Def. \(U \subseteq \mathcal{P}(\kappa) \) is suitable for \(\kappa \) if

(a) \(\kappa \) is p.r. closed,

(b) Let \(A_1, \ldots, A_n \in U \), \(\kappa_1, \ldots, \kappa_m \in \kappa \), let \(B \in \text{On}^{<\kappa} \) be p.r. in predicates \(A_1, \ldots, A_n \) and the parameters \(\kappa_1, \ldots, \kappa_m \in \kappa \).

Then \(B \cap \kappa \in U \).

It follows that if \(U \) is suitable, then:

(i) \(\kappa \in U \)

(ii) \(A, B \in U \implies A \land B, A \cup B, A \setminus B \in U \)

(iii) \(\kappa \leq \kappa \implies \kappa, \exists \forall \exists \in U \).

If we set \(U^m = \{ A^m \mid A \in U \} \), where \(A^m = \{ \langle \xi_1, \ldots, \xi_m \rangle \mid \langle \xi_1, \ldots, \xi_m \rangle \in A \} \),

then it follows from (b) that if \(A_1, \ldots, A_n \in U \) and \(B \in \text{On}^{<\kappa} \) is p.r. in \(A_1, \ldots, A_n \) and the parameters from \(\kappa \),

then \(B \cap \kappa^m \in U^m \).
Define \(U \subseteq \mathcal{P}(\kappa) \) be suitable for \(\kappa \).
Let \(\kappa < \lambda \), where \(\lambda \) is p.r. closed.

\[
F : U \rightarrow \mathcal{P}(\lambda) \text{ is an extender on } U \\
\text{with length } \lambda \text{ iff whenever } B_{A_1, \ldots, A_n} \subseteq \text{On in uniformly p.r. in } A_1, \ldots, A_n \in U \text{ and parameters from } \tau.
\]

Then \(F(\kappa \cap B_{A_1}) = \kappa \cap B_{F(A_1)} \).

We get:

(i) \(F(\kappa) = \kappa \), \(F(\{\in\}) = \in \) for \(\kappa \in \lambda \)

(ii) \(F(\emptyset) = \emptyset \)

(iii) \(F(A \cap B) = F(A) \cap F(B) \), \(F(A \cup B) = F(A) \cup F(B) \)

(\(F(A \setminus B) = F(A) \setminus F(B) \))

(iv) \(A \subseteq B \Leftrightarrow F(A) \subseteq F(B) \)

(v) \(\kappa \cap F(A) = A \), since

\(\nu \in A \Leftrightarrow \{\in\} \subseteq A \Leftrightarrow \{\in\} \subseteq F(A) \Leftrightarrow \in \notin F \)

We can extend \(F \) to \(F'' \) on \(U'' \) by

\[F''(A'') = F(A)'' \]
We write $F(A^1)$ for $F^n(A^1)$ when $A \in U^n$. Then:

(i) $F(\kappa A^1 B_A^{\alpha}) = \kappa B_{F(A^1)}$ if $B_A^{\alpha} \subset \alpha^n$ in κ with $A \in A_1 \ldots A_n \in \Gamma$ and parameters from α.

(ii) $F(\nu_1 \times \ldots \times \nu_n) = \nu_1 \times \ldots \times \nu_n$ and $F(\langle \nu_1, \ldots, \nu_n \rangle^3) = \langle \nu_1, \ldots, \nu_n \rangle^3$ for $\nu_1, \ldots, \nu_n < \kappa$.
(Note that $F^m = \mathcal{E}(\lambda_1, \ldots, \lambda_m)^3 = \mathcal{E}$ for $\lambda_1, \ldots, \lambda_m < \lambda$.)

Def. Let F be an extender on U of length λ. $\mathcal{E} = \langle F_\alpha | \alpha < \lambda \rangle$ is the associated hypermeasure where $F_\alpha = \{x | x \in F(x)\}$.

Def. $F = \langle F_\alpha | \alpha < \lambda \rangle$ is a hypermeasure iff it is associated with an extender \mathcal{E} of length λ and F is an extender, where $F(x) = \{d | x \in F_d\}$.

