§2 \Sigma^* - Ultrapowers

We now consider acceptable \(\mathfrak{U} \) - models \(N = \langle J^A_\mathfrak{U}, B \rangle \) (i.e. \(J^A_\mathfrak{U} \) is acceptable + \(N \) is amenable). Let \(\kappa \leq \delta \) be an uncountable cardinal in \(N \). Then \(N \) is suitable for \(\kappa \) by acceptability. (Since if \(a \in \kappa \), \(a \notin N \), then \(\kappa \) is p.m. closed and \(\langle J^A_\kappa, a \rangle \) is amenable. Hence \(J^a_\kappa = \bigcup_{\nu < \kappa} J^a_\nu \in \text{Def}(J^A_\kappa, a) < J^A_\delta \).)

Call \(F \) an \textit{extender at} \(\kappa, \lambda \) on \(N \) iff \(F \) is an extender on \(\tau(\lambda) \cup N \) of length \(\lambda \). For each \(F \) we have defined the ultrapower \(\pi : N \rightarrow^F M \).

Making use of fine structure, we now define the so-called \(\Sigma^* - \text{ultrapower} \) \(\pi : N \rightarrow^* M \).

The intention is that \(\pi \) will
be $\Sigma_0^{(m)}$-preserving whenever $\omega_1^m > \kappa$.

Under certain conditions (e.g., if F is weakly amenable) it will be $\Sigma_1^{(m)}$-preserving for $\omega_1^m > \kappa$.

If F is both weakly amenable and Σ_1-amenable it will in fact be Σ^*-preserving.

An keeping with our earlier definition we first define:

Def. Let N be an acceptable ω-model, $\pi : N \rightarrow M$ be

(a) M transitive
(b) $\pi : N \rightarrow \Sigma_0^{(m)} M$ for $\omega_1^m > \kappa$ when $\kappa = \text{crit} (\pi)$
(c) $F = \{ \lambda \cap \pi (x) \mid x \in \mathcal{P}(\kappa) \cap M \}$, where $\kappa < \lambda \leq \pi (\kappa)$, λ is p.r. closed and
(d) N = the closure of $\text{rng}(\pi)$ under Σ_0-foms, under Σ^*-foms for $\omega_1^{m+1} > \kappa$.

Two immediate conclusions are:

Lemma 1.1 Let \(\omega^N \leq \kappa \). Then \(\Pi : N \rightarrow M \) if and only if \(\Pi : N \rightarrow^* M \).

Lemma 1.2 Let \(\omega^N > \kappa \). \(\exists \) \(\Pi : N \rightarrow^* M \), then \(\Pi : N \rightarrow \sum^*_N M \).

For the simple ultra-power \(\Pi : N \rightarrow M \), we had \(\mathcal{M} = \{ \pi(f) \mid f \in N \ \& \ f : \kappa \rightarrow N \ \& \ \kappa < \} \).

This is no longer true, in general, for the \(\star \)-ultra-power \(\mathcal{M} \), but we can formulate a similar condition.

Set: \(\Gamma = \Gamma_0(\kappa, N) = \{ \Pi \} \).

The set of \(f : \kappa \rightarrow N \) such that \(f \in N \ \& \ f \in \mathcal{M} \).

Let \(f : \kappa \rightarrow N \) be a good \(\Sigma^0_1 \) map, where \(\omega^{\kappa+1} > \kappa \).

Let \(f : \kappa \rightarrow N \) be a good \(\Sigma^0_1 \) map and let \(y = F(x) \).

Let \(y = G(x) \) be functionally absolute \(\Sigma^0_1 \) definition with the parameter \(p \), if necessary. Since \(\omega^N > \kappa \),
The Π_0^{stars} statements $i \kappa = \text{dom} G$, $\kappa = \text{dom} F$, $\forall \alpha < \kappa. F_\alpha (\nu) = G_\nu (\nu)$ hold in \mathcal{N}. Hence the corresponding statements hold of $(\Pi_1, \pi(q))$ in $M - i.e. y = F_\pi(q)(x), y = G_\pi(q)(x)$ define the same $\Sigma_1^m (M)$ map of $\pi(q)$ to M.

This means we can extend π to elements of Γ by setting $\pi(f) = \text{that } \pi'(\nu)$ defined by $F_\pi'(\nu)$, where $y = F_\pi(q)(x)$ is a functionally absolute good def. of f in the parameter p. Clearly then:

Lemma 1.3 $M = \{ \pi(f)(\nu) \mid f \in \Gamma, \nu < \kappa \}^3$.

We also have for Theorem 1:

Lemma 1.4 $M \in \mathcal{V} (\pi(f_1)(\nu_1), \ldots, \pi(f_n)(\nu_n)) \iff$

$\exists \pi \in F (\{ \nu_1 \mid \mathcal{N} \in \mathcal{V} (f_1(\nu_1), \ldots, f_n(\nu_n)) \}^{\omega_1})$.

