Appendix to § 7

All theorems up to the statement of solidity (Lemma 6) go through for arbitrary premises. Lemma 6 was proven only for basic mice. The reason for assuming barinness was that, in certain key steps, this gave us unique iterability, which in turn enabled us to apply the Dodd-Jensen lemma. At the meantime, however, Neeman and Steel have proven a lemma about arbitrary mice which in many ways has the force of Dodd-Jensen, without requiring unique iterability. In the following we state and prove the Neeman-Steel lemma and then show how to prove Lemma 6 for arbitrary mice. (We recall that a mouse is defined to be an iterable premouse.)
The Neeman-Steel Lemma

Lemma Let \(N \) be a countable iterable mouse. Let \(\langle y_i \mid i < \omega \rangle \) enumerate \(\text{On} N \). There is an iteration strategy \(S \) s.t. whenever \(N' \) is an \(S \)-iterate of \(N \) with map \(\pi \) and \(\sigma : N \to \Sigma \times N' \), then:

(a) \(N' \) is a simple iterate of \(N \) with simple iteration map \(\pi' \).
(b) \(\pi(y^\alpha) \preceq \sigma(y^\alpha) \) lexicographically.*

Cor Call such strategies \(y^\alpha \)-true. Let \(S, S' \) be \(y^\alpha \)-true strategies.

+ Let \(N' \) be an \(S \)-it. of \(N \) with map \(\pi \) and an \(S' \)-it. of \(N \) with map \(\pi' \).

Then \(\pi = \pi' \),

* i.e., \(\pi(y_i) \preceq \sigma(y_i) \) if \(i \) is least s.t.,

\(\pi(y_i) \neq \sigma(y_i) \).
Claim. There is an S-iterate N' of N and a map $\sigma : N \to \Sigma^* N'$ such whenever N' is an S-iterate of N' with map Π', and $\sigma' : N \to \Sigma^* N'$, then N' is a simple iterate of N' and $\Pi' \sigma'(y') \leq \sigma' \Pi'(y')$ lexicographically.

We first note that the Claim proves the Theorem. Let Σ be the strategy induced by $\sigma : N \to N'$.

Let \overline{N} be an Σ iterate of N with map $\overline{\Pi}$ and let $\overline{\sigma} : N \to \Sigma^* \overline{N}$.

Let $\Pi' : N' \to N'$,

$\sigma' : \overline{N} \to \Sigma^* N'$ be the result of copying $(\sigma' \Pi' = \Pi' \sigma')$. Then $\sigma' \overline{\sigma} : N \to \Sigma^* N'$. Hence N' is a simple iterate of N'.
Hence \overline{N} is a simple iterate of N. But $\pi \sigma(\gamma^2) \leq \sigma(\gamma^2)$ lexicographically. Hence $\sigma'(\overline{\gamma}^2) \leq \sigma(\gamma^2)$ and $\overline{\gamma}^2 \leq \sigma(\gamma^2)$ lexicographically.

\textbf{Q.E.D. (Claim \rightarrow Thm 1.)}

To obtain N, σ, we define a sequence N_i, σ_i, π_i as:

(a) $\sigma_i : N \rightarrow N_i$

(b) N_0 is an S-iterate of N with map θ

(c) N_{i+1} is an S-iterate of N_i with map π_{i+1}

\underline{Case 1} $i = 0$. Set:

$M' \quad \text{iff} \quad M$ is S-iterable and M' is a non-simple S-iterate of M.

R is obviously well-founded. Let N_0 be R-minimal set. There
in $\sigma : N \rightarrow \mathcal{E}^* N_0$. Let τ_0 be the iteration map from N to N_0.

(Thus whenever N' is an S-iterate of N_0 and $\circ : N \rightarrow \mathcal{E}^* N'$, then N' is a simple iterate of N_0.)

Case 2. $i = h+1$. Set i such that $\langle M', \overline{3}' \rangle \sim \langle M, \overline{3} \rangle$ if M is S-iterable, M' is a simple S-iterate of M with map τ_0 and $\overline{3}' \leq \tau_0(\overline{3})$.

Then R is well-founded.

Choose $\langle N', \overline{3}' \rangle \in R$ maximal set.

(a) N' is a simple S-it. of N_0 with map σ.

(b) There is $\sigma : N \rightarrow \mathcal{E}^* N'$ such that

\[\sigma(\overline{7}_i) = \tau_0 \sigma_0(\overline{7}) \text{ for } i < h \]

and $\sigma(\overline{7}_h) = \overline{3}'$.