Def. $\mathcal{E} = \langle 1M_1, \mathcal{E}, A_1, \ldots, A_m \rangle$ is a suitable hypermeasure \mathcal{E}, M is transitive, and closed and $\mathcal{E} A_1 \times \cdots \times A_m \subseteq M$ whenever $A_1, \ldots, A_m \subseteq \mathcal{E}(\kappa)$.

Def. M is suitable for κ iff M is suitable, $\kappa \in M$ is p.r., closed and $\mathcal{E} A_1 \times \cdots \times A_m \subseteq M$ whenever $A_1, \ldots, A_m \subseteq \mathcal{E}(\kappa) \cap M$. (Hence $U = \mathcal{E}(\kappa) \cap M$ is suitable.)
Def Let \(M \) be suitable.
\[\pi : M \to N \quad \text{iff} \quad \]
(a) \(N \) is transitive
(b) \(\pi : M \to N \) is finally
(c) \(\kappa = \text{crit}(\pi) \), where \(M \) is suitable for \(\kappa \)
(d) \(F = \{ \chi \cap \pi(X) \mid X \in \mathcal{P}(\kappa) \cap M \} \), where \(\kappa < \chi \leq \pi(\kappa) \), \(\chi \) is p.n. closed, and
(e) \(N = \text{the } \Sigma_0 \text{ closure of } \text{any } (\pi(\kappa)) \cup \chi \).
(Equivalently to (e):
\[N = \{ \pi(f)(x) \mid \exists \lambda, f : \kappa \to M, f \in M \} \]

Lemma 1 \(\Delta : \pi : M \to N, \kappa = \text{crit}(\pi) \),
Then \(F \) is an extender of length \(\chi = F(\kappa) \) on \(\mathcal{P}(\kappa) \cap M \) and \(N, \pi \) are uniquely determined by \(F \).

1. \(F \mid \kappa = \text{id} \), \(F(\kappa) = \lambda \)
2. \(F(\kappa \cap B_{A_1, \ldots, A_m}) = \chi \cap B_{F(A_1), \ldots, F(A_m)} \)
 for \(B \) and \(\chi \) p.n. in \(A_1, \ldots, A_m \in \mathcal{P}(\kappa) \cap M \),
 \(\chi \in \mathcal{P}(\kappa) \cap B_{\pi}(A) \)

and $\lambda \mapsto B_{\pi(A)} = \lambda \mapsto B_{\lambda \in \pi(A)}$ so

$= \lambda \mapsto B_{\pi(A)}$, since $\lambda \in$ p.s. closed. QED (2)

Hence F is an extender. For Σ_0 formulas ϕ we have for Thm 1:

(4) $\{ \phi(F(\xi^2) \in \kappa^m | M \models \phi\} \in \mathcal{F}$

$= \{ \phi(F(\xi^2) \in \kappa^m | N \models \phi(\pi(f_1(\xi)), \ldots, \pi(f_m(\xi))) \}

= \{ \phi(\pi(f_1(\xi)), \ldots, \pi(f_m(\xi))) \}

$ \text{for } f_i : \kappa \to M, f \in M (i = 1, \ldots, m).

Since $N = \{ \pi(f(\xi)) | f : \kappa \to M, f \in M, \xi \in \kappa \}$

it follows that N, π are uniquely determined by F.

QED (Lemma 1)

Def $\pi : M \to N$ weakly iff

(b) - (c) hold as above and

(a') $N = \langle \mathcal{I} \mathcal{N}, \mathcal{E}^N, \mathcal{A}^N \rangle$ in Λ, w-core $\langle \mathcal{N} \rangle$ is transitive and $\mathcal{X} \subseteq w$-core $\langle \mathcal{N} \rangle$.
[This involves a slight abuse of notation.] Clearly the same proof yields:

Corollary 2 If \(\pi : M \rightarrow N \) weakly, \(\kappa = \text{crit}(\pi) \), then \(F \) is an extender of length \(\lambda = F(\kappa) \) on \(\#(\kappa) \setminus M \) and \(N, \pi \) are uniquely determined by \(F \) (up to isomorphism).