If $\mathcal{V} \in \Sigma_0^{\omega_1}$ for $\omega_1 > \kappa$.
Thus, if $\pi: N \rightarrow^* M$, then μ, ν are uniquely determined by the extender F. The question, whether to a given F such π, M exist, can be answered as before by an "ultra-power construction". It will again turn out that π, M exist iff a certain "term model" \mathbb{D} is well-founded.

Let $N = \langle J^A, B \rangle$ be an acceptable J-model. Let $\kappa < \lambda$ and let F be an extender at κ, λ on N. Define a term model $\mathbb{D} = \mathbb{D}^*(N, F)$ by $\mathbb{D} = \langle D, \equiv, \llcorner, \lrcorner, \widetilde{A}, \widetilde{B} \rangle$, where

$D = \{ \langle d, f \rangle : f \in \Gamma, \alpha < \lambda \}$, where $\Gamma = \Gamma(m, N)$,

$\langle d, f \rangle \equiv \langle \beta, \gamma \rangle \iff \langle d, \beta \rangle \in F(\langle \beta, \gamma \rangle) = \langle \gamma, \varepsilon \rangle$,

$\widetilde{A} \langle d, f \rangle \iff d \in F(\langle \varepsilon, f \rangle)$,

$\widetilde{B} \iff B$.

For \(\Sigma_0 \) formulae, recall:

Lemma 2.1 Let \(\langle a_i, f_i \rangle \in D \ (i = 1, \ldots, m) \),
\(D = \varphi(\langle a_1, f_1 \rangle, \ldots, \langle a_m, f_m \rangle) \) \(\iff \)
\(\langle \bar{d} \in F(\langle \bar{x} \rangle \mid N \in \varphi(f_n(\bar{x}_n), \ldots, f_m(\bar{x}_m)) \rangle, \)
if \(\varphi \in \Sigma_0 \).

The proof is by induction on \(\varphi \)
making use of the following:

Lemma 2.2 Let \(R(y_m, x_{d_1}, \ldots, x_{d_r}) \) be
\(\Sigma_1^{(m)}(N) \), where \(\varphi^m > \alpha \) and \(\sum_{i=1}^r d_i \leq m \),

Let \(\nu = m + 1 \), \(\varphi^{\nu} > \alpha \). Let \(f_1, \ldots, f_n \)
be good \(\Sigma_1^{(m)}(N) \) maps, where \(f_i \)
\(i = 1, \ldots, n \), \(i \in \text{dom}(f_i) = \alpha \). There
is a good \(\Sigma_1^{(\nu)}(N) \) map \(g \in \text{dom} \).

\(\forall y_m R(y_m, f_n(\bar{x}_n), \ldots, f_m(\bar{x}_m)) \iff \)
\(\iff R(g(\langle \bar{x}_n, \ldots, \bar{x}_m \rangle), f_n(\bar{x}_n), \ldots, f_m(\bar{x}_m)) \)

for all \(\bar{x}_n, \ldots, \bar{x}_m < \alpha \).

(Note: \(m = j = \ldots = j_n = 0 \) in the case used
in the proof of Lemma 2.1.)
proof of Lemma 2.2

By [MO] §1.2 Lemma 5.3, there is a $\Sigma_1^{(m)}$ function F to H^m such that:

$$V y^m \mathcal{R}(y^m, x_1, \ldots, x_n) \iff \mathcal{R}(F(x_1, \ldots, x_n), x_1, \ldots, x_n).$$

Set $G(n) = F(f_1((n)_{\omega}^0), \ldots, f_m((n)_{\omega}^{n-1})), n \geq 1,$ where $n = \langle (n)_{\omega}^0, \ldots, (n)_{\omega}^{n-1} \rangle.$ Then G is a good $\Sigma_1^{(m)}$ function to H^m and dom $G \subseteq \kappa.$ Hence dom $(G) \in N,$ since $\omega^{m+1} > \kappa.$ Let $d = \text{dom}(G) \in N$ and set $g(n) = \begin{cases} G(n) & \text{if } n \in d \\ 0 & \text{if } n \not\in d \end{cases}$ for $n < \kappa.$ Then $g : \kappa \rightarrow H^m$ is a good $\Sigma_1^{(m)}$ function. [To see this, set $F'(x_1, \ldots, x_n, z) = \begin{cases} F(x_1, \ldots, x_n) & \text{if } z \in d \\ 0 & \text{if not, } \end{cases}$ Then $F' \in \Sigma_1^{(m)}$ to H^m and $g(n) = F'(f_1((n)_{\omega}^0), \ldots, f_m((n)_{\omega}^{n-1}), n).$]

The conclusion is immediate.

QED (Lemma 2.2)
At is obvious that if \(\pi : N \to [M] \)
Then \(\langle d, f \rangle \bar{\in} \langle \beta, g \rangle \iff \pi(f)(d) \in \pi(g)(\beta) \)
for \(\langle d, f \rangle, \langle \beta, g \rangle \in D \) and that
The map \(\langle d, f \rangle \mapsto \pi(f)(d) \) is onto \(M \).
Therefore

Lemma 2.3 If \(\bar{\in} \) is not well-founded, then there are no
\(\pi, M \) s.t. \(\pi : N \to [M] \).