Set $N_i = N'$, $\sigma_i = \sigma$, $\tau_i = \tau_0$.

Now let $\langle \pi_i \rangle_{i \leq i < \omega}$ be commutative.

Let $\pi_i = i \cdot N_i$, $\pi_{i,i+1} = \pi_{i+1}$, $\pi_i \cdot \pi_{i,i} = \pi_{i,i}$. Then $\pi_i : N_i \rightarrow \mathbb{N}^*$.

Set $i : N', \langle \pi'_i \rangle = \lim_{i \leq i < \omega} (N_i, \pi'_i)$. Then $i : N' \rightarrow \mathbb{N}^*$.

It is easily seen by induction on i that

(*) Af N^* is an S-iterate of N_i with map π_i and $\sigma : N \rightarrow \mathbb{N}^*$.

Then

(a) N^* is a simple it. of N_i.
(b) $\pi'_i(\langle \eta, l \rangle_{l < i}) \leq \sigma(\langle \eta, l \rangle_{l < i})$ lexicographically.

Define $\sigma : N \rightarrow N'$ by $\sigma(\eta) =$ $\pi'_i(\sigma(\eta))$ for $l < i$. (This is easily seen to be a definition).

Then $\sigma : N \rightarrow \mathbb{N}^*$ has the desired property by (*)). QED
Note "Morse" means "iterable premice". We could, in fact, have proven the Neeman-Steel lemma for smoothly iterable premice, replacing "iterate" by "smooth iterate" and "iteration strategy" by "smooth iteration strategy". We could then prove Lemma 6 for smoothly iterable premice. However, this would be superfluous, since in §9 we show that smoothly iterable premice are iterable without making any use of §7.

We now modify the proof of Lemma 6 for arbitrary mice. By a Löwenheim–Skolem argument, if there is a counterexample, then there is a countable one. Hence our counterexample \(M \) of minimal length is countable. Let \(\langle \gamma_i \mid i < \omega \rangle \) be an enumeration of \(\text{On}_M \). Case 1 is
as before. From the failure of Case 1, however, we cannot infer that \(M \) is uniquely iterable. As before, we coiterate \(\langle M, W, 2 \rangle \), \(M \) to get \(y^M, y_0^M \), and also form the iteration \(y^M = \sigma(y^W) \). In the iterations \(y^M, y_0^M \) of \(M \), we apply the strategy given by the Neeman–Steel lemma. (This dictates the strategy for \(y^W \).)

Dodd–Jensen was used only in cases 2.1.1, 2.1.2, 2.1.3, and 2.1.5. An all but the last, the same proof goes through literally, using Neeman–Steel in place of Dodd–Jensen. The proof (1) in 2.1.5 need a trivial reformulation: We first observe that \(\pi^M_{\omega_0}(\vec{y}) \leq_{\omega_0} \pi^A_{\omega_0}(\vec{y}) \) lexicographically; hence, \(\pi^M_{\omega_0}(\vec{y}) = \pi^A_{\omega_0}(\vec{y}) \leq_{\omega_0} \pi^A_{\omega_0}(\vec{y}) \) lexicographically.

Similarly \(\pi^A_{\omega_0}(\vec{y}) \leq_{\omega_0} \pi^M_{\omega_0}(\vec{y}) \) lexicographically. QED (2.1.5)
A slight change is needed in the proof of Case 2.2.4, since we made use of the assumption that M is basic in proving the Claim $A \in M$. We modify the proof as follows: Let \(i = 0 \), \(\nu_0 = \kappa \). Since \(\nu_i > \kappa \) for \(i > 0 \), we know: $A \in M_1$. If $M_0 = M$, we are done. If not, then $\pi : M \rightarrow M_1$, where $\pi_0 = \pi_0 \overline{q}$. Then $A \in H = \pi_0 M_1$, where $\pi_0 M_1$.