Finally, using an "ultrapower" construction:

Lemma 3 Let \(M \) be suitable for \(\kappa \), \(U = \#(\kappa) \setminus M \) and \(F \) an extender on \(U \) of length \(\lambda \). There are \(\pi, N \) s.t. \(\pi : M \rightarrow N \) weakly.

\[\pi \]

Define a term model \(ID = \Pi(M, F) \)

by:

\(ID = \langle D, \equiv, \hat{\varepsilon}, \hat{A} \rangle \) where:

\[D = \{ \langle d, f \rangle | f \in M, f: \kappa \rightarrow M, \alpha < \chi \} \]
\[\langle d, f \rangle \equiv \langle \beta, g \rangle \quad \Rightarrow \quad \langle d, \beta \rangle \in F(\{3, 5\} \mid f(3) = g) \]

\[\tilde{\varepsilon} \quad \Rightarrow \quad \langle \tilde{\varepsilon}, \varepsilon \rangle \]

\[\tilde{A} \langle d, f \rangle \quad \Rightarrow \quad d \in F(\{3\} \mid f(3) \in A) \]

By induction on \(\Sigma \). For the \(\varphi \) we get

For Thm 1:

(1) \(\mathcal{D} \vdash \varphi(\langle d_1, f_n \rangle, \ldots, \langle d_m, f_m \rangle) \quad \Rightarrow \quad \langle \tilde{d}, \tilde{f} \rangle \in F(\{3\} \mid \mathcal{M} \vdash \varphi(f_1(3), \ldots, f_m(3))) \)

(2) \(\langle d, f \rangle \ovv{\varepsilon} \langle \beta, \text{id} \rangle \quad \rightarrow \quad \forall \gamma < \beta \quad \langle d, f \rangle \equiv \langle \gamma, \text{id} \rangle \)

\[\mu f. \quad \exists f. \text{I} = f \cdot \text{id} = \{3, 5\} \mid f(3) = 3; \quad \langle d, \beta \rangle \in F(\{3, 5\} \mid f(3) < 5) \]

\[\langle d, \beta \rangle \in F(\{3, 5\} \mid f(3) < 5) \quad \Rightarrow \quad \exists f. \text{I} = f \cdot \text{id} = \{3, 5\} \mid f(3) < 5 \]

\[\exists f. \text{I} = f \cdot \text{id} = \{3, 5\} \mid f(3) < 5 \quad \Rightarrow \quad \exists f. \text{I} = f \cdot \text{id} = \{3, 5\} \mid f(3) < 5 \quad \Rightarrow \quad \exists f. \text{I} = f \cdot \text{id} = \{3, 5\} \mid f(3) < 5 \]

Hence there is \(\gamma < \beta \) s.t.

\[\langle d, \gamma \rangle \in F(\text{I}) \quad \Rightarrow \quad \langle d, f \rangle \equiv \langle \text{id}, \gamma \rangle \]

\[\Box \quad \text{ED (2)} \]
By (1), \(\cong \) is a congruence relation for ID. Let \(p : ID \rightarrow ID/\cong \) be the natural projection. Let \(\sigma : (ID/\cong) \rightarrow N \), where \(wfc(N) \) is transitive. Set:

\[
[t] = \sigma p(t) \quad \text{for } t \in ID
\]

\[
\pi(x) = [\langle 0, \text{cut}_x \rangle] \quad \text{for } x \in M.
\]

(3) \(\pi : M \rightarrow \Sigma_0 N \) cofinally.

\[\Sigma_0 \text{ preservation follows by } \Sigma_0 \text{ Thm.}\]

Cofinality follows by:

\[
[\mu f] \subset \pi (\text{using } (f)) \text{ in } N.
\]

QED (3)

(4) \([\alpha, \text{id}] = \alpha \) for \(\alpha < \lambda \)

\[\Sigma_0 \]

Set: \(\tilde{\lambda} = \langle \alpha, \text{id} \rangle \). Then \(\tilde{\lambda} \in wfc(ID/\cong) \). By (2) and hence:

\[
[\tilde{\lambda}] \in wfc(N), \text{ where } wfc(N) \text{ is transitive. Hence}
\]

\[
[\tilde{\lambda}] = \{[t] | ID = t \in \tilde{\lambda} \} \text{ for } \alpha < \lambda.
\]

