§3. The fine structure of the constructible hierarchy

Let u be a transitive set which is closed under the formation of finite sets (thus, in particular, u is closed under n-tuples and $\text{Emb}_u \subseteq u$). In this section, we attempt to determine the p.i. closed levels $\alpha \in L_\alpha[u]$ of the constructible hierarchy over u at which interesting things happen, for instance when is $L_\alpha[u]$ admissible? It turns out that this is the case iff for no $\beta < \alpha$ there is a map Δ_β map of $L_\beta[u]$ onto $L_\alpha[u]$ exists. As a corollary we get:

$\lambda \in L_\lambda[u] \text{ is admissible} \iff \lambda \rightarrow \omega_1^\omega$.

(Corollary: $\lambda \not\rightarrow \omega_1$ is a singular cardinal and $\rho \in \lambda$, then $L_\rho[u]$ is admissible.)
Throughout this section, \(u \) will be a fixed transitive set which is closed under finite subsets. \(L_d[u] \) will always be p.r. closed. 'p.r.' will always mean 'p.r. in parameters from \(uu \cup \{u\} \)'. We begin with an observation on p.r. functions:

Lemma. There is a p.r. function \(\gamma(x,y) \) which maps \(uu \times uu \) onto \(L_d \).

Proof.

There is a p.r. map \(\exists! : On^2 \rightarrow On \)

s.t. \(\beta, \delta \leq \langle \beta, \delta \rangle \) (hence the inverses \(l, r \), defined by \(d = \langle l(d), r(d) \rangle \) are p.r.). To see this, we order \(On^2 \) by:

\[\langle d, \beta \rangle \mathrel{R} \langle \xi, \delta \rangle \iff \max(d, \beta) < \max(\xi, \delta) \]

\[v. \max = \max \land d < \xi. v. \]

\[v. \max = \max \land d = \xi \land \beta < \delta. \]
Let \(\beta : \mathbb{R} \rightarrow \mathbb{E} \). To see that \(\langle \rangle \) is p.r., we first define the function
\(\langle \langle 0, \beta \rangle \mid \beta \in \mathbb{E} \rangle \) by:

\[\langle 0, \beta \rangle = \sup \{ \langle 0, \nu \rangle + \nu \cdot 2 \mid \nu < \beta \} \]

and then set:

\[\langle \nu, \beta \rangle = \langle 0, \beta \rangle + \nu \text{ if } \nu < \beta \]

\[\langle 0, \nu \rangle = \langle 0, \beta \rangle + \beta + \nu \text{ if } \nu \leq \beta \]

We can represent n-tuples of ordinals by:

\[\langle \beta_1, \ldots, \beta_m \rangle = \langle \beta_1, \langle \beta_2, \ldots, \beta_m \rangle \rangle. \]

Define a function \(h(\varepsilon, y) \) by:

\[h(\langle \varphi, m, i \rangle, x) = \varphi \left(\frac{\langle \bar{v}_i, \ldots, \bar{v}_m \rangle}{\bar{L}_{\xi_1[u]}, \ldots, \bar{L}_{\xi_m[u]}} \right) \]

if \(\varphi \in \text{Fml}_{u}, m < \omega, i < \omega, \)

\[i = \langle i_1, \ldots, i_m \rangle, x = \langle \xi_1, \ldots, \xi_m \rangle. \]

\[h(\varepsilon, y) = 0 \text{ if otherwise}. \]
Then \(h \) is a p.r. function which maps \(\mathbb{N} \times \mathbb{N} \) onto the set of \(\Sigma_0 \) formulae \(\varphi \) containing only the constants \(\alpha (x \in \mathbb{N}) \), \(\beta x [u] \) (\(\forall \mathbb{N} \)).

We have seen that every \(y \in \mathbb{L}_d [u] \) has the form:

\[
y = \{ x \in \mathbb{L}_\beta [u] \mid \models \varphi (\gamma[\gamma/x]) \}
\]

where \(\beta \leq d \) and \(\varphi \) is such a formula. Hence, we may define the desired function \(\gamma \) by:

\[
\gamma (x, \beta, \varphi) = \{ z \in \mathbb{L}_\beta [u] \mid \models h (x, \gamma (\gamma[z])) \}
\]

\(\Box \) E D.
Def: The function $r(\bar{x})$ uniformly
the relation $Ry \bar{x}$ iff $\text{dom}(r) = \text{dom}(R)$
and $\forall \bar{x} \ (\forall y \ Ry \bar{x} \iff Rr(\bar{x}) \bar{x})$.

A structure $M = \langle \text{IM1}, e, A_1, \ldots, A_n \rangle$ is
called Σ_m-uniformizable $(m \geq 1)$
iff each Σ_m relation R s.t.
$\text{rng}(R) \subseteq \text{On}$ is uniformizable by
a Σ_m function.

(This motion should really be
called ‘ordinal uniformizability’).
We use it in preference to the stronger
motion because the latter may fail
for lack of a nice well-ordering of
IM1.)
Thm. 1.

Let \(\Sigma \) uniformizable.

Proof. Let \(R(\nu, \vec{x}) \) be a \(\Sigma \) relation s.t. any \((R) \subset \mathbb{N} \). Let

\[
R \nu \vec{x} \iff \forall y \exists y \in R(\nu, y) \vec{x},
\]

where \(\nu \in \Sigma_0 \). Set:

\[
Q(\nu \exists \vec{x}) \iff \forall y \exists y \in R(\nu, y) \vec{x}.
\]

Then \(Q \) is p.r. (in the parameters entering the \(\Sigma_1 \) definition of \(R \) and

\[
R \nu \vec{x} \iff \forall \nu \exists \vec{x}.
\]

Set:

\[
Q(\vec{x}) \equiv \mu \exists \vec{x} \ Q \nu(\vec{x}) \nu(\vec{x}) \vec{x}
\]

(where \(\nu(\vec{x}), \nu(\vec{x}) \vec{x} = \vec{x} \)). Then

\[
Q \in \Sigma_1 \quad \text{since:}
\]

\[
R = Q(\vec{r}) \iff Q \nu(r(\vec{x})) \vec{x}
\]

\[
\land \exists \vec{d} > \vec{r} \ Q \nu(r(\vec{x})) \vec{x}.
\]

Hence, \(r(\vec{x}) = \nu Q(\vec{x}) \in \Sigma_1 \) function which uniformizes \(R \): \(\Box \).
(Note: By the proof of Thm 1, we may take \(r \) as being \(\Sigma_1 \) in the same parameters which enter the \(\Sigma_1 \) definition of \(P_\lambda \)).

Def. \(\exists \Sigma_m \subseteq L_d[u] \) ("\(\exists \Sigma_m \)-elementary submodel of \(L_d[u] \)) \(\iff \)
\(\iff \) \(u \cup \{ u \} \subseteq X \) and for every \(\varphi \in \operatorname{Fml}_{\Sigma_m}^X : \)
\(\models \varphi \iff \models \varphi \quad \langle X, \varepsilon \rangle \quad \langle L_d[u], \varepsilon \rangle \)

In other words, \(\exists \Sigma_m \subseteq L_d[u] \) iff \(u \cup \{ u \} \subseteq X \) and for each \(R \in L_d[u]^{m+1} \) which is \(\Sigma_1 \) in parameters from \(X \):

\(\forall y \exists y \models R \quad \iff \quad \forall y \in X \quad \exists y \models R \quad \text{for } \overline{x} \in X. \)
In particular, if $X \subseteq \Sigma_{a_1}$, then X is closed under Σ_1 functions definable with parameters from X. Since $p.r.$ functions are Σ_1 in the parameter ω, X is $p.r.$ closed.