Then $A \in H = \pi_0 M_1$, where

\[
(\ast) \quad \pi^T : H \rightarrow H + Z = \kappa + M.
\]

Since $\kappa = \lambda^+ \omega$, we have $\kappa < \sigma(\alpha) = \lambda^+ M$. Hence $J_{\sigma(\alpha)} \subseteq Z + C$ and $E_2 \in J_{\sigma(\alpha)} \subseteq J_{\sigma(\alpha)}$. Hence $H \in J_{\sigma(\alpha)} \subseteq J_{\sigma(\alpha)}$. Hence $A \in H \subseteq \lambda^+ M$. \(\Box \) (2.2.4)

Case 1.2.5.4 must be modified similarly.
For countable mice we can weaken the assumption of iterability to countable iterability (i.e., there is an iteration strategy S such every countable S-iteration can be continued) if the following assumption is satisfied:

\[(\ast) \bigwedge \alpha < \gamma \quad A \neq \emptyset.\]

All proofs will go through as long as we know:

1. The coiteration of two countable countably iterable premice terminates after countably many steps.
2. If N, M, ω are countable, $\langle N, M, \omega \rangle$ is good and countably iterable and ω is countably iterable, then the coiteration of $\langle N, M, \omega \rangle$ with ω will terminate after countably many steps.

We get:
Fact Assume $\forall \alpha < \omega_1 \exists \alpha^+$ exists.

Then (1), (2) hold.

proof.

It suffices to display the proof of (1).

Our earlier proof in §4 that the cooperation of two countable mice terminates in countably many steps proceeded by contradiction, assuming only that the cooperation could be continued to length $\omega_1 + 1$.

Thus it suffices only to show:

Claim Let S be a countable iteration strategy for a countable mouse \mathcal{Q}.

Let $Y = \langle \langle q_0, \langle \nu_i \rangle, \langle \eta_i \rangle, \langle \omega_0 \rangle, T \rangle \rangle$ be an S-iteration of length ω_1. Then Y has a cofinal branch b (which is necessarily unique and well-founded by the regularity of ω_1).

Proof. Let $A \in \mathcal{W}_1$ code Y. Let $X < \mathcal{H}_2$ be countable, where $\mathcal{Z} > \omega_1$ is regular.
and $A \in H_\omega$. Let $\sigma : H \hookrightarrow X$, $\sigma(\bar{A}) = A$, $\sigma(\alpha) = \dot{\alpha}$. Then $\bar{A} = \alpha \cap A$, $\sigma(\bar{\gamma}[\bar{A}]) = \bar{Y}$, $\sigma(\bar{A}^\#) = A^\#$. Call a well-founded branch b in \bar{Y} **economical** iff $\sup \{ \gamma_i | i \in b \} = \sup \{ \nu | E^Q_b \neq \emptyset \}$. Then $\bar{b} = \{ \gamma_i | i \leq \alpha \}$ is non-economical, since $\nu = \sup \{ \gamma_i | i \in \bar{b} \}$ where $Q_\beta = Q_b$, $E^Q_{\bar{b}} \neq \emptyset$. Since Q is basic, it follows by $\S 6$ that \bar{b} is the unique cofinal non-economical branch in $\bar{Y}[\bar{A}]$. Let $\text{rn}(Q_b) < \beta < \omega_1$ where β is admissible in \bar{A}. Let L be the infinitary language over $L_\beta \bar{[\bar{A}]}$ with:

- **Conscinate** \bar{c} ($\bar{c} \in L_{\beta}[\bar{A}]$), \bar{Q}, \bar{b}.
- **Axiom**: $\exists \bar{c}$ ($\forall \bar{c} \in \bar{Q} \Rightarrow \bar{c} \subset \bar{b}$).

for $\bar{c} \in L_{\beta}[\bar{A}]$, \bar{b} is a cofinal non-economical branch in $\bar{Y}[\bar{A}]$, $\bar{Q} = Q_b$, $\text{rn}(\bar{Q}) < \beta$, \bar{Q} is transitive

(whence $\text{rn}(Q_b) < \chi < \beta$).

L is consistent, since it has the model $\langle L_{\omega_1}[\bar{A}], Q_b, \bar{b} \rangle$. But if L is any model of L (w.t. w.l.o.g.) $x^{L_{\beta}} = x$ for $x \in L_{\beta}[\bar{A}]$,
Then $\check{b} \uparrow \omega$ is a well-founded non-economical branch through $Y|\alpha$. Hence $\check{b} \uparrow \omega = \check{b}$.

By the completeness theorem for admissible sets, we conclude:

$i \in \check{b} \iff L \vdash i \in b'$.

Hence $\check{b} \in L[\check{A}]$. But then $\sigma^* L \uparrow \om^H[\check{A}]$ extends to $\bar{\sigma}^* : L[\check{A}] < L[\check{A}]$, using

the indiscernibles given by $\check{A}^#, \check{A}^#$.

Hence $b = \bar{\sigma}(\check{b})$ is a cofinal well-founded branch in Y. Q.E.D (Fact)