By induction on \(\alpha \), using (2), we get:

\[
[\tilde{\lambda}] = \alpha. \quad \text{QED (4)}
\]
\((5') \quad [\alpha, f] = \pi(f)(d) \)

\[\frac{\text{mut}}{D \vdash I = \top \text{ if } f \in \{\langle 3, 5 \rangle | f(5) = f'(5)\}}. \]

\[[\alpha, f] = \pi(f)(d): \quad \langle \rightarrow \rangle. \]

\[\langle \rightarrow \rangle \quad \text{ID} \vdash \{\langle \alpha, f \rangle = \langle 0, \text{cm} f \rangle (\langle \alpha, \text{id} \rangle)\} \]

\[\langle \rightarrow \rangle \quad \langle 0, \alpha, d \rangle \in F(\{\langle 3, 5, \gamma \rangle | f(5) = f'(5)\}) \]

\[\langle \rightarrow \rangle \quad \text{id} \in \{\langle 3, 5, \gamma \rangle | \langle 5, \gamma \rangle \in F(I)\} \]

\[\langle \rightarrow \rangle \quad \langle d, d \rangle \in F(I) \quad \langle \rightarrow \rangle \quad \langle d, f \rangle \equiv \langle d, f \rangle. \]

\[\langle \rightarrow \rangle \quad [\alpha, f] = [\alpha, f]. \quad \text{QED (5')} \]

Hence,

\[(6) \quad \mathcal{N} = \{\pi(f)(\alpha) | \alpha \in \lambda, f : \kappa \rightarrow M, f \in M^3\} \]

\[(7) \quad \pi \kappa = \text{id} \]

\[\frac{\text{mut}}{L \vdash \langle 0, \nu \rangle \in F(\{\langle 3, 5 \rangle | \text{cm}^\nu(\nu) = \text{id}(5)\})} \]

for \(\nu < \kappa \), \(\kappa \)-inco \(F(A) \cap \kappa = A \).

Hence, \(\pi(\nu) = \langle 0, \text{cm}^\nu \rangle = [\nu, \text{id}] = \nu \).

\[\text{QED (7')} \]

\[(8) \quad \alpha < \pi(\kappa) \quad \text{in} \quad \mathcal{N} \quad \text{for} \quad \alpha \in \lambda \]

\[\frac{\text{mut}}{L \vdash \langle d, \text{id} \rangle < \langle 0, \text{cm}^\kappa \rangle, \quad \kappa \text{-inco} \}

\[\langle 0, 0 \rangle \in F(\{\langle 3, 2 \rangle | \text{id}(3) < \kappa\}) = F(\kappa) = \lambda \]

\[\text{QED (8')} \]
Then:

(4) \(\kappa = \text{crit}(\pi) \)

It remains only to show:

(10) \(F(A) = \lambda \cap \pi(A) \) for \(A \in \mathcal{P}(\kappa) \cap M \)

Let \(\lambda \). Then \(\lambda \in \pi(A) \iff \iff \left[\text{crit}(A) \right] \in \left[0, \text{crit}(A) \right] \iff \iff \left< \kappa, 0 \right> \in F(\{ \left< \kappa, 5 \right> \left| \kappa \in A \} \) \iff \lambda \in F(A) \)

QED (Lemma 3)

Lemma 4 Let \(\pi : M \rightarrow N \) where \(\pi = \text{crit}(\pi) \) is the largest cardinal in \(N \).

Assume \(F(\kappa) = \pi(\kappa) \). Then \(\langle N, F \rangle \) is amenable.

Let \(x \in N \). Claim \(x \cap F \in N \).

Let \(x \subseteq \pi(X) \). Then \(x \cap F = x \cap (\pi(X) \cap F) \) and it suffices to show:

Claim \(\pi(X) \cap F \in N \).

But \(F \) is a function and \(\left< a, F(a) \right> \in \pi(X) \rightarrow F(a) \in \bigcup \pi(X) = \pi(U^\pi(X)) \). Hence \(F \cap \pi(X) \subseteq \bigcup \pi(U^\pi(X)) \) and it suffices
- 12 -

to show! Claim \(F \mid x \in N \) for \(x \in M \).

Assume w.l.o.g. \(F \mid x \neq \emptyset \) (i.e., \(\#(x) \land x \neq \emptyset \)). Let \(f \in M \) s.t.
\(f: x \in \mathcal{U} \rightarrow \#(x) \land x \). Then
\(\mathcal{U}(f): \mathcal{U}(x) \in \mathcal{U}(x) \rightarrow \#(x \mid x \in N \).