Clearly, $\varepsilon I X$ satisfies the axiom of extensionality, since, if $x, y \in X$ and $x \neq y$, then $\forall z (z \in x \iff z \in y)$, hence $\forall z \in X (z \in x \iff z \in y)$. Therefore there exists a map π of X onto a transitive set ω s.t.

$$\pi : \langle x, \varepsilon \rangle \leftrightarrow \langle u, \varepsilon \rangle,$$

$\vdash \varphi$ in a Σ_1 formula (without constants), then

$$(+) \quad \vdash \varphi(x) \iff \vdash \varphi(\pi(x)) \quad \text{for } x \in X.$$

\vdash
We may conclude:

(++) \(\pi f(\overline{x}) = f(\overline{\pi(x)}) \) for all p.n. \(f \), since, by the stability lemma, each p.n. \(f \) has a \(\Sigma_1 \) definition which is absolute with respect to p.n. closed domains, i.e. there is a \(\Sigma_0 \) formula \(\varphi_f \) (with constants \(\kappa \) (\(\kappa \in \nu \cup u \cup u \cup \omega \)) s.t.

\[
y = f(x) \iff \forall z \in \varphi_f(\overline{z}, y, \overline{x}) \text{ for all } y, x
\]

\[
y = f(x) \iff \forall z \in L_d[u] \models \varphi_f(\overline{z}, y, \overline{x})
\]

for \(x \in L_d[u] \).

Hence, if \(\overline{x} \in X \), we have:

\[
y = f(x) \iff \forall z \in L_d[u] \models \varphi_f(\overline{z}, y, \overline{x}) \leq_{L_d[u]}
\]

\[
\iff \forall z \in u \models \varphi_f(\overline{z}, \overline{\pi(y)}, \overline{\pi(x)})
\]

\[
\rightarrow \overline{\pi(y)} = \pi f(\overline{\pi(x)}). \quad \text{QED (++)}
\]

(Note (++) implies that \(u \in \text{p.n. closed} \))
By (++) we get:

Lemma 2: \(X \leftrightarrow L_d[u], \pi : \langle x, \varepsilon \rangle \leftrightarrow \langle \nu, \varepsilon \rangle \)

and \(\omega \cup \nu \subseteq \nu \), then \(V_\beta \leq \alpha \quad \omega = L_\beta \).

Proof:
Since \(\langle L_\nu[u] \mid \nu \in \text{On} \rangle \) is p.r., we have

by (++) \(: \pi L_\nu[u] = L_{\pi(\nu)}[u] \).

For all \(x \in X \), we have:

\(V_\nu \in L_d[u] \quad x \in L_\nu[u] \), hence

\(V_\nu \in X \quad x \in L_\nu[u] \), hence

\(V_\nu \in X \quad \pi(\nu) \in L_{\pi(\nu)}[u] \).

Let \(\beta \) be the least ordinal not in \(\nu \).

Then \(\beta = \pi \text{ "on } \cap X \). Hence:

\(\nu = \pi \text{ "on } X = \bigcap_{\nu \in X} L_{\pi(\nu)}[u] = L_\beta[u] \quad \omega \in \Omega \)
Using the fact that $L_\beta[u] \subset L_d[u]$, we can strengthen (++) to:

Lemma 3 Let X, π be as in Lemma 2 and let f be a function which is Σ_1 without parameters (or at most parameters $x \in X$ s.t. $\pi(x) = x$). Then, whenever $\overrightarrow{x} \in X$ and $f(\overrightarrow{x})$ is defined, so is $f(\pi(\overrightarrow{x}))$ and

$$\pi f(\overrightarrow{x}) = f(\pi(\overrightarrow{x})) .$$

Proof.
Let φ be a Σ_1 formula defining f in $L_d[u]$ (containing at most constants x s.t. $\pi(x) = x$). Then

$$y = f(\overrightarrow{x}) \iff \models_{L_d[u]} \varphi(y, \overrightarrow{x})$$

$$\iff \models_{L_\beta[u]} \varphi(\pi(y), \overrightarrow{x})$$

$$\iff \models_{L_d[u]} \varphi(\pi(y), \overrightarrow{x})$$

$$\iff \pi y = f(\pi(\overrightarrow{x})) .$$

Q.E.D.
Lemma 4. There is a Σ_1 function h s.t. $\text{dom}(h) \subseteq u \times L_d[u]$ and
\[\forall x \in L_d[u]. \forall y \in L_u. \forall z \in L_d[u]. h((x, y, z)) \leq L_d[u]. \]

Proof.
Define $r(z, x)$ by:
\[r(\langle \psi, i, j \rangle, x) = \varphi(\langle \psi, i, j \rangle/u, x) \]
if $\varphi \in \text{Fml}_u^{\Sigma_1}$, $i, j < u$, $i \neq 1$.
\[r(z, x) = 0 \text{ otherwise}. \]
Then r is p.r. and maps u onto $\text{Fml}_u^{\Sigma_1}$.

Note that, since $\models u$ is p.r., $\varphi \in L_d[u], \varphi \in \Sigma_1$. Set:
\[R \varphi \iff \models u \varphi(\langle \psi, i \rangle/u). \]
and let r uniformize R. Let Σ be Σ_1 in the parameter p and set:
\[h(\langle z, w \rangle, x) = \varphi(z, x, r(z, w, \langle z, x, p \rangle)) \]
i.e. $\langle z, w \rangle \in u$; (otherwise undefined).
Clearly, \(h \in \Sigma_1 \).
Let \(x \in L_d[u] \). Set \(X = h^{\circ}(u \times \{x\}) \).

Claim \(X \subseteq L_d[u] \)

Let \(A \subseteq L_d[u] \) be \(\Sigma_1 \) in parameters from \(X \). We must show:

\[V_y \mathcal{A} y \leftrightarrow V_y \mathcal{E} x \mathcal{A} y. \]

Let \(\bar{z} \subseteq x \) be the parameters of \(A \);
since \(\bar{z}_i = h(w_i, x) \) (\(w_i \in u \)), \(A \) is \(\Sigma_1 \) in parameters from \(uu \{u, x, p\} \).
Assume \(A \mathcal{A} y \). Then \(y = \gamma(z, \nu) \) for some \(z \in u, \nu < d \). The set \(A' = \{ \nu \mid A \gamma(z, \nu) \} \) is \(\Sigma_1 \) in parameters from \(uu \{u, x, p\} \). Hence there is a \(\varphi \) with constants from \(uu \{u, x, p\} \) s.t.

\[A' \nu \leftrightarrow \Sigma^1 \varphi(x). \]

Set \(y' = \gamma(z, r(\varphi)) \). Then \(A \mathcal{A} y' \).
But \(y \in X \), since, letting \(\varphi = \Sigma(w, \langle x, p \rangle) \),
\[
y = \gamma(z, \varphi(\Sigma(w, \langle x, p \rangle))) = h(k, v, x)
\]

Thm 2 The following conditions are equivalent:

(i) There is a \(\Sigma_1 \) a \(u \) s.t. \(a \notin \Lambda_2[u] \)

(ii) There is a \(\Sigma_1 \) map from a subset of \(u \) onto \(\Lambda_2[u] \).

Proof.

