§ 2.4 Some Consequences

We recall that by § 2.1 Lemma 3, no M can be both a simple and non-simple iterate of a mouse \overline{M}.

Def Let M, N be mice.

$M \sim^* N \iff M, N$ have a common non-simple iterate.

Lemma 1 \sim^* is an equivalence relation on mice.

Proof.

$M \sim^* M$, $M \sim^* N \rightarrow N \sim^* M$ are trivial. We prove transitivity.

Let $M \sim^* N \sim^* Q$. Let M' be a common simple iterate of M, N and Q' a common simple iterate of N, Q.

By coiteration there is a common iterate P of M', Q' which is a simple iterate of one of them. Suppose e.g. that P is not a simple iterate of M'.

Then it is a non-simple iterate of N. But it is a simple iterate of Q', hence of N. Contradiction!

QED (Lemma 1.1)
Def. $M <_* N$ if there is a common iterate Q which is a simple iterate of M but not of N.

Lemma 2 <* is a linear ordering of mice modulo the congruence relation \sim_*.

The proof stretch over a few sublemmas:

Lemma 2.1 $M <_* N \lor M \sim_* N \lor N <_* M$

pf. By coiteration.

Lemma 2.2 $M \sim_* N \rightarrow M <_* N$

pf. Suppose not. Let Q be a common simple iterate of M, N. Let M' be a common iterate of M, N which is simple of M but not of N. Let P be a common iterate of Q, M' which is simple of one of them. If P is a simple iterate of Q, then it is a simple iterate of N.
which is impossible since \(P \) is an iterate of \(M' \). But then \(P \) is a simple iterate of \(M' \), hence of \(M \), and \(P \) is a non simple iterate of \(Q \), hence of \(M \).

\textbf{Contr.} \hspace{1cm} \textbf{QED (Lemma 2.2)}

\underline{Lemma 2.3} \hspace{1cm} M \not< N \rightarrow N \not< *M

\textbf{Proof.} Suppose not.

Let \(M' \) be an iterate of \(M \), \(N \) which is simple of \(M \) but not of \(N \). Let \(N' \) bear the same relation to the pair \(N, M \). Let \(Q \) be an iterate of \(N', M' \) which is simple of one of them. \(Q \) is not simple of \(M' \), since it is an iterate of \(N' \). Hence \(Q \) is not simple of \(M' \). Similarly, \(Q \) is not simple of \(N' \).

\textbf{Contr.} \hspace{1cm} \textbf{QED (Lemma 2.3)}

\underline{Lemma 2.4} \hspace{1cm} *M \not< N *Q \rightarrow Q \not< *M

\textbf{Proof.} Suppose not.

Let \(M' \) be an iterate of \(M, N \) which is simple of \(M \) but not \(N \). Let \(N' \) bear the same relation to \(N, Q \) and \(Q' \) to \(Q, M \). By contraction there is \(P \) which is a common
iterate of M', N', Q' and a simple iterate of one of them. This is easily seen to be false. Contd.

QED (Lemma 2.4)

Lemma 2.5 $M < * N < * Q \rightarrow M < * Q$.

Proof. Suppose not.

Then $M < * N < * Q < * M$ by Lemma 2.1, 2.5. Let M' be an iterate of M, N which is simple of $M +$ not of N.

Let N' bear the same relation to N, Q. Then $M' < * M < * N$ and M', Q have a common simple iterate Q'. Let P be common iterate of N', Q'.

An easy argument again shows that P is not a simple iterate of N' or Q'.

Contradiction! QED (Lemma 2.5)

This proves Lemma 2

Note The relation $< *$ is well-founded, as can be seen by the nonexistence of degenerate iterations.