Moreover, \(f = \{ \langle \mathcal{U}(f)(x) \rangle \mid x \in N \} \in N \).

But \(F(f(x)) = \mathcal{U}(f(x)) = \mathcal{U}(f(x)) \)
for \(x \in N \). Hence :
\(F \mid x = \{ \langle f(x), \mathcal{U}(f(x)) \rangle \mid x \in N \} \in N \).

QED (Lemma 4)

Def Let \(F \) be an extender on \(U \) of length \(\lambda \), \(\kappa = \text{crit}(F) \). \(F \) is **weakly amenable** iff whenever \(X \subseteq U \),
\(\delta < \lambda \), then \(\{ \exists \xi \mid X'' \exists \xi \subseteq F_{\delta} \} \subseteq U \).

Def Let \(\mathcal{U}: M \rightarrow N \) weakly. \(F \downarrow \Sigma_1 \)-**amenable** wrt. \(M \) iff
\(\forall \mu \in \Sigma_1(M) \) for \(\delta < \lambda \).
Note. Either of the properties:
weakly amenable and E_1 amenable
can hold without the other. Both can fail.

If $\pi : M \rightarrow N$ weakly, it follows easily that:

(a) $\#(\alpha) \backslash M \subseteq N$, since $X = \alpha \cap \pi^{-1}(X)$
for $X \in \#(\alpha) \backslash M$.

(b) $\#(\alpha) \backslash N \subseteq M$ iff F is weakly amenable.

As F is an extender on U of length λ, then whenever $\pi : M \rightarrow N$ weakly,
the ordinals $\lt \pi(\alpha)$ in N will all have the form $[\alpha, f]$, where $\alpha < \lambda$
and $f \in U^2$, $f : \alpha \rightarrow \alpha$. Moreover, every such $[\alpha, f]$ is an ordinal
$\lt \pi(\alpha)$ in N. Hence $\lambda = \pi(\alpha)$,
i.e. $[\alpha, f] \subseteq \lambda$ for all such f. Thus
we define:
Def. Let F be an extender on U of length λ. F is whole if whenever $f \in U^2$, $f : \kappa \rightarrow \kappa$, $\kappa < \lambda$
Then there is $\beta < \lambda$ such that
$$<d, \beta> \in F(\exists \delta < \kappa \exists \gamma > 1 f(\delta) = \gamma 3)$$

By the above remarks it is obvious that:

Lemma 5 Let $\pi : M \rightarrow N$ weakly, where F is at κ, λ (i.e., $\kappa = \text{crit}(F)$ $\pi(\kappa) = \lambda$), F is whole in H $\lambda = \pi(\kappa)$

Hence $\pi(\kappa) \in \text{wfc}(N) \iff F$ is whole.

We also note:

Fact Let U, U' be suitable for κ, where $U' \subseteq U$. Let F be an extender on U. Then $F|^U$ is an extender on U'.

Def. F is an extender on M at κ, λ iff F is an extender on $\pi(\kappa)^M$ of length λ, where M is suitable for κ.
Def \(N = \text{Ult}(M, F) \) iiff \(\forall \pi (\pi : M \to N) \)

Def \(N = \langle J^A_x, F \rangle \) is coherent iiff

iiff \(J^A_x \) is acceptable, \(F \) is a whole extender on \(J^A_x \) for an \(\bar{x} \) s.t. \(\kappa = \text{crit}(F) \) is the largest cardinal in \(J^A_{\bar{x}} \), and

and \(J^A_x = \text{Ult}(J^A_{\bar{x}}, F) \),

Lemma 6 Let \(N = \langle J^A_x, F \rangle \) be coherent

Then:

(a) \(N \) is amenable

(b) Let \(\bar{x} = \text{the least } \bar{x} \) s.t. \(\text{dom}(F) = \#(\kappa) \cap J^A_{\bar{x}} \). Then \(\kappa \)
 \(\text{is the largest cardinal in } J^A_{\bar{x}} \).

(c) Let \(\lambda = F(\kappa) \). Then \(\lambda \) is the largest cardinal in \(N \).