(iii) \(\rightarrow \) (i) is trivial, since \(a = \{ x \mid x \notin f(x) \} \) is \(\Sigma_1 \) but not an element of \(\Lambda_2[u] \),

for if not, we should have:

\[
x \in a \iff x \notin f(x)
\]

for some \(z \); hence:

\[
x \notin a \iff z \notin a.
\]
(i) → (ii). Let \(a \in u \in \Sigma_1 \), \(a \notin L_2[u] \).

Let \(a \in \Sigma_1 \) in \(x \). Set \(x = h^{"}(u \times \{x\}) \).

Let \(\pi : \langle x, e \rangle \leftrightarrow \langle L_\beta[u], e \rangle \). Then, if \(\varphi(x, z) \in \Sigma_1 \), the definition of \(a \), we have:

\[
\begin{align*}
\varphi(x, z) & \iff L_2[u] \\
& \iff L_\beta[u] \\
& \iff \varphi(x, \pi(x)).
\end{align*}
\]

Hence \(a \in \Sigma_1 \in L_\beta[u] \). But this means that \(\beta = 2 \), since otherwise \(a \in L_{\beta+1}[u] \subset L_2[u] \). Let \(h \) be \(\Sigma_1 \) in the parameter \(p \); in particular let:

\[
y = h(x, z) \leftrightarrow H(p, y, z, x),
\]

where \(H \in \Sigma_1 \) without parameters.

Set \(h'(z, x) = y \leftrightarrow h(x, \pi^{-1}(z)) \beta_{y+1}(+1), \)

(\(y \leftarrow h(z, \pi^{-1}(x)) \)) \(\iff (p(x), \pi^{(y)}, \pi(x)) \).

(\(y \leftarrow h(z, \pi^{-1}(x)) \)) \(\iff (p(x), \pi(y), \pi(x)) \).
Set: \(h'(x, x) \approx_{\pi} h(x, \pi^{-1}(x)) \). By (1):
\[\pi(y) = h'(x, \pi(x)) \iff H(\pi(p), \pi(y), x, \pi(x)) \]
Thus, \(h' \in \Sigma_1 \) in \(\pi(p) \), and
\[h' \cup \{ \pi(x) \} = \pi' \quad X = L_d[u] \]
Set \(f(x) = h'(x, \pi(x)) \). Then \(\text{dom}(f) \subseteq u \), \(f \in \Sigma_1 \) and \(f'' u = L_d[u] \). QED

As a corollary of Thm 2, we obtain:

Thm 3 The following conditions are equivalent:

(a) There is a \(\Sigma_1 \) set \(a \subseteq u \) s.t. \(a \notin L_d[u] \)

(b) There is a \(\Sigma_1 \) map of \(u \) onto \(L_d[u] \)

Proof:

\((b) \Rightarrow (a) \) follows as before

We now prove \((a) \Rightarrow (b) \)
By Thm 2, there exists a \(\Sigma_1 \) map \(f' \) s.t. \(\text{dom}(f') \subseteq u \) and \(f'^{-1}u = L_d \{u\} \). We must replace \(f' \) by a \(\Sigma_1 \) map which is defined on the whole of \(u \). Since \(A \in \Delta_1 \), we have:

\[z \epsilon a \iff \forall y \ A_0 y z \]
\[z \epsilon a \iff \forall y \neg A_1 y z, \]

where \(A_0, A_1 \) are \(\Sigma_0 \). In particular,

\[\forall z \epsilon u \forall y \ (A_0 y z \lor A_1 y z). \]

Set \(G y z \rightarrow A_0 y z \lor A_1 y z. \)

Set \(G y z \iff \forall y \in L_y \{u\} (A_0 y z \lor A_1 y z). \)

Set \(g \) uniformize \(\ast G \). Then \(g''u \) is unbounded in \(L_d \{u\} \) since if \(g''u \in L_y \{u\}, \ y < x \), we would have \(a \in L_{y+1} \{u\} \subseteq L_d \{u\}. \)
Since $f' \in \Sigma_1$, we have:

$$y = f'(x) \iff \exists z \ F z y x,$$

where $F \in \Sigma_0$. Set:

$$\bar{f}(y, x) = \begin{cases} y & \text{if } \forall z \in L_\Sigma[u] \ F z y x \\
& \text{and } y \in L_\Sigma[u] \\
0 & \text{otherwise} \end{cases}$$

Then \bar{f} is p.r.

Set $f((z, w)) = \bar{f}(y(z), w)$ if $(z, w) \in u$

$f(x) = \emptyset$ otherwise.

Then $f'' u = f' ' u = L_\Sigma[u]$. QED
Non projectible admissible sets

Def Call \(M = \langle \IMI; e, A_1, \ldots, A_m \rangle \) non projectible iff \(M \) is admissible and satisfies the stronger replacement axiom:

\[\forall u \forall v \forall x \exists u' (\forall y \varphi \leftrightarrow \forall y v e u \varphi) \]

where \(\varphi \) is in \(\Sigma_0 \).

One easily establishes the following Lemma: Let \(M \) be admissible; then the following are equivalent:

(a) \(M \) is non projectible

(b) \(x \in M \to x \cap A \in M \) for every \(\Sigma_1 \) set \(A \).

(c) \(x \in M \to \exists^c x \in M \) for every \(\Sigma_1 \) map \(f \).
We wish to characterize the \(\delta \) n.t.
\(L_d[u] \) in mon projectible. Our major
tool in this endeavour will be:

Lemma 6 Let \(h \) be as in Lemma 4.
Let \(h \) be \(\Sigma_1 \) in the parameter \(x \).
Let \(h \in L_d[u] \) be transitive.
Let \(u \subseteq L_d[u] \) be transitive, closed
under finite sets, and let
\(u \cup \{ x \} \subseteq u \). Then
\[V \delta \subseteq x \quad h^\infty \cup u = L_\delta [u]. \]

Proof. Let \(X = h^\infty \cup u \).
Obviously, \(X \subseteq L_d[u] \). Let
\(\pi : X \rightarrow L_\delta [u] \). Since \(\pi \upharpoonright u = \text{id} \upharpoonright u \),
we have: \(\pi h(x, u) = h(x, u) \) for
\(x \in u \), \(u \subseteq u \). Hence \(\pi \upharpoonright X = \text{id} \upharpoonright X \); \(\pi X = h^\infty \cup X = L_\delta [u] \).

QED
Thm 4. \(L_d[u] \) is mon projectible if there is a normal function \(\langle d, \nu < \lambda \rangle (\text{Lim}(\lambda)) \) s.t. \(d = \nu \cdot p \cdot d \) and \(L_{d, \nu}[u] \subseteq L_d[u] \) for \(\nu < \lambda \).

Proof:

(\(\leftarrow \)) Let \(\varphi \) be a \(\Sigma_0 \) formula. Let \(\nu \in L_d[u] \). Then \(\nu \in L_{d, \nu}[u] \) for some \(\nu \). For all \(x \in u \), we have:

\[
\models_{L_d[u]} \forall y \varphi(y, x) \iff \models_{L_{d, \nu}[u]} \forall y \varphi(y, x).
\]

Hence, for \(w = L_{d, \nu}[u] \):

\[
\models_{L_d[u]} A \times \nu _{\in u} (\forall y \varphi \iff \forall y \exists w \varphi).
\]

The remaining admissibility axioms hold trivially by the fact that \(d \) is a limit ordinal.
(→) Since the set of \(\beta < \alpha \) n.t. \\
\(L_\beta[u] \leq \subset L_\alpha[u] \) is closed, we need only show that it is unbounded.

