§1 Remarks on the gap two problem

Consider a first order language L with predicates E, A, B and axioms:

1. $\exists C^+ A$ in an infinite cardinal $+$
2. $B = A^+$ in the largest cardinal κ.

By a (κ, κ^+)-model of L we understand a model

$$\mathcal{M} = \langle M, \mathcal{L}_M, \mathcal{A}_M, \mathcal{B}_M, \mathcal{E}_M, \cdots \rangle$$

such that $\mathcal{M} = \kappa^+$ and $\mathcal{A}_M = \kappa$.

Note The usual notion of (κ, κ^+)-model requires only that $\mathcal{M} = \kappa^+$ and $\mathcal{A}_M = \kappa$.

If we added a predicate F and the axiom $F: \forall \mathcal{M} \in \mathcal{V}$, then the two notions would become equivalent for models of Th is theory.

Note If \mathcal{M} is a (κ, κ^+)-model, then $\mathcal{B}_M = \kappa^+$. To see this note that, for any z, \mathcal{M}, letting \preceq_M be the natural ordering of \mathcal{M}, if $z \in \mathcal{M}$, then for all $x \in \mathcal{B}_M$,

$$\exists z \exists x \exists z <_{\mathcal{M}} x^3 \leq \kappa$$

(Th is is because either $\exists z \exists x <_{\mathcal{M}} x^3 = \emptyset$ or else...
Let \(M \models f : A \rightarrow x \). Let \(M \models f : A \rightarrow x \).
Set \(\bar{f} = \{ z \mid \forall y \exists z = f(y) \} \). Then
\(f : A \rightarrow \{ z \mid \exists x \leq \omega \ x \} \). Hence
\(B = \{ z \mid \exists x \leq \omega \ x \} \) has cardinality
\(\leq \omega^+ \). Suppose \(\bar{B} \leq \omega \). Then, by the
above argument, for each \(x \in \text{On}_\omega \), we have
\(\{ z \mid \exists x \leq \omega \} \leq \omega \). But
\(\text{On}_\omega = \bigcup \{ z \mid \exists x \leq \omega \} \). Hence
\(\text{On}_\omega \leq \omega^+ < \omega^{++} \). Contrad!

\textbf{Lemma 1} Let \(M \) be a \((\omega; \omega^+)\) model,
set \(b \) be an initial segment of
\(\langle \text{On}_\omega, \leq \rangle \) sat. \(\text{cf}(b) = \omega^+ \). Then
\(b \) has a supremum in \(\langle \text{On}_\omega, \leq \rangle \).
(i.e. There is \(z \in \text{On}_\omega \) sat. \(z \leq \langle \rangle \).\(\langle \rangle \text{ sat. } \forall x \in b \ x \leq \langle \rangle \)
for all \(u \in \text{On}_\omega \).
1. of Lemma 1. Suppose not.

Since \(\{ z \mid z <_\alpha x^3 \} \subseteq \tau^+ \) for \(x \in \Omega_{\alpha^+} \) and \(\Omega_{\alpha^+} = \tau^{++} \), we have:

\[\text{cf}(\Omega_{\alpha^+}) = \tau^{++} \text{ in } <\alpha. \]

Hence \(b \) is a proper segment of \(\Omega_{\alpha^+} \), let \(x \in \Omega_{\alpha^+} \setminus b \). Let \(f \in \mathcal{N} \) s.t.

\[\mathcal{M} \models f : B \xrightarrow{\text{ult}} x. \]

Then \(\tilde{f} = \{ \langle u, v \rangle \mid \mathcal{N} \models u = f^{|\mathcal{M}|_u} \} \) is a map of \(B \) onto \(\tilde{x} = \{ z \mid z <_\alpha x^3 \} \). For \(z \in B \) let \(\mathcal{M} \models f_z = f^{|\mathcal{M}|_z} \) and let \(\tilde{f}_z : \tilde{z} \xrightarrow{\text{ult}} \tilde{x} \) have the obvious definition.

Then \(\tilde{f}_z : \tilde{z} \xrightarrow{\text{ult}} \tilde{x} \). Since \(x = \text{sup} b \) in \(<\alpha \), there \(u \in \tilde{x} \setminus b \). Hence \(\text{there is } z \in B \) s.t. \(u \in \text{rng}(\tilde{f}_z) \).