From now on assume that \(\bar{\in} \)
is well-founded. We shall show
that \(\pi, M \) exist. By Lemma 2.2 \(\bar{\in} \)
is an equality relation for
\(D \) and satisfies extensionality.
It follows that there is a structure preserving map \([\cdot] : ID \to M \)
on to
a transitive \(M \) s.t.
\[[x] \in [y] \iff x \bar{\in} y \]
\[= \sim \]
Define \(\pi : N \to M \) by \(\pi(x) = [\xi_0, \text{crit}_x] \), where \(\text{crit}_x \) is the constant function on \(x \). By Theorem we conclude: \(\pi : N \to \mathfrak{E}_0 M \).

Lemma 2.4 Let \(\overline{H} = H^m_N \), \(H = U \pi^n \overline{H} \), where \(p^m_N = \min \{ p^m_N \mid \omega p^m_N > \kappa \} \).

Then \(\pi \mid \overline{H} : \overline{H} \to H \).

Proof.
By the def. of \(H \), whenever \(f \in H \) and \(\text{ng}(f) \subset \overline{H} \), then \(f \in H \).
Hence \(H = \{ [<a, \eta>] \mid \eta \in H, g : \kappa \to \overline{H}, \delta < \lambda \} \).

The conclusion follows easily.
\(\text{QED} \) (2.4)

In particular it follows that \(\kappa = \text{crit}(\pi), [<a, \text{fg}>] = \overline{\pi}(f)(x) \) for \(f \in \overline{H}, f : n \to \overline{H}, \delta < \lambda \).

We now prove:
Lemma 3

(a) M in an acceptable Σ-model

(b) $\pi : N \rightarrow \mathcal{E}_0^{(m)} M \text{ if } \omega \mathcal{P}_N^{\mathcal{P}_N} > \kappa$

(c) $\pi : N \rightarrow \mathcal{E}_2^{(m)} M \text{ if } \omega \mathcal{P}_N^{\mathcal{P}_N+1} > \kappa$

(d) Let \mathcal{F} be $\mathcal{E}_0^{(m)}$ for an n s.t. $\omega \mathcal{P}_N^n > \kappa$

or $\mathcal{E}_1^{(m)}$ for an n s.t. $\omega \mathcal{P}_N^{n+1} > \kappa$. Then:

$M \models \mathcal{F}([d_1, f_1], \ldots, [d_m, f_m]) \iff$

$\langle \mathcal{F}, N \models \mathcal{F}(f_1(\bar{x}), \ldots, f_m(\bar{x})) \rangle \in F$.

The proof stretches over several sublemmas. We first verify (b)-(d) in the sense of a "pseudo interpretation" of the $\mathcal{E}_n^{(m)}$ formulae in M.

Using this we verify (a). We then show that our pseudo interpretation is sufficiently correct for (b)-(d) to hold.
For $\omega_p^m > n$ set:

$$I_m^N = \begin{cases} \{ f \in \mathcal{P} | \text{any } (f) \in H_N^m \} & \text{if } \omega_p^m > \kappa^N \leq \omega_p^m \text{ in } \mathcal{N} \\ \{ f \in \mathcal{P} | \text{any } (f) \in H_N^m \} & \text{if } \omega_p^m + 1 \leq \kappa < \omega_p^m \text{ in } \mathcal{N} \end{cases}$$

Remark $I_m^N = \{ f \in \mathcal{P} | f \in H_N^m \}$ if $\omega_p^m \leq \kappa < \omega_p^m$ in \mathcal{N}.

Remark By the remarks following the proof of [MO] §1.2 Lemma 5.1, I_m^N may (but need not) be regarded as a set of four to H^m - i.e. defined by $\mathcal{C}(y^n, x)$.

Set: $H_m = \{ [\langle d, f \rangle] | \langle d, f \rangle \in D \land f \in I_m^N \}$. It is obvious that:

1. H_m is transitive.

We say that $M \models \varphi(x^i)$ in the pseudo interpretation if φ holds when x^i is taken as ranging over H^i for $\omega_p^i > \kappa$. We then get a pseudo-

For Theorem 1:
Lemma 3.1 Let \(\varphi \) be a \(\Sigma_0^m \) formula for an \(n \) r.t. \(\omega^m \uparrow \kappa \) or a \(\Sigma_1^m \) formula for an \(n \) r.t. \(\omega^m \uparrow \kappa \). In the sense of the pseudo interpretation we have:

\[
M \models \varphi([d_1, f_1], \ldots, [d_m, f_m]) \iff
\text{for } z \in F(\exists z \; N \models \varphi(f_1(d_1), \ldots, f_m(d_m)))
\]

proof. By induction on \(m \) and for given \(n \) by induction on \(\varphi \) using Lemma 2.2.

QED (Lemma 3.1)

Cor 3.2 \(\pi \in \text{IN} \rightarrow \Sigma_0^m \text{M for } \omega^m \uparrow \kappa \) in the pseudo interpretation.

Cor 3.3 \(\pi \in \text{IN} \rightarrow \Sigma_2^m \text{M for } \omega^{m+1} \uparrow \kappa \).

