar{\delta}$.
Contradiction!

QED (Theorem 7)
We recall that M was called a weak mouse iff whenever $\Vdash \exists^+ \mathcal{A} \subseteq M$ and \mathcal{A} is countable, then \mathcal{A} is countably iterable. Call M a very weak mouse iff every such \mathcal{A} is countably normally iterable.

Then:

Corollary 7.1 Every very weak mouse is a weak mouse in V_α.

Hence:

Corollary 7.2 Every very weak MS-mouse is a weak mouse.

We believe that these facts should be provable without A1-A3, but don’t know how.
The condition A3 was imposed only to ensure enough inaccessible cardinals to verify the background conditions for the construction of K^c. As mentioned in §2 of this addendum, we can get by with a weaker background condition if we are willing to work with MS-mice. Thus it would seem that we can prove Thm 5 for the K^c of MS-mice without use of A3. However, we also made use of A3 in proving Lemma 5.1. It would be natural to prove Lemma 5.1 replacing (i') by (i'') $d = \overline{v}_d$ and cf$(d) > \omega$. The rest of the proof would then be essentially as before. However A don't see how to prove even this version of Lemma 5.1 without adopting some new assumption in place of A3. The following will do: A4. A2 holds for $M \subseteq V_\theta$ if θ is a 1-small premouse.

(As particular, this will hold for $M = K^c$.)
The details are left to the reader. We then get:

Thm 8 Assume A1, A2, A4. Let Kc be the Kc of MS-mice. Then Kc is universal wrt. 1-small premouse in Vθ.

We would expect this to yield a version of Corollary 6.1 for MS-mice. We must, however, be careful in formulating. At Q ∈ Vθ is a normally iterable 1-small premouse in Vθ; then Thm 8 shows that Q is normally iterates up to a normal iterate Q′ of a sound MS-mouse ∃Q. Let π : Q → Q′ be the iteration map. Q′ itself may not be MS-iterable and hence the existence of π does not entitle us to assert that Q in MS-iterable. At can be shown, however, that core (Q′) is an MS-mouse. Suppose now that Q′ is a solid core mouse. Then π(ρ) = ρ′, and π induces a map
\[\Pi : Q \to \text{core}(Q') \]. Hence \(Q \) is MS-iterable. Thus we get:

Cor 8.1 Assume \(A_1, A_2, A_4 \). Let \(Q \in V_\theta \) be a normally iterable 1-small solid core mouse in \(V_\theta \). Then \(Q \) is an MS-mouse in \(V_\theta \).

Similarly, modifying the proof of Thm 7

Thm 9 Assume \(A_1, A_2, A_4 \). Let \(Q \) be a countable 1-small solid core mouse which is countably normally iterable. Then \(Q \) is an MS-mouse in \(V_\theta \).

Hence:

Thm 10 Assume \(A_1, A_2, A_4 \). Let \(Q \) be a very weak solid core mouse. Then \(Q \) is a weak MS-mouse.