(d) Let \(\bar{y} < \bar{x} \) s.t. \(\kappa \) is the largest cardinal in \(J^A_{\bar{y}} \). Let \(\omega_{\bar{y}} = \sup_{\omega \in J^A_{\bar{y}}} F(\omega) \).
 Set \(\bar{F} = F|_{J^A_{\bar{y}}} \). Then \(\langle J^A_{\bar{y}}, \bar{F} \rangle \)
 is coherent.
\[\mu f. \]

(a) is immediate by Lemma 4

(b) and (c) are trivial. We prove (d)

Set \(\overline{\pi} = \pi \cap J^A_\beta \). Then:

1. \(\overline{\pi} : J^A_\beta \rightarrow J^A_\beta \) is finally

2. \(\pi = v + (\overline{\pi} \Gamma) \), \(\chi = \overline{\pi}(\pi) = \overline{F}(\pi) \)

3. \(\overline{F} = \overline{\pi} \Gamma \overline{\pi}(\pi) \circ J^A_\beta \)

It remains only to show:

4. \(J^A_\beta = \text{the } \Sigma \text{ closure of } \sigma \gamma(\overline{\pi}) \cup \chi. \)

Proof.

Let \(x \in J^A_\beta \), \(x \in \overline{\pi}(\chi) \). Let \(f \in J^A_\beta \), \(f : \pi \rightarrow x \). Then \(\overline{\pi}(f \mid \chi : \pi \rightarrow \overline{\pi}(\chi) \) and

\[x = \overline{\pi}(f \mid \chi(x) \text{ for all } x < \chi. \]

Q.E.D. (Lemma 6)
Lemma: There is a \(\phi \)-formula \(\varphi \) such that if \(N = \langle j^A_{a}, E \rangle \) is acceptable, then \(N \) is coherent if \(N \models \varphi \).

Proof:

(\(\varphi \) is the statement that there are arbitrarily large \(\lambda \) such that:

(a) \(FnS^A_3 \) is a fan and there is exactly one pair of ordinals \(\langle \kappa, \lambda \rangle \in FnS^A_3 \).

(b) \(j^A_{\kappa} \models ZF^- \), \(j^A_{\lambda} \models ZF^- \).

(c) \(A \models \langle a, b \rangle \in FnS^A_3 \), then \(a < \kappa \) and \(b < \lambda \).

(d) Let \(\langle \langle a_1, b_1 \rangle, \ldots, \langle a_m, b_m \rangle \rangle \in S^A_3 \) such that \(\langle a_i, b_i \rangle \in E \) for \(i = 1, \ldots, m \).

Let \(a \) be \(\Sigma_1(\langle j^A_{\kappa}, \varphi \rangle) \) in the parameter \(a \) and let \(b \) be \(\Sigma_1(\langle j^A_{\lambda}, \varphi \rangle) \) in the same parameter. Then \(\langle a, b \rangle \in E \).

(\(\exists \) There are \(\exists \lambda, \exists \gamma > \exists \alpha \) such that

\(\text{dom}(FnS_3^A) \) \quad \text{and} \quad \text{dom}(FnS_3^A) \)
(f) There is $\bar{a} \subseteq 3 \cap (\beta < \gamma, \beta < \gamma)$, $f \in S^A_3$, $f : \kappa \rightarrow \kappa$ and $\bar{a} \in \text{dom}(F_{\kappa}S^A_3)$ where $\bar{a} = \{ \langle \alpha, \beta \rangle < \kappa \mid f(\alpha) = \beta \}$. Then there is $\alpha \in S^A_3$ s.t. $\langle \bar{a}, \alpha \rangle \in \mathcal{F}$ and $\langle \beta, \delta \rangle \in \alpha$.

(g) There are $\bar{a}, \bar{f}, f, \kappa, \beta$.

(i) $f : \kappa \rightarrow S^A_3$, $f : \lambda \rightarrow S^A_3$.

(ii) $\forall \bar{a} = \{ \langle x, \beta \rangle \mid f(x) \in f(\beta) \}^3$, α and $\bar{a} = \{ \langle x, \beta \rangle \mid f(x) \in f(\beta) \}^3$, then $\langle \bar{a}, \alpha \rangle \in \mathcal{F}$.

(iii) $\forall \bar{a} = \{ \langle x, \beta \rangle \mid f(x) \in A \}^3$, $\alpha = \{ \langle x, f(x) \rangle \in A \}$.