Let \(M \models \forall x^m \varphi(x^m, \pi(z)) \), where \(\varphi \in \Pi_1^n \).

Let \(\langle d, q \rangle \in D, q \in \text{IN} \). \(\text{r.t. } M \models \varphi([d, q], \pi(z)) \).

By Lemma 3.1, \(d \in F(\exists z \; N \models \varphi(q(y(3)), z)) \).

Hence \(\forall z \exists y N \models \varphi(q(y(3)), z) \). Hence

\(N \models \forall x^m \varphi(x^m, z) \).

QED (3.3)
By Lemma 2.1, Cor 3.3 we have:

Cor 3.4 M is an acceptable J-model.

proof:
At $\omega^1 \leq \kappa$, then $\pi : N \rightarrow \Sigma^M$ cofinally by Lemma 2.4. At $\omega^1 > \kappa$, then $\pi : N \rightarrow \Sigma^M$ in the pseudo interpretation, hence $\pi : N \rightarrow \Sigma^M$ since $H_0 = M$.

QED (3.4)

Set $\omega^m = \text{On} \cap \text{H}_m$.

Cor 3.5 Let $M = J^A_{\rho^m} \upharpoonright B$. Then $H_m = J^A_{\rho^m}$.

proof:
At $\omega^{m+1} > \kappa$, we have:

$\pi ^{\text{H}_m} : J^A_{\rho^m} \rightarrow \langle H_m, A' \cap \text{H}_m \rangle$,

At $\omega^m \leq \kappa < \omega^{m+1}$ in N, then by Lemma 2.4 we have:

$\pi ^{\text{H}_m} : J^A_{\rho^m} \rightarrow \langle H_m, A' \cap \text{H}_m \rangle$ cofinally.

QED (3.5)
Thus it remains only to prove:

Lemma 3.5 \(p_m = p_m^+ \) for \(\omega \rho^{m+1} > \kappa \) and \(p_m \leq p_m^+ \) for \(\omega \rho^m > \kappa \).

\textbf{Proof.} By \textit{ind. on} \(n \), \(n=0 \) is immediate, so assume \(n>0 \). We first show: \(p_m \leq p_m^+ \). Let \(A \subseteq \omega \rho^m \) be \(\Sigma_\omega^{(m-1)}(M) \). At \(n \) let \(\text{HN} \) to a show:

\textbf{Claim} \(\langle H_n, A \rangle \) is amenable.

Let \(z \in H_m \). \textbf{Claim} \(z \wedge A \in H_m \).

Let \(A \in A'(x, [eta, f]) \) where \(A' \in \Sigma_\omega^{(m-1)}(M) \). Let \(A' \in \Sigma_\omega^{(m-1)}(N) \) by the same definition. Let \(z = [\beta, g] \) where \(g \in \Gamma_{m}^{+} \). Define \(k: \kappa \rightarrow H_m \) by:

\[k(\beta) = g((\beta)) \cap \{ x \mid A'(x, f((\beta))) \} \]

Then \(k \in \Gamma_{m}^{+} \). Set \(w = [\lambda, \beta \prec k] \). Then \(w \in H_m \) and by the for

Thm (Lemma 2.1): \(w = z \wedge A \).
To see this note that for \(z_1, z_2, z_3 < n \):
\[
\mathcal{B}_z = \langle z_1, z_2, z_3 \rangle \rightarrow \mathcal{B}(\mathcal{B}_z) = \mathcal{B}(z_3) \cap \mathcal{B}(z_2) \cap \mathcal{B}(z_1).
\]
Henry \(\langle a, b, c \rangle \in \{ \mathcal{B}_z \in \mathcal{X}^3 \mid \mathcal{B}_z = \langle z_1, z_2, z_3 \rangle \} \) is:
\[
\mathcal{B}(\mathcal{B}_z) = \mathcal{B}(z_3) \cap \mathcal{B}(z_2) \cap \mathcal{B}(z_1).
\]

\[\text{QED (Lemma 3)} \]
As a corollary of the proof of \(\omega \rho^m \leq \omega \rho^m \) for \(\omega \rho^{m+1} > n \), we note:

Corollary 3.6 Let \(\omega \rho^{m+1} > n \). Then
\[
\pi^m \rho^m \subseteq \rho^m.
\]

Corollary 3.7 \(\pi : N \to^\ast M \).

Proof.

(a1)-(d) in the def. of \(\pi : N \to^\ast M \) are satisfied. We prove (e).

By (a)-(d) we know that \(\pi(f) \) is defined for \(f \in \Gamma \). By Lemma 2.4 we have \([\lambda, \text{id}] = \lambda\) for \(\lambda < \lambda \).

By For Thm 1:

\[
1D = \langle \lambda, f \rangle = \pi \langle \langle \lambda, \text{id} \rangle \rangle
\]

for \(\langle \lambda, f \rangle \in 1D \). Hence \([\lambda, f] = \pi(f) \lambda 0\)

Hence \(M = \{ \pi(f) | \langle \lambda, f \rangle \in 1D \} \),

QED (3.7)

(Cor 3.8, \([\lambda, f] = \pi(f)(\lambda) \),
We now show that the preservation properties of π can be improved if we make stronger assumptions on N.