Let \(\alpha < \beta \). Claim: There is \(\beta < \alpha \) n.t. \(\gamma < \beta \) and \(L_\beta[u] \leq \subset L_\gamma[u] \).

Let \(\gamma \) be a limit ordinal n.t. \(\gamma \in L_\alpha[u] \), where \(\gamma \in \Sigma_1 \), and let \(\sigma > \gamma \) be a limit ordinal n.t. \(x \in L_\gamma[u] \), where \(h \in \Sigma_1 \) in the parameter \(x \). By Lemma 5:

\[
\forall x (L_\gamma[u]) = L_\beta[u] \leq \subset L_\gamma[u]
\]

for some \(\beta < \alpha \). But, by the non-projectibility of \(L_\alpha[u] \):

\[
\forall (L_\gamma[u]) \in L_\delta[u]
\]

hence \(\beta < \alpha \). QED
Thm 5 \(L_d[u] \) is non-projectible if there is no \(\Sigma_1 \) function which, for some \(\delta < d \), maps a subset of \(L_y[u] \) onto \(L_d[u] \).

proof.

\((\rightarrow)\) trivial

\((\leftarrow)\) Let \(L_d[u] \) be projectible. Then there is a \(\Sigma_0 \) relation \(R \) and a \(v \in L_d[u] \) s.t. for each \(\nu < d \) there is an \(x \in v \) with:

\[\forall y \exists y_x \text{ but } \forall y \in L_y[u] \neg y_x, \]

Let \(r \) uniformize the relation:

\[\forall y \in L_y[u] \ y_x. \]

Then \(y \upharpoonright \nu \) is unbounded in \(d \).

Let \(h \) be as in Lemma 4. Let \(h, \)

\(x \) be \(\Sigma_1 \) in the parameter \(x \)

and let \(u, x \in L_y[u] \), where
γ is a limit ordinal. By Lemma 5:

$h'' \cup \mathcal{L}_\beta [u] = \mathcal{L}_\beta [u] \leq \mathcal{E}_\beta \mathcal{L}_\beta [u]$.

In particular, $\gamma'' \cup \mathcal{L}_\beta [u]$; hence $\beta = \delta$, since $\gamma'' \cup \mathcal{L}_\beta [u]$ is unbounded in δ.

Set $f(\langle x, y \rangle) = h(x, y)$ for $x \in \mathcal{L}_\beta [u]$, $y \in \mathcal{L}_\beta [u]$. Then f is \mathcal{E}_β; $\text{dom}(f) \subseteq \mathcal{L}_\beta [u]$ and $\text{ran}(f) = \mathcal{L}_\beta [u]$.

QED

We now come to the Thm announced at the outset of this section:

Thm 6 \(\mathcal{L}_\beta [u] \) is admissible if and only if there is no Δ_1 function which, for some $\gamma < \delta$, maps $\mathcal{L}_\gamma [u]$ onto $\mathcal{L}_\beta [u]$.

Proof:

(\Rightarrow) trivial
(≤) Let \(L_{d}[u] \) not be admissible. Then there is a \(\Sigma_{d} \) relation \(R \) s.t.
\(\forall y \, \forall x \, \forall y \, Ryx \) but for some \(u \in L_{d}[u] \),
there is no \(z < d \) with \(\exists x \in \forall y \, \forall x \in L_{d}[u] \, Ryx \). Let \(q \)
uniformize the relation \(\forall y \in L_{d}[u] \, Ryx \).

Then \(x \) is unbounded in \(d \), \(x \in \Sigma_{d} \) and defined everywhere. By
Thm 5, there is a \(s < d \) and
a \(\Sigma_{d} \) f s.t. dom \((f) \subset L_{d}[u] \)
and \(s \forall y \), \((f) = L_{d}[u] \). Let:
\[
\forall y = f(x) \leftrightarrow \forall z \, Fz y x,
\]
where \(F \) is \(\Sigma_{0} \). Set:
\[
\tilde{f}(y, x) = \exists \{ y \mid y \in L_{d}[u] \text{ and } \forall z \in L_{d}[u] \, Fz y x
\}
\]
Then \(\tilde{f} \) is p.l.s.
Take \bar{f} as a limit ordinal λx.

Set: $\bar{f}(\langle x, y \rangle) = \bar{f}(\alpha(x), y)$.

Then \bar{f} is defined everywhere and $\bar{f}'' \cup L_{\bar{\lambda}}[\alpha] = f'' \cup L_{\bar{\lambda}}[\alpha]$. At α is a limit ordinal and $\alpha \in L_{\bar{\lambda}}[\alpha]$, then \bar{f} maps $L_{\bar{\lambda}}[\alpha]$ onto $L_{\bar{\lambda}}[\alpha]$. QED
The projectum

Def \(d^* = \inf \beta \) s.t. there is a \(\Sigma_1^1 \) function mapping a subset of \(\beta \) onto \(L_\beta [u] \). \(d^* \) is called the projectum of \(d \).

By Thm 5, \(L_d [u] \) is non-projectible iff \(d = d^* \).

Thm 4: \(d^* > 0 \), then \(L_{d^*} [u] \) in mon projectible.

Proof: \[d^* = d, \quad L_{d^*} [u] \]

If \(d^* = d \), the theorem is trivial.

Now let \(d^* < d \). There is no \(f \in L_d [u] \) mapping a \(\epsilon < d^* \) onto \(d^* \), for then: \[g(\langle x, y \rangle) = \eta (x, f(y)) \quad \text{if} \quad x \in u, \nu < \varepsilon \]
\[g (z) > 0 \quad \text{if not} \]
would map \(L_\varepsilon [u] \) onto \(L_{d^*} [u] \).

By composition, we would obtain a \(\Sigma_1^1 \) map of \(L_\varepsilon [u] \) onto \(L_d [u] \).
But this means that d^* is p.r. closed, for, as we shall show in an appendix, whenever σ is p.r. closed and β is the first p.r. closed ordinal after σ, each $\gamma < \beta$ is 1-1 mappable into σ by a map $f \in L_\beta$. If d^* were not p.r. closed, we should have $\sigma < d^* < \beta \leq d$ for such a pair σ, β; $f \in L_\beta$, hence some $f \in L_\beta \lceil \sigma \rceil \subseteq L_{d^* \lceil \sigma \rceil}$ would map σ onto β. But, since d^* is p.r. closed, we may apply Thm 5 to conclude that $L_{d^* \lceil \sigma \rceil}$ is non-projectible, for otherwise there would be $\sigma < d^*$ mappable onto d^* by an $f \in L_{d^* \lceil \sigma \rceil}$. \square
Σ_m-admissibles

Def $M = \langle IMI, \varepsilon, A_1, \ldots, A_m \rangle$ is called Σ_m-admissible ($m \geq 1$) iff M is admissible and satisfies the replacement axiom:

$$\forall x \forall y \varphi \rightarrow \forall u \forall v \forall x \exists u \forall y \exists v \varphi$$

for Σ_{m-1}-formulas φ.

(Thus, 'admissible' = '\(\Sigma_1 \)-admissible')

Def M is called Σ_m-non-projectible iff M is admissible and satisfies:

$$\forall u \forall v \forall x \exists u \left(\forall y \varphi \leftrightarrow \forall u \exists v \varphi \right)$$

for Σ_{m-1}-formulas φ.
We can readily establish:

(1) $M \in \Sigma_m$ admissible iff $\langle M, \frac{\Sigma_m}{M} \rangle$ is admissible

(2) $M \in \Sigma_m$ non-projectible iff $\langle M, \frac{\Sigma_m}{M} \rangle$ is non-projectible

(3) If $M \in \Sigma_{\alpha}$ admissible, then $P \in \Sigma_{\alpha}$ iff $P \in \Sigma_{\alpha}$ in Σ_{α} relations.

