V A Remark on \Box in L^E

Consider a model $K = L^E$ with the property that each K/μ^* is a weak mouse in the sense of I, Schimmerling and Zeman have shown that \Box_λ holds in K for many cardinals λ.

Let $S_\lambda = \{ \xi \in (\lambda, \lambda^+) \mid \xi \in K \}$.

E_ξ is a supercompact extender (i.e., $E_\xi \neq \emptyset$ and $\lambda = \text{lh}(E_\xi)$). By the methods of Schimmerling and Zeman, \Box_λ holds if S_λ is not stationary in λ^+ (in K). We now show that this result is best possible:

Thus let S_λ be stationary in λ^+.

Then \Box_λ fails.

Proof. Suppose not.

Set $H = L^E_{\lambda^{++}}$. Set $D = \{ \delta \in (\lambda, \lambda^+) \mid \delta = \lambda^+ \cap h_1(\delta) \}$.

Then D is cub in λ^+. Let $\delta \in \mathcal{D} \cap \mathcal{S}_\lambda$.
Set $X = \Theta^\delta (x)$ and let $\overline{H} = \mathcal{L}^\delta$, σ. be defined by $\sigma : \overline{H} \rightarrow \mathcal{H} | X$. Then $\sigma : \overline{H} \rightarrow \mathcal{L}^\delta$, \overline{H} is a premouse which is sound above δ and $\omega \beta^\delta = \sigma$. We apply Lemma 4' in IV (which generalizes Lemma 4 of §8 [NF5]). Clearly $\overline{H} \not\models \varphi_2 (t_1)$ since $\rho^\delta = \delta \leq \lambda^{++} = \rho^\delta$, hence (a) in Lemma 4' fails. Moreover \overline{H} is not an initial segment of \mathcal{H}, since $E_\delta^\overline{H} \neq \emptyset$, $E_\overline{H} = \emptyset$. Hence (b) fails. (c) also fails, since $\delta = \alpha$ is the largest cardinal in \overline{H}, where $\alpha = \omega \beta (\sigma)$. Thus (d) must hold, and \overline{H} is a segment of \mathcal{L}^δ, where $\tau : \mathcal{L}^\delta \rightarrow \mathcal{L}^\delta'$.
We are assuming that L^κ has a \square^κ sequence. Let

$$C = \langle C_\gamma \mid \chi < \gamma < \chi^+ \land \text{fin}(\gamma) \rangle$$

be the $<_{L^\kappa}$-least such. Since $\sigma \in \Sigma_1$ preserving, there is $\bar{C} \in H^\kappa$ and $\sigma(\bar{C}) = C$. Hence H thinks that \bar{C} is a \square^κ-sequence. Since $d = \chi^+ + L^\kappa$, and H is an initial segment of L^κ, it follows that \bar{C} is the $<_{L^\kappa}$-least \square^κ sequence in L^κ.

Since $\pi(\bar{C}) = \chi$, where $\kappa = \text{crit}(E_{\chi^+})$ and $\tau = \kappa^+$ in L^κ, it follows that there is $C' = \pi^{-1}(\bar{C})$ which is a \square^χ sequence in L^κ.

$$\therefore \pi = \pi \upharpoonright L^\kappa_{\tau}$$

Then

1. $\pi : \langle L^\kappa_{\tau}, C' \rangle < \langle L^\kappa_{\kappa^+}, \bar{C} \rangle$
2. $\langle L^\kappa_{\kappa^+}, \bar{C} \rangle < \langle L^\kappa_{\chi^+}, C \rangle_{\Sigma_1}$

Hence:
(3) $\overline{\pi} : \langle L^E, C' \rangle \rightarrow \langle L^E, C \rangle$,

where C' is a Σ_1 sequence.

This is known to yield a contradiction. Consider C_d.

Since $d = \sup \overline{\pi}^\ast \omega$ and ω is regular, the set $C^*_d \cap \text{rng}(\overline{\pi})$ is unbounded in ω. Suppose $\gamma \in C^*_d \cap \text{rng}(\overline{\pi})$, $\overline{\pi}(\gamma') = \gamma$.

Then $\overline{\pi}(C_d') = C_\gamma = \gamma \land C_d$.

Since C_γ is a proper segment of C_d, we have $\text{otp}(C_\gamma) < \omega$. Hence $\text{otp}(C_d') < \omega$. Since $\overline{\pi}(C_\gamma) = C^*_d \cap \text{rng}(\overline{\pi})$, $\text{otp}(C_\gamma) < \omega$, since $\overline{\pi}^\ast \omega = \text{id}$.

Thus $\text{otp}(C_d) = \sup \text{otp}(C_d') \leq \omega$,

$\forall \gamma \in C^*_d \cap \text{rng}(\overline{\pi})$

Contr. since $cf(\omega) = 2 > \omega$ in L^E.

QED