Lemma 4.1 Let F be weakly amenable. Let $\omega_F^{m+1} \leq N < \omega_F^m$. Then $\pi : \mathcal{N} \rightarrow \Sigma_{m+1}^0, M$ cofinally.

(Recall $\pi : \mathcal{N} \rightarrow \Sigma_{m+1}^0, M$ cofinally means that π is Σ_{m+1}^0 preserving and $\omega_F^m = \sup_N \omega_F^m$.)

Proof.

$m = 0$ is immediate. Assume $m > 0$.

Claim 1. There is $B \subset \omega_F^m$ s.t. $B \in \Sigma_{m+1}^0(N)$ in the pseudo interpretation and $B \cap \omega_F^{m+1} \notin M$.

Let B be $\Sigma_{m+1}^0(N)$ s.t. $B \cap \omega_F^{m+1} \notin M$.

Let B be $\Sigma_1^{(m)}(N)$ in $\bar{p} + \text{let } B \text{ with the same } \Sigma_1^{(m)} \text{ def in } p = \pi(\bar{p})$ in the pseudo interpretation. Then $\bar{B} \omega^p_{m+1} = B \omega^p_{m+1} \& M$, since $\#(\bar{a}) \cap N = \#(\bar{a}) \cap M$ and $\bar{N} \geq \omega^p_{m+1}$. QED (Claim 1).

It remains only to show:

Claim 2: There is $D \in \Sigma_1^{(m-1)}(M)$ r.t. $D \omega^p_m$ and $D \& M$.

Let B be as in Claim 1. Then B is $\Sigma_1(\langle H_m, D' \rangle)$ where $D' \in \Sigma_1^{(m-1)}(M)$.

Hence $D' \& M$, since $B \& M$.

Since $H_m = \bigcup_{\bar{p}}$, there is f p.r. in A r.t. f maps ω^p_m onto $\{x \mid f(x) \in D'\}$. Then $D' \in \Sigma_1^{(m-1)}(M)$ and $D \& M$, since $D' \& M$.

QED (Lemma 4.1)
Claim 1 in the proof of Lemma 4.1 then gives us:

Cor 4.2 Let \(F \) be weakly amenable and \(\omega \rho^{m+1} \leq \kappa < \omega \rho^m \). Then

\[
\omega \rho^{m+1} \leq \omega \rho^{m+1}_N.
\]

The proof of Lemmas 4.1, 4.2 did not use the full strength of weak amenability but merely the fact that \(\mathcal{P}(\omega \rho^m) \cap N = \mathcal{P}(\omega \rho^m) \cap M \)

where \(\rho = \rho^{m+1}_N \leq \kappa < \omega \rho^m \). Thus:

Cor 4.3 Let \(\rho = \rho^{m+1}_N \) and \(\omega \rho + N \leq \kappa < \omega \rho^m \). Then the conclusion of 4.2, 4.3 hold.

Proof:

\(\omega \rho + N = \omega \rho + M \), since \(\pi : N \rightarrow \mathbb{M}_1 \).
and \(\pi \cap N = id \). Hence \(\mathcal{P}(wp) \cap N = \mathcal{P}(wp) \cap M \) by acceptability.
QED (Cor. 4.3)

Lemma 4.4: Let \(wp^{m+1} \leq \alpha < wp^m \) in \(N \).

If \(R^m_N \neq \emptyset \), then:

(a) \(\pi : N \to \Sigma_0^m M \) cofinally

(b) \(\pi'' R^m_N \subseteq R^m_M \)

Proof:

\(m = 0 \) is trivial. Let \(m > 0 \).

Claim: \(M \) is the closure of \(\alpha \) under good \(\Sigma_1^{(m-1)} \) fees.

Proof:

Let \(x \in M \), if \(x = \pi(f) \), then \(\chi(f) > 0 \) and \(f \) is a good \(\Sigma_1^{(m-1)}(N) \) fee. Then \(\pi(x) \in \pi(N) \) and \(\pi(f) \) is a good \(\Sigma_1^{(m-1)}(M) \) fee in a parameter \(\pi(f) \). Let \(q = G(\beta, \pi) \) where \(G \) is a good \(\Sigma_1^{(m-1)}(N) \) fee.
and \(\exists \chi < \omega \rho^m \). Let \(G = \Sigma^0_{ \frac{m-1}{N} } (M) \) by the same functionally absolute definition. Then \(x = \pi (f (x, G (\pi (3)), r) = H (x, \pi (3), r) \), where \(H \) is good, \(x \leq \pi (\lambda) < \omega \rho^m \) and \(\pi (3) < \omega \rho^m \).

QED (Claim 1).

Clearly \(\exists x \in H^k_m \) for \(k < n \).

It follows that \(H^m_{m-1} = h^m_{M^{m-1}, m-1} \).