Thus, all the theorems of §1 carry over to Σ_{α} admissible. Some of the theorems in this section carry over.

In particular, we shall obtain slightly weaker analogues of Thm 4–Thm 6.
Lemma 7. If \(\langle L_2[u], A \rangle \) is admissible, then \(\langle L_2[u], A \rangle \) is \(\Sigma_2 \)-uniformizable.

Proof.
Let \(R \) be \(\Sigma_1 \), any \((R) \in d \).
Let \(R \supseteq \forall y \exists \exists z. P_y \lor \exists z \),
where \(P \in \Pi_2 \).
Set: \(p(x) \equiv \forall y \exists z. P_x \exists z \).
where \(\langle l(x), r(x) \rangle = \sigma \).
Then \(p \in \Sigma_2 \), since:
\[
\forall y = p(x) \iff \forall y \exists \exists z. P_x \exists z \exists z \ \text{and}
\forall x \in \Pi_2 \\exists \exists z. P_x \exists z \\
\land \forall z \exists x. P_x \exists z \\
\land \forall z \exists x. P_x \exists z \\
\land \forall z \exists x. P_x \exists z \\
\Sigma_2
\]
Set: \(r(x) \equiv l(p(x)) \). Then \(r \) uniformizes \(R \).
QED
(Note: This proof also goes then on the assumption \(\Sigma_4 \in \Sigma_4 \in \Sigma_2 \)).
Since, if \(L_d[u] \) is \(\Sigma_m \)-admissible, \\
\(\langle L_d[u], \Sigma_m^{m-1} \rangle \) is admissible and \\
\(\Sigma_m(\langle L_d[u], \Sigma_m^{m-1} \rangle) = \Sigma_m(L_d[u]) \), \\
we get:

Corollary 7a \(\vdash \) \(L_d[u] \) is \(\Sigma_m \) \\
admissible, then \(L_d[u] \) is \(\Sigma_{m+1} \) \\
uniformisible.

Lemma 8 \(\vdash \) \(L_d[u] \) is \(\Sigma_m \)-uniformisible, then there is a \(\Sigma_m \) \\
function \(h \) s.t. \(\text{dom}(h) \subseteq u \times L_d[u] \) \\
and \\
\[\forall x (x \in h^n(u \times \emptyset) \subseteq L_d[u]). \]

Lemma 8 is proved exactly like
Lemma 4, which is a special

case of it.
Lemma 2 obviously holds with E_m in place of E_1 \((m \geq 2)\), since $X \leq_{E_m} L_d[u]$ implies $X \leq_{E_1} L_d[u]$.

Lemma 3 does not hold, but we do get the weaker form:

\underline{Lemma 9} \quad \forall X \leq_{E_m} L_d[u] \quad \text{and} \quad \pi : \langle X, e \rangle \overset{\sim}{\leftrightarrow} \langle L_d[u], e \rangle,

Then for every E_1-f (which is E_1 in parameter $x \in X$ s.t. $\pi(x) = x$):

$$\pi f(\vec{x}) \equiv f(\pi(\vec{x})) \quad \text{for} \quad \vec{x} \in X.$$

The proof is obvious.

Using Lemmas 8, 9 in place of Lemmas 4, 3, we get

\underline{Thm 7} \quad \forall L_d[u] \in E_m \quad \text{uniformly},

then the E_m analogues of Thm 2, Thm 3 hold.
The proofs of Thm 2, Thm 3 can be repeated word for word to obtain Thm 7.

By Lemma 7, then, the Σ_{n+1} analogues of Thm 2, 3 hold whenever $L_d [u]$ is Σ_n admissible.

We shall show later that this result can be greatly strengthened. The hypothesis of Thm 7 is always satisfied. But first we turn to the question of criteria for Σ_n admissibility and non-projectivity.

The Σ_n analogue of Thm 6 does not hold. For, in, letting $L_{\omega_1} [u]$ admits no function mapping an element onto the entire domain, yet
$L_\omega[u]$ is not admissible, since $\langle \omega \mid m < \omega \rangle$ is Σ_2 (understanding ω in the sense of $L[u]$).

The analogues of Thms 4, 5, 6 do hold, however, on the assumption that, for some $\beta < \omega$, $L_\beta[u]$ can be mapped onto each $x \in L_\alpha[u]$ by an $f \in L_\alpha[u]$. Since $L_\alpha[u] = L_\alpha[L_\beta[u]]$, it suffices to prove this for the case $\beta = 0$ ($L_0[u] = u$).

Def: $L_\alpha[u]$ is u-dense iff for all $\delta < \alpha$ there is an $f \in L_\alpha[u]$ mapping u onto δ.
By Lemma 1, \(u \)-density is equivalent to the condition, that \(u \) can be mapped onto each \(x \in L_d[u] \) by an \(f \in L_d[u] \).

Lemma 40 \(\forall X \subset L_d[u] \) in \(u \)-dense and \(X \subset \bigcup_m L_d[u] \), then

\[\forall \beta \leq d \quad X = L_\beta[u] \]

Proof. By Lemma 2 it suffices to show that \(X \) is transitive.

Let \(x \in X \). We wish to show: \(x \subset X \). The statement:

\[\forall f : f \circ u \rightarrow x \]

holds in \(\langle L_d[u], \epsilon \rangle \), hence in \(\langle X, \epsilon \rangle \). Thus there is an \(f \in X \) s.t. \(f \circ u \rightarrow x \). But then \(f(z) \in X \) for each \(z \in u \); hence \(x = f^\prime u \subset X \). Q.E.D
Using Lemma 10 in place of Lemma 6, we can repeat the proofs of Thms 4, 5, 6 to obtain:

(*) If \(L_2[u] \) is \(\Sigma_n \) uniformizable, then the \(\Sigma_n \) analogues of Thms 4, 5, 6 hold.

(The proofs can be repeated word for word)

But this enables us to prove the \(\Sigma_n \) analogues of those Thms outright. We use induction on \(m \). For \(m=1 \) the Thms are proven. Now suppose the Thms to hold for \(m \). Then either \(m \) is admissible, or else the Thms hold trivially for all \(m \geq m \). But if \(m \) is admissible, then by Lemma 7 \(L_2[u] \) is \(m+1 \) uniformizable and the Thms hold for \(m+1 \) by (*).
Thus:

Thm 8 If \(L_\Delta[u] \) is \(u \)-dense, then the \(\Sigma_n \) analogues of Thms 4, 5, 6 hold for \(m \geq 1 \).

\[\ldots \ldots \ldots \]

\underline{u-uniformizability}

Def A function \(\Phi(z, \bar{x}) \) is called a \(u \)-uniformization of a relation \(R_{\bar{x}} \) iff \(\text{dom}(r) = u \times \text{dom}(R) \), \(\text{rng}(r) \subseteq \text{rng}(R) \) and \(\forall y \, R_{\bar{x}} \iff \forall z \in u \, R_{\bar{z}, \bar{x}} \).