However:

(1) \(\text{rng}(\tilde{f}_z) \cap b \) is bounded in \(b \),

since \(\text{rng}(\tilde{f}_z) = \tilde{z} \leq \tau \) and

\[\text{cf}(b) = \tau^+ \text{ in } <\alpha. \]

Pick \(d \in b \) s.t. \(\text{rng}(\tilde{f}_z) \cap b \subset d \),
Then there is a unique $q \in \text{On}$ with

\[q \in \operatorname{ran} (f_z) \mid u > d ^ 3, \]

so follow immediately that

\[q = \min \{ q \in \operatorname{ran} (f_z) \mid u > d ^ 3 \}. \]

(Note that def. of q does not depend on d; it would be the same for any $d' \in b$ if $t. \operatorname{ran} (f_z) \mid b < d ^ 2$.)

Obviously

\[q_2 < q_1 \in B \rightarrow q_1 , q_2 , \in M. \]

We now define $\langle n_\mu \mid u \in B \backslash \{ \} \rangle$. Let

\[M = \{ n_\mu \in \omega \mid \text{as follows} \} \]

Pick a $d = \lim _{n_\mu} \in b$ s.t. $\operatorname{ran} (f) < d _n$.

Working in M, define a map

\[q_\mu : \{ z, u \} \rightarrow \text{On} \]

by

\[q_\mu (w) = \min \{ q \in \operatorname{ran} (f_w) \mid u > d ^ 3 \}. \]

Then in fact $M \models q = q (w)$ for

\[z < w \leq u. \]

An M let $A = A_\mu = \{ q (w) \mid z \leq w \leq u \}.$

Then $M \models A$ is finite, in which

\[A \subseteq \omega. \]
\[q(w) \leq q(w') \text{ for } w' \leq w. \]

Let \(\mathcal{M} \models m_u = z \).

(5) \(\mathcal{M} \models m_u \leq w \); hence \(m_u \in A \).

(6) \(z \leq m \leq u \in B \)

\[z \leq m \leq u \in B \rightarrow \]

\[\rightarrow m_u \leq m_u', \]

since \(\mathcal{M} \models q^u = q^u' \) [\(z, u \)] and hence \(\mathcal{M} \models a_u \leq a_u' \).

(7) Let \(z \leq u \in B \). There is \(u' \in B \)

\[\forall u, \mathcal{M} \models a_u \neq a_u', \]

(hence \(m_u \leq m_u' \)).

\(m_u \leq m_u' \)

\[q_u = q(w) = \min_a \text{ in } \mathcal{M}, \]

\[q_u = q(w) = \min_a \text{ in } \mathcal{M}. \]

Let \(p \in o_m \setminus b \) s.t. \(p \leq q_u \).

(Then there must exist \(a_u \), since otherwise \(q_u = \sup b \) in \(\leq o_m \).)

Then \(\mathcal{M} \models \forall u' \in B \) p.eq \(q_u \).

Let \(p \text{ e.q. } q_u \), where \(u \leq u' \).

Then \(q_u \leq p \leq q_u' \).

Hence \(\mathcal{M} \models a_u = \sup \{ q_u \} \neq \sup \{ q^u \} = a_u' \).

Hence \(m_u' \geq m_u \). \(\Box \)
Now select \(<z_3, 13 < z^+ > \) so that:
\[
z_3 < B \text{ and } z_0 = z_1 \\
z_3 \leq z_3 \text{ and } m_{z_3} > m_{z_3} \\
z_3 \leq 3 \text{ and } z_3 \geq z_3 \text{ for all } 3 < \lambda
\]
(Lim \(\lambda \)).

Then \(m_{z_3} < m_{z_3} \), for \(3 < 3' \).

Hence \(<m_{z_3}, 13 < z^+ > \) injects \(\mathbb{Z}^+ \) into \(A \), where \(\mathbb{Z} = \mathbb{Z} < \mathbb{Z}^+ \).

Contradiction! QED (Lemma11)
Now let L^* be L together with a new predicate C and the additional axiom:

$$C = \{ C \lambda \mid B \subset \lambda \land \text{Lim}(\lambda) \}$$

is a \square_B-sequence.

We shall give a model of set theory satisfying $\text{GC} + \Delta^+$, i.e.,

L^* has no (ω, ω_2)-model.

(We shall ensure that \square_{ω_2} will hold for $\omega > \omega_1$, hence $(\kappa, \kappa^+) \not\rightarrow (\omega, \omega_2)$ for $\kappa > \omega_1$.) Since Δ^+ holds, there will be a Kurepa tree in the model. This will show that the gap 2 conjecture can fail at (ω, ω_2) even in the presence of a Kurepa tree.

The absence of