Hence there is a \(\Sigma^0_{ \frac{m-1}{N} } (M) \) for

\(f \) mapping \(\omega \rho^m \) partially onto \(\omega \rho^{m-1} \). Hence \(\omega \rho^m = \omega \rho^m \).

Since otherwise \(\rho \) holds and \(\forall \langle \nu, \tau \rangle \exists f (\nu) \leq f (\tau) \) \(\exists x \in H^m_\nu \).

But \(\omega \rho^m \) is admissible in \(\tau \phi \), \(\mu \).

\(\omega \rho^m \) hence \(\forall \phi (\rho) < \omega \rho^{m-1} \).

Contrad! This proves (a).
Claim 2. Let \(n < m < 0 \) and the closure of any \(\Sigma_1^{(n)} \) under \(\Sigma_1^{(m)} \) for \(m < n \).

This follows from Claim 1. As it is apparent from the def. of \(\Sigma_1^{(m)} \) for \(m < n \), the \(\Sigma_1^{(m)} \) for \(m < n \) can be characterized as the smallest

Claim 1.

(a) Each \(\Sigma_1^{(i)} \) map to \(H_i \) is good \(\iff \)

\(n \leq i \leq m \).

(b) \(A \vdash G(x_1^i, ..., x_m^i) \) is a \(\Sigma_1^{(i)} \) map to \(H_i \)

\((i, 1, \ldots, i, m) \) and \(F \) is a good map

to \(H \) \(\iff \)

then \(G(F(x_i)) \) is good.

By induction on \(n \), it follows that for all \(x \) there are

a good \(\Sigma_1^{(m)} \) \(G \) and \(\bar{z} \in H^{(n)} \) such

\(G(x) = G'(x, \bar{z}) \). As particular,

if \(x \in M \), \(x = G(d, x_0, ..., x_{m-1}) \),

\(x < \omega^m \), Then there is
\[-23-\]

\[z \in H^m_{\mathcal{M}} \text{ s.t. } x = G'(d, \varepsilon, x_0, \ldots, x_{m-1}) \]

(living \(x_0, \ldots, x_{m-1} \in H^m_{\mathcal{M}} \)). But \(\omega \rho^m \) is p.l. closed + \(z = f'(3) \)

for a \(3 < \omega \rho^m \). Hence \(x = G''(d, 3, x_1, \ldots, x_{m-1}) \) for a \(3 < \omega \rho^m \)

where \(G'' \) is a good \(\Sigma_1^{(m-1)} \), \(f \subset \mathcal{N} \).

Q.E.D. (Lemma 4.4)

We now investigate the consequences of \(\Sigma_1 \) amenability.

Lemma 5.1 Let \(F \) be \(\Sigma_1 \)-amenable, \(\frac{\omega \rho^m}{N} \leq \kappa < \omega \rho^m \). Then

\[\pi \in \mathcal{N} \rightarrow \Sigma_1^{(m)} \text{ weakly essentially finite.} \]

Proof:

At \(n = 0 \) this is immediate. Otherwise \(\omega \rho^m > \kappa + \) it follows that \(F \) is

weakly amenable, since if \(\{x_i \mid i \leq \kappa \} \in \mathcal{N}_i \), then \(Y = \{i \mid x_i \in F \}_{\mathcal{N}} \) is \(\Sigma_1^{(n)}(N) \).

and \(Y \subset \mathcal{K} < \omega \rho^m \). Q.E.D. (5.11)
Lemma 5.2 Let F be Σ_1-amenable.

Let $\omega^{m+1} \leq \pi \leq \omega^m$ in \mathbb{N}. Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$. Then $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$.

Proof:

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M)$ in $[\beta, \overline{\alpha}(\beta)] = \overline{\alpha}(\beta)$

Let $B \in \Sigma_1^{(m')} \subseteq \Sigma_1^0(M) - 24 -

Since κ is p.o. closed, we can replace κ by J_{κ}^A in Lemma 5.2, where $M = \langle J_{\kappa}^A, D \rangle$. (Hence $J_{\kappa}^A = J_{\kappa}^A$, where $N = \langle J_{\kappa}^A, D \rangle$). We then conclude:
Lemma 5.3 Let F, n be as above.
Then $\sum_{1}^{(m)}(M) \cap \#(J_{n}^{A}) = \sum_{1}^{(m)}(N) \cap \#(J_{n}^{A})$
where $M = \langle J_{n}^{A}, D \rangle$, $N = \langle J_{n}^{A}, D \rangle$.

Until further notice assume:

(*) $F \in \Sigma_{1}$ - amenable wrt. N and one of the following holds:

(a) F is weakly amenable
(b) $wp^{+} < \kappa$ where $\wp = \wp_{N}^{m}$, $\wp_{N}^{m} \leq \kappa$.

(Thus $\#(wp) \cap N = \#(wp) \cap M$, where $\wp = \wp_{N}^{m}$, $\wp_{N}^{m} \leq \kappa$. Note that (a) holds whenever $\wp_{N}^{m} \leq \kappa$.)