Then $\langle \bar{a}, \alpha \rangle \in \mathcal{F}$.

(a1) - (e) guarantee that \mathcal{F} is an extender at some $\kappa_1 \times \gamma$ on $\Pi^{\kappa_1}_{\kappa_1} \gamma J^A_{\kappa_1}$ where κ is the largest cardinal in $J^A_{\kappa_1}$.

(f) guarantees that if $\bar{\gamma} : J^A_{\kappa_1} \rightarrow M$ weakly, then $\gamma = \bar{\gamma}(\kappa_1)$.

(g) Then guarantees that $M = J^A$.

It is clear that (a1) - (g) hold for all coherent N.

QED (Lemma 71)
Let $\mathcal{N} = \langle \mathcal{J}_d^\mathcal{A}, \mathcal{F} \rangle$ be coherent. Let \vec{x} be least α such that $\operatorname{dom}(\mathcal{F}) \cap \mathcal{A} = \mathcal{A}(\alpha) \cap \mathcal{J}_d^\mathcal{A}$. Clearly we have \mathcal{F} is weakly amenable if and only if $\vec{x} = \kappa + N$, where

$$\vec{x} = \kappa + N \iff \mathcal{A}(\kappa) \cap N \subset \mathcal{J}_d^\mathcal{A}.$$

Thus, if $\vec{\beta}$, $\vec{\beta}'$, $\vec{\mathcal{F}}$ are as in Lemma 6 (d), then $\vec{\mathcal{F}}$ is not weakly amenable.
As an example of the use of Σ_1-amenability, we prove the following lemma. The argumentation used will be of great importance later in connection with the so-called \star-ultra products.

Lemma 8. Let F be Σ_1-amenable with \bar{M}, let $\pi : \bar{M} \to M$, let $\kappa = \text{u} \text{it}(F)$. Then

$$\kappa(\kappa) \wedge \Sigma_1(M) \subset \Sigma_1(\bar{M}),$$

Proof:

Let A be $\Sigma_1(M)$, $A \subset \kappa$. Then

$$A \in \text{V} \text{e} \text{R}(z, \exists, \forall),$$

where $\text{R} \in \Sigma_0(M)$, $\forall \in \pi(f)(\alpha)$, $f \in \bar{M}$, $f : \kappa \to \bar{M}$ and $\alpha < \text{length}(F)$.

Hence:

$$A \in \text{V} \text{e} \text{R}(z, \exists, \forall) \text{R}(\pi(M), \exists, \pi(f)(\alpha)).$$

$$\text{V} \text{e} \text{R}(\pi(M), \exists, \pi(f)(\alpha)) \subset \Sigma_0(M).$$
Let \(\overline{P} \) have the same \(\Sigma_0 \) def. over \(\overline{M} \). Then:

\[A^3 \leftrightarrow \forall u \in \overline{M} \ v \in F(\{5 \mid \overline{P}(u, \overline{z}, f(s))\}) \]

\[\Sigma_1(\overline{M}) \text{ in } d, f, x, \text{ where} \]

\[\overline{F} \cup \Sigma_1(\overline{M}) \text{ in } x. \]

QED (Lemma 8).

The same proof shows:

Lemma 9 Let \(F, \overline{M}, M \) be as above. Let \(\overline{R}(x_1, \ldots, x_p, y_1, \ldots, y_q) \) be \(\Sigma_1(M) \). Let \(f_1, \ldots, f_q \in \overline{M} \) s.t.

\[f : n \rightarrow \overline{M} \text{, where } n = \text{rest} \{ F \}. \]

Let \(x_1, \ldots, x_p < n = \text{length} (F) \). Then:

\[\overline{R} = \{ \overline{z} \mid \overline{R}(\pi(x_1), \ldots, \pi(x_p), \pi(f_1(x_1), \ldots, \pi(f_q(x_1))) \}
\]

\[\in \Sigma_1(\overline{M}) \text{ in } f_1, \ldots, f_q, x_1, \ldots, x_p, \]

and \(x, \) where \(F(x_1, \ldots, x_p) \) is \(\Sigma_1(\overline{M}) \) in \(x \) (uniformly in the \(\Sigma_1 \) def. of \(F \) and the \(\Sigma_1 \) def. of \(F_F \) from \(M \)).