Def \(M = \langle \text{IM1}, e, A_1, \ldots, A_m \rangle \) (\(u \)-t. \(u \in M \)) is \(\Sigma_n \) \(u \)-uniformizable iff every \(\Sigma_n \) relation is \(u \)-uniformizable by a \(\Sigma_n \) function.
Until now we have worked with the notion of ordinal uniformizability (i.e., uniformizability of relations with ordinal range) rather than u-uniformizability. However, ordinal uniformizability implies u-uniformizability for $L_d[u]$ (and, indeed, the efficacy of ordinal uniformizability as a tool depends on this fact).

Lemma 11 \[\Rightarrow L_d[u] \in \Sigma_\infty \]

If ordinal uniformizable, then $L_d[u]$ is u-uniformizable.

Proof.

Let $R \subseteq \infty$ be Σ_∞. Let

\[R \subseteq V \]

where $R \subseteq \Pi^1_n$.

Set $s \in P \langle s \rangle \iff \langle s \rangle_0 \subseteq \langle s \rangle_1 = y$. Set $s \in x \iff P [P \langle s \rangle x] \forall x \in u$.
proof of Lemma II.

We first show that each T_{n-1} relation is Σ_n-uniformizable by a Σ_n function. Let R be T_{n-1}. Set: $G_{r, \bar{x}} \iff \forall z \forall \eta (x, y) \exists \bar{x}$, $G \in \Sigma_n$. Let q uniformize G.

We may assume w.l.o.g. that $R \neq \emptyset$, hence that $y \in \text{rng}(R)$.

Set:

$$r(z, \bar{x}) = \left\{ \begin{array}{l}
\eta (z, q(\bar{x})) \vdash R (z, q(\bar{x})) \exists \bar{x} \\
y \vdash \neg R (z, q(\bar{x})) \exists \bar{x}.
\end{array} \right.$$

Then r uniformizes R.

Now let R be Σ_n. Let:

$$G_{r, \bar{x}} \iff \forall z P z y \bar{x},$$

where $P \in T_{n-1}$. Set:

$$P' (z, y) \bar{x} \iff P z y \bar{x},$$

and let p uniformize P. Set:

$$r(w, \bar{x}) = (p(w, \bar{x})).$$
(where \(\langle z, y \rangle \), \(z \in z, (\langle z, y \rangle), y \in y \)).

Then \(\pi \) \(u \)-uniformizes \(R \). QED

All previous theorems in which ordinal uniformizability was mentioned as an assumption hold on the (apparently) weaker assumption of \(u \)-uniformizability. In particular:

Lemma 12: \(\forall L_d[U] \in \Sigma m \) \(u \)-uniformizable, then there is a \(\Sigma m \) function \(h \) s.t. \(\text{dom}(h) \subset u \times L_d[U] \) and

\[
\forall x \in L_d[U] \ (x \in h^{-1}(u \times \{x\}) \subseteq L_d[U])
\]

Proof: We imitate the proof of Lemma 4.

Letting \(s(z, x) \) s.t. \(s : u \times \{x\} \xrightarrow{\text{onto}} \Sigma m \cup \{u, u \times u, x\} \)

be as before, we set

\[
R \times \varphi \leftrightarrow \Sigma m \varphi(\overline{v_0} / x)
\]

and let \(\pi \) uniformize \(R \). Set:

\[
h(s(x, x), x) \equiv \pi(z, s(u, (x, p)))
\]

and \(\pi \) uniformize \(R \) in the proposition. QED.
Carrying through the earlier proofs, again virtually without change, we get:

Thm 9 Let \(L_d[u] \) be \(\Sigma_m \) u-uniformizable. Then the following are equivalent:
(a) There is a \(\Sigma_m \) set \(a \subset u \) s.t. \(a \notin L_d[u] \).
(b) There is a \(\Sigma_m \) map \(f \) s.t.
\[\text{dom}(f) \subset u \text{ and } f``u = L_d[u]. \]

Thm 10 Let \(L_d[u] \) be \(\Sigma_m \) u-uniformizable. Then the following are equivalent:
(a) There is a \(\Delta_m \) set \(a \subset u \) s.t. \(a \notin L_d[u] \).
(b) There is a \(\Delta_m \) map of \(u \) onto \(L_d[u] \).

We now prove:

Thm 11 \(L_d \) is \(\Sigma_m \) u-uniformizable \((m \geq 1)\).
The proof of Thm 11 extends over several lemmas. From now on, we shall write "uniformizable" to mean "u-uniformizable".

Lemma 13 Let $L_d[u]$ be admissible and let $A \subseteq L_d[u]$ be s.t.
\[x \in L_d[u] \rightarrow A \land x \in L_d[u]. \]
Then $\models_A \Xi^p \models \Delta_4$ in $\langle L_d[u], A \rangle$. Moreover, $R \models \Xi_4$ in $\langle L_d, A \rangle$ iff $R \models \Xi_4$ in $\langle L_d[u], \models_u \Xi^p \rangle$.

Proof.
We first show that $\models_A \Xi^p \models \Delta_4$.
Set $T : a(x) = \models_A A \land x$.
$L_d[u]$ is closed under a. $a \models \Xi_4$ since
\[q = a(x) \iff q \land \forall z \in x (z \in y \iff Ax). \]
Thus $\models_A \Xi^p \models \Delta_4$.
\[\frac{\varphi \vdash \psi}{\frac{\vdash \varphi}{\varphi}}, \quad \langle C(\varphi), a(C(\varphi)) \rangle \]

But, by the same argument,

\[\frac{\varphi \vdash \psi}{\frac{\vdash \varphi}{\varphi}}, \quad \langle C(\psi), a(C(\psi)) \rangle \]

This establishes the second part of the lemma. \(QED \)

Using Lemma 13, we can repeat the proofs of Thm 1 and to obtain the analogues.
Lemma 14. If $L_d[u]$, A are as in Lemma 13, then $\langle L_d[u], A \rangle$ is Σ_1 uniformizable.

Since the only two facts used in the proof of Lemma 12 were: Σ_1 uniformizability and the Σ_1 definability of E_n, we may repeat the proof to obtain:

Lemma 15. If $L_d[u]$, A are as in Lemma 13 and if $\langle L_d[u], A \rangle$ is Σ_1 uniformizable, then there is a Σ_1 Skolem function (i.e. an h s.t. $\text{dom}(h) \subseteq u \times L_d[u]$ and $\forall x (x \in h \iff (u \times L_d[u]) \subseteq \langle L_d[u], A \rangle$). In particular, by Lemma 14, there is a Σ_1 Skolem function.

Def. $\langle L_d[u], A \rangle$ is called feasible iff for every Δ_1 set B we have:

$$x \in L_d[u] \rightarrow \exists n x \in L_d[u]$$

$\langle L_d[u], A \rangle$ is called Σ_1-feasible iff this holds for every Δ_1 set B.
Lemma 16 Let $\langle L_d[u], A \rangle$ be Σ_n-feasible but not Σ_n admissible. Let $\langle L_d[u], A \rangle$ be Σ_n uniformizable. Then a relation R in Σ_1 in Σ_n iff R in Σ_{n+1}.

Proof:
(\rightarrow) trivial, since each Σ_{n+1} relation in Σ_1 in Σ_n.
(\leftarrow) Since $\langle L_d[u], A \rangle$ is not Σ_n admissible, there is a Π_{n+1} relation R and a $\beta < d$ s.t. $\forall x \exists y Ryx$ but for each $\delta < d$: $\forall x \in L_\beta[u] \rightarrow \forall y \in L_\delta[u] Ryx$.
Set: $Gyx \iff \forall y \in L_\delta[u] Ryx$
and let y uniformize G. Then $y \in \Delta_n$, $\text{dom}(y) = u \times L_\beta[u]$ and $\forall x \in L_\beta[u] = L_d[u]$. Let h be a Σ_n Skolem function for $\langle L_d[u], A \rangle$. ($h$ exists by Lemma 15).
Let:
\[y = h(x, z) \iff \forall u \in H \land y = x, \]
where \(H \in \mathcal{P}(m-1). \) Set:
\[h^*(u, z, x) = \begin{cases} y & \text{if } \exists y \in L_y(u) \land \exists u \in L_y(u) \land y = x \land \text{not } \end{cases} \]
Then \(\text{dom}(h^*) = (u \times L^0_y(u)) \times L_d [u] \) and
\[h^*(u, x, x) = h^*(u, x, x) \]
for all \(x \in L_d [u]. \)

For \(\delta < \alpha \) set:
\[\delta = (u \times L^0_y[u]) \times L^0_y[u] \]
\[e(\delta) = \{ \langle x, y \rangle \mid x, y \in \delta \land h^*(x) \in \delta^*(y) \} \]
\[a(\delta) = \{ x \mid x \in \delta \land A(h^*(x)) \} \]
Since, for each \(\delta < \alpha, \) \(e(\delta), a(\delta) \) are \(\Delta_0 \) subsets of \(\delta, \) we have:
\[e(\delta), a(\delta) \in L_d [u] \quad \text{for } \delta < \alpha. \]
Let $m(v) = \langle u, e(v), a \rangle$, where $u \in \Sigma$ and for some π:

$$\pi : \langle \bar{v}, e(x), a(x) \rangle \rightarrow m(v).$$

By the admissibility of $L_\Sigma[u]$ (Thm 3, Thm 6), we may conclude that $m(v)$, π are elements of $L_\Sigma[u]$. This follows by the recursion theorem, since the factorisation of $e(v)$ by extensional equivalence is certainly in $L_\Sigma[u]$ and the factorised $e(v)$ is well founded.

Thus, $L_\Sigma[u]$ is closed under the function $m(v)$. We show now that m in Δ_m. Since $e(x)$ in Σ_{m+1} we have:

$$\forall y \in e(x) \implies y \in \bar{e}^2 \implies \lambda \exists \Sigma, \nu \in \bar{e} \langle \bar{v}, \bar{w} \rangle \in y \iff \lambda x (z) \in \bar{h}(y).$$

$$\Delta_m \implies \Sigma_m.$$
Similarly, \(a(\varphi) \) is \(\Delta_{n+1} \).

This means that \(m \in \Delta_{n+1} \), since:

\[
y = m \varphi(x) \iff \forall \pi \left(\pi : \langle \varphi, e(x), a(\varphi) \rangle \leq y \right)
\]

\(\pi : x \leq y \) being \(\Delta_1 \).

To establish the lemma, we need only show that relations \(\Sigma_0 \) in \(\Sigma_m \) relations are \(\Sigma_{m+1} \).

Let the formula \(\varphi \) be \(\Sigma_0 \) in \(\Sigma_m \) (i.e., built up from \(\Sigma_m \) formulae by sentential operations and bounded quantifications).

Then

\[
| \langle L_a[u], A \rangle | \varphi \iff \forall x < d \left(\exists m(x) \wedge
\varphi \in L_a[u] \wedge \frac{\varphi}{m(x)} \right)
\]

QED
Note that the assumption $\Sigma_{m+1} = \Sigma_1$ in Σ_m can be used alternatively to Σ_m admissibility to carry out the proof of Lemma 7; hence:

Lemma 17: If $\langle L_d[u], A \rangle$ is Σ_m-feasible, then $\langle L_d[u], A \rangle$ and Σ_m-uniformisable, then $\langle L_d[u], A \rangle$ is Σ_{m+1} uniformisable.

We are now ready to prove Thm 11. We proceed by induction on m. For $m=1$ the theorem is proven. We now suppose it to hold for m and prove it for $m+1$.

Case I: $L_d[u]$ is Σ_m-feasible.

The conclusion follows by Lemma 17.
At Case I fails, there is a $\beta < \alpha$ s.t. a $\Delta^m_\alpha a \in L^\beta[u]$ exists with $a \in L^\beta[u]$. Let β be the least such. By Thm 10, there is a Δ^m_α map from $L^\beta[u]$ onto $L^\alpha[u]$. Case II. $\beta = 0$ (hence $L^\beta[u] = u$).

We first show that each Δ^m_α relation is uniformizable by a Σ^m_α function. Let $R \subseteq^x x$. Assume (w.l.o.g.) $y \in \text{rng}(R)$.

Set $\pi(x, \overline{x}) = \begin{cases} f(x) & R f(x) \overline{x} \\ y & R f(x) \overline{x} \wedge \forall y \neg R y \overline{x} \end{cases}$

Then a uniformizer P. At $R \subseteq^x x$, there is $\Pi^m_{\alpha+1} P$ s.t.

$R \overline{x} \iff \forall z P z \overline{y} \overline{x}$.

Set $P'(z, y, \overline{x}) \iff P y \overline{x}$.

Let p uniformize P' and set:
\[r(w, x) = (p(w, x'))_1 \]
Q.E.D. Case II

Case III $\beta > 0$.
Then $L_\beta[u]$ will be admissible by the same argument which demonstrated that the projectum of d is admissible.

Lemma 18 At A in $\Delta_n (L_\delta[u])$ and $A \subseteq L_\beta[u]$, then each $T \subseteq L_\beta[u]$ which is $\Sigma_m (\langle L_\beta[u], A \rangle)$ is $\Sigma_{m+1} (L_\delta[u])$.

Proof.
At suffices to show: At R in $\Sigma_0 (\langle L_\beta, A \rangle)$, then $R \in \Sigma_{m+1} (L_\delta)$.
Let φ be a Σ_0 formula of $\langle L_\beta, A \rangle$.
Then

\[\frac{\varphi \iff \varphi}{A} \]

\[\langle C(\varphi), A \land C(\varphi) \rangle \]

But \(a(u) = A \cup u \) is a \(\Sigma_2 (L_{\alpha}[u]) \) function which is defined on all \(L_{\beta}[u] \). Hence \(\frac{\varphi \in \Sigma_2 (L_{\alpha}[u])}{\varphi \in \Sigma_2 (L_{\alpha}[u])} \) \(\omega E D \)

Letting \(f : L_{\beta} \to L_{\alpha} \) be \(A \circ (L_{\alpha}) \), pick \(A \in L_{\beta} \) in such a way that:

\[\{ \langle x, y \rangle \mid f(x) \in f(y) \} \subseteq f^{-1}[L_{\beta}[u]], \quad f^{-1}[L_{\beta}[u]], ~ \]

\[\{ \varphi \in \text{Form} \mid \frac{\varphi}{L_{\beta}} \}\]

\[\frac{\varphi}{L_{\alpha}} \]

are \(\Sigma_0 \) in \(\Delta \langle L_{\beta}, A \rangle \). (Setting

\[\overline{f}(\varphi(x)) = \varphi(f(x)) \]

Then every \(\Sigma_0 (L_{\alpha}[u]) \) relation

\[R \subseteq L_{\beta}[u]^m \in \Sigma_0 (\langle L_{\beta}, A \rangle), \]
Using an obvious abbreviation, we have then:

\[\Sigma_m(L_d) \subset \Sigma_1(\langle L_\beta, A \rangle) \subset \Sigma_{m+1}(L_d). \]

On which side, if any, of this chain of conclusions does the identity lie?

We consider two cases:

Case 1: There is a \(\gamma < \beta \) and a \(\Sigma_m(L_d) \) function \(q \) such that \(\text{dom}(q) = L_\gamma \cdot [\alpha] \) and \(q \upharpoonright L_\gamma \cdot [\alpha] \) is unbounded in \(d \).

In this case, we prove that, for an appropriate choice of \(A \):

\[\Sigma_1(\langle L_\beta, A \rangle) = \Sigma_{m+1}(L_d). \]

But, by Lemma 14, \(\langle L_\beta, A \rangle \) is \(\Sigma_1 \) uniformizable.
Case 2: Case 1 fails.

In this case we show that
\[\Sigma_m(L_d) = \Sigma_1(\langle L_\beta, A \rangle). \]

But then \(\langle L_\beta, A \rangle \) is feasible and, by Lemmas 14, 17, \(\langle L_\beta, A \rangle \) is \(\Sigma_2 \) uniformizable, whereby:
\[\Sigma_{m+1}(L_d) = \Sigma_2(\langle L_\beta, A \rangle). \]

In either case, we may conclude that, if \(R \subseteq L_\beta[u]^{m+1} \) in \(\Sigma_{m+1}(L_d) \), then \(R \) is uniformizable by a \(\Sigma_{m+1}(L_d) \) function. Now let \(R \subseteq L_d[u]^{m+1} \).

Set:
\[R' \Delta \leftarrow R f(y) f(x). \]

Let \(\rho' \) uniformize \(R' \). Let \(f' \)

uniformize \(f(x) = y \) and set:
\[\rho(\langle \varepsilon, \overline{w} \rangle, \overline{x}) \sim f' \varepsilon, f'(\overline{w}, \overline{x}), \ldots, f'(\overline{w}_m, \overline{x}_m). \]

Then \(\rho \) uniformizes \(R \).
Thus, it remains only to prove the assertions made in Case 1, 2.

Lemma 19. Let \(\alpha < \beta \) and let there be a \(\Delta_m(\mathbb{L}_d) \) function \(\varphi \) which maps \(\mathbb{L}_\alpha[u] \) onto \(\mathbb{L}_\beta[u] \). Then \(A \) can be so chosen that every \(R \in \mathbb{L}_\beta[u]^m \) which is \(\Sigma_{m+1}(\mathbb{L}_d) \) in \(\Sigma_1(\langle \mathbb{L}_\beta, A \rangle) \).

Proof. It suffices to show: If \(R \in \mathbb{L}_\beta[u]^m \) in \(\Sigma_m(\mathbb{L}_d) \), then \(R \) is \(\Delta_m(\langle \mathbb{L}_\beta, A \rangle) \). For this, it suffices that

\[
\{ \varphi \in \text{Fml}[\mathbb{L}_\beta[u]] : R_{\beta[u]} \varphi \}
\]

is \(\Delta_1(\langle \mathbb{L}_\beta, A \rangle) \). Let \(h \) be a \(\Sigma_m \) Sholem function for \(\mathbb{L}_\alpha[u] \).

Let \(\varphi \in \text{Fml}[\mathbb{L}_\beta[u]] \).
Let $y = h(z, x) \rightarrow V u H y z x$, where H is $T n-1 (L_d[u])$. Define:

$$h^* (\langle w, z \rangle, x) = \begin{cases} y & \text{if } y \in L_q(w)[u] \text{ and } V u \in L_q(w) H y z x \\ 0 & \text{if not} \end{cases}$$

$h^*(z, x) = 0$ in all other cases.

Then $\text{dom}(h^*) = L_\kappa[u] \times L_d[u]$ and

$$\forall x \in L_\kappa[u] \times \{x\} \exists y \in L_\kappa[u] \times \{x\} \Rightarrow h^*(x) = h^*(y).$$

Choose A in such a way that R in $\Sigma_0 \forall (\langle L_\beta, A \rangle)$, where:

$$R x y \leftrightarrow x, y \in L_\kappa \times L_\beta \land h^*(x) \in h^*(y).$$

$R \in \Delta_m (L_\beta)$.

Set: $\bar{\delta} = L_\kappa \times L_\delta$,

$$e(\delta) = \bar{\delta}^2 \cap R$$

Then $\forall \delta < \beta e(\delta) \in L_\beta[u]$, since $e(\delta)$ is a $\Delta_m (L_\beta)$ subset of $\bar{\delta}^2$.

The function \(e(\bar{s}) \in \Sigma_1(L_\beta, A) \), since:

\[
e = e(\bar{s}) \iff \bar{e} \in \bar{s}^2 \land \forall x \in \bar{s} \quad (x, y) \in e \iff R_{xy},
\]

Set: \(m(\bar{s}) = \text{that } \langle v, e(v) \rangle \text{ s.t. } uv < v \text{ and } \langle v, e \rangle \iff \langle \bar{s}, e(\bar{s}) \rangle \iff \langle k^* \bar{s}, e \rangle \).

Imitating the methods of the proof of Lemma 16, we get: The function \(m \in \Sigma_1(L_\beta, A) \) and is defined everywhere. But this means that \(\{ \varphi \in \text{Fm}(L_\beta) \mid \models \varphi \} \in \Sigma_1(L_\beta, A) \),

\[
\Delta_1(L_\beta, A), \text{ since } \bar{s},
\]

nothing \(s(\varphi) = \mu s(\varphi) \cap \varphi \in \text{Fm}(L_\beta) \),

we have:

\[
\models^\Sigma \varphi \iff \models^m \varphi
\]

for \(L_\beta \models \varphi \iff \text{Fm}(\varphi) \). \(\Box \)
Lemma 20: If the hypothesis of Lemma 19 fails, then every $\Sigma_1(\langle L_\beta, A \rangle)$ relation is $\Sigma_\mu(L_d)$ (hence $\langle L_\beta, A \rangle$ is feasible).

Proof:
It suffices to show: If $R \in \Sigma_0(\langle L_\beta, A \rangle)$, then $R \in \Delta_\mu(L_d)$. We show this by induction on the defining formula of R, using

(*) If $Ry \leftrightarrow y \in L_\beta[u] \land \exists z_\psi Rz \rightarrow x$, then

so we:

$Ry \leftrightarrow \exists y \in L_\beta[u] \land \exists z_\psi Rz \rightarrow x$, proof of (*):

Let $Ry \leftrightarrow \forall u Puy \rightarrow x$, where $P \in \text{TM}_\mu$. For $y \in L_\beta[u]$, we

have:

$\exists z_\psi \forall y \in Puy \rightarrow x \rightarrow \forall z_\psi \exists y \in Puy \rightarrow x$. \hfill \square
\[\lambda z \epsilon y \ P_{\epsilon z} x \rightarrow \forall z \alpha \lambda z \epsilon y \ V_{\epsilon z} y \ P_{\epsilon z} x. \]

since otherwise, letting \(p(w, z) \)
uniformize the relation:

\[\neg \forall z \epsilon \ L \ [(P_{\epsilon z} x)] \]

\(p \) would map \(u \) \(xy \) unboundedly
into \(a. \) (Contradiction!)

Hence:

\[\lambda z \epsilon y \ P_{\epsilon z} x \leftrightarrow V w \lambda z \epsilon y \ V_{\epsilon w} y \ P_{\epsilon w} x. \]

We apply the same reduction
to \(V_{\epsilon w} y \ P_{\epsilon w} x \) etc. until we
are left with a \(\Sigma \) \(\in \) formula. Q.E.D.