Lemma 6.1 Assume (*). Let $wp^{m} \leq \kappa$. Then

(i) $H_{N}^{m} = H_{M}^{m}$
(ii) $\sum_{1}^{(m)}(N) \cap \#(H_{N}^{m}) = \sum_{1}^{(m)}(M) \cap \#(H_{M}^{m})$

Proof (By induction on m).

We first prove (i). It suffices to show $wp^{m} = wp^{m}$, since wp^{m} is a cardinal in M and $H_{M}^{m} = J_{n}^{A} \cap M$
when $M = \langle J_{n}^{A}, D \rangle$ and similarly for N.
where \(N = \langle J, \overline{A}, \overline{B} \rangle \) and \(J^A = J^\overline{A} \). Let \(m = h + 1 \). Then \(\rho^m \geq \rho^m_N\), since there is \(B \subseteq \omega \rho^m_N \) i.t. \(B \subseteq \Sigma_1^m(N) \) and \(B \subseteq N \). Hence \(B \subseteq \Sigma_1^m(M) \), since \(\pi : N \rightarrow \Sigma_1^m(M) \) and \(\pi \upharpoonright N = \text{id} \). But \(B \subseteq M \), \(\pi \upharpoonright \Sigma_1^m(M) = \pi \upharpoonright N \) \(\rho = \rho^m_N \). We show: \(\rho^m_N \leq \rho^m_M \). Suppose not.

Then there is \(B \subseteq \omega \rho^m_M \), \(B \subseteq \Sigma_1^m(M) \) i.t. \(B \subseteq M \). But then \(B \subseteq \Sigma_1^m(N) \) by Lemma 5.2 if \(\kappa < \omega \rho^m_N \) and otherwise by the induction hypothesis.

But \(B \subseteq N \) since \(\rho \upharpoonright \kappa \downarrow N \subseteq M \).

Contradiction! This proves (i).

To prove (ii) let \(H = H^m_N = H^m_M \) and let \(B \subseteq H \). \(B \subseteq \Sigma_1^m(M) \) i.t. \(B \subseteq \Sigma_1^m(H, D) \) for a \(D \subseteq \Sigma_1^m(M) \). But this is equivalent to saying \(B \subseteq \Sigma_1^m(H, D) \) for a \(D \subseteq \Sigma_1^m(N) \) (by 5.2 or the induction hypothesis), which is in turn equivalent to: \(B \subseteq \Sigma_1^m(N) \).

QED (Lemma 6.1)
Cor 6.2 \[\pi : N \xrightarrow{\cong} M \]

Proof: We show \(\pi : N \xrightarrow{\cong} M \). For \(\wp^m \geq n \)

For \(\wp^m > n \) we use Lemma 5.1. For \(\wp^m < n \)

employ induction on \(n \), using Lemma 6.1(a).

QED (Cor 6.2)

Cor 6.3 \[\pi^* P^m \subseteq P^m \text{ for } \wp^m \leq n. \]

Proof:

Let \(\tilde{p} \in P^m, p = \pi(\tilde{p}) \). Assume \(H \in \text{Horn} \) to show

Claim: \(A_{P^h} \not\subseteq M \) for \(m \geq h \geq 1 \).

We proceed by induction on \(m - h \). At \(m = h \), then \(A_{P^h} = A_{P^h} \), since

\[\pi : N \xrightarrow{\cong} M, \pi \mid H^m = \text{id}. \]

But

\[A = A_{P^h} \not\subseteq N; \text{ hence } A \not\subseteq M, \]

\(\pi \mid H \cap M = \pi \mid H \cap N \), where \(H = H^m = H^m \).

Now let it hold for \(h + 1 \leq m \). Then

\[A_{P^{h+1}} = B \cap H^{h+1}, \text{ where } B \in \Sigma_1 \langle H^h, A_{P^{h+1}} \rangle \text{ in } p. \]

Hence

\[A_{P^{h+1}} \not\subseteq M, \text{ since otherwise } \langle H^h, A_{P^{h+1}} \rangle \]

\[\subseteq M. \]

QED (Cor 6.3)
Corollary 6.4 \(\mathcal{P}_N^* \subseteq \mathcal{P}_M^* \)

Proof: Lemma 3 \(\forall \omega \in \omega \); otherwise Corollary 6.3

Corollary 6.5 \(\#(\kappa) \cap \Sigma_1^{(m)}(N) = \#(\kappa) \cap \Sigma_1^{(m)}(M) \).

1. \(\forall \omega^m \uparrow \kappa, \text{ then } \omega^m \uparrow \kappa \) and 2. \(\forall \omega^m \uparrow \kappa, \text{ let } N = \langle J_\alpha^M, J_\alpha^N \rangle, \text{ and } M = \langle J_\alpha^M, J_\alpha^N \rangle \).

Now let \(\omega^m \uparrow \kappa \), \(\kappa \in \text{Induction on } \kappa \text{ we prove:} \)

Claim \(\#(\kappa) \cap \Sigma_1^{(m)}(N) = \#(\kappa) \cap \Sigma_1^{(m)}(M) \)

1. \(\forall \omega^m \uparrow \kappa, \text{ it follows by Lemma 5.2,} \)

Now let \(\omega^m \uparrow \kappa, \text{ let } N = \langle J_\alpha^M, J_\alpha^N \rangle \text{ and } M = \langle J_\alpha^M, J_\alpha^N \rangle \text{ where } \phi \in \Sigma_1^m \text{ and } R_{\phi}(\bar{x}, \bar{z}^m) \iff \langle H, \overrightarrow{R}_{\phi} \rangle \models \phi, \)

where \(\phi \in \Sigma_1^m \) and \(R_{\phi}(\bar{x}, \bar{z}^m) \iff \langle H, \overrightarrow{R}_{\phi} \rangle \models \phi, \)

\(\iff R_{\phi}(\bar{x}, \bar{z}^m) \) and \(R_{\phi} \in \Sigma_1^m \)

relational on \(H \). The claim follows by the induction hypothesis and \(H_N^m = N_M^m \). QED (Cor. 6.5)
Finally we note a stronger form of Lemma 5.

Lemma 7. Let F be Σ_1-amenable. Let $\omega^m + 1 < \nu < \omega^m$. Let

$$R(x_1, \ldots, x_p, y_1, \ldots, y_q) \in \Sigma_1^{(m)}(N)$$

Let $f_1, \ldots, f_\nu \in \Gamma(n, N)$. Let $d_1, \ldots, d_\nu < \nu$. Let

$$\tilde{R} = \{ \tilde{x} \in \Gamma(n, N) \mid R(\pi(x_1), \ldots, \pi(x_p), \pi(f_1)(d_1), \ldots, \pi(f_\nu)(d_\nu)) \in \Sigma_1^{(m)}(N) \}$$

Moreover, if $p_i \in \Gamma(n, N)$ or f_i is a good $\Sigma_1^{(m)}(N)$ function in p_i (i.e., $i = 1, \ldots, p$) and

$$r \in \text{int.} \ E_{d_1, \ldots, d_\nu} \in \Sigma_1(N) \in \tilde{R},$$

then \tilde{R} is $\Sigma_1^{(m)}(N)$ in r, i.e., uniformly in the $\Sigma_1^{(m)}$-class of R, the functionally absolute class of f_i from p_i (i.e., $i = 1, \ldots, p$) and the Σ_1-class of F_ν from r.

The proof is a virtual repetition of that of Lemma 5.2.

(Remark: The proof uses only that $E_{d_1, \ldots, d_\nu} \in \Sigma_1^{(m)}(N)$ in r.)
Lemma 8 Let \(\langle N_i \mid i < \theta \rangle, \langle \pi_{ij} \mid i \leq j < \theta \rangle \) be
such that \(N_0 \) is acceptable and:
(a) \(N_i \) is transitive
(b) \(\pi_{ij} : N_i \rightarrow N_j, \) \(\pi_{ij} \circ \pi_{kh} = \pi_{ik}, \) \(\pi_{ii} = \text{id}_i \)
(c) \(\pi_{ii} : N_i \rightarrow N_i \) is the direct limit of
\(\langle N_i \mid i < \xi \rangle, \langle \pi_{ij} \mid i \leq j < \xi \rangle \) for limit \(\xi < \theta \)
(c) \(\pi_{ii+1} : N_i \rightarrow N_{i+1} \) where \(F \) is weakly
amenable and \(\varepsilon_i - \) amenable on \(N_i \).

Then for all \(i < \theta \):
(i) \(N_i \) is acceptable
(ii) \(\pi_{ij} : N_i \rightarrow N_j \) for \(i \leq j \)
(iii) \(\pi_{ij} : P^x_i \rightarrow P^x_j \) for \(i \leq j \)
(iv) Let \(\kappa_i = \text{cof}(F_i). \) If \(\kappa_i \leq \kappa_h \) for
\(i \leq h < i \), then \(\#(\kappa_i) \cap \Sigma^{\omega_1}(N_i) = \#(\kappa_i) \cap \Sigma^{\omega_1}(N_i) \)
for \(m < \omega \).
(v) \(\#(\kappa_h) \leq \omega \) for \(i \leq h < i \), then
\(\pi_{ij} : N_i \rightarrow N_j \) and \(\pi_{ij} : P^m_i \rightarrow P^m_j \)
will also \(\omega^{m+h} \leq \kappa_h \leq \omega^m \) for \(i \leq h < i \),

Then \(\pi_{ij} : N_i \rightarrow N_j \) cofinally,
Lemma 8 is proven by induction on j.

Note When $\langle N_i, \pi_i \rangle, \langle \pi_{i'} \mid i \leq i' < \theta \rangle$ are as in (a1, (b), $\lim (\Theta)$, and $\langle N_i \rangle, \langle \pi_{i'} \rangle$ has a well-founded direct limit, then we often write:

$$N_i \langle \pi_i \mid i < \theta \rangle = \lim_{i \leq i' < \theta} (N_i, \pi_{i'})$$

to indicate that $N_i \langle \pi_i \rangle$ is the transitive direct limit of $\langle N_i \rangle, \langle \pi_{i'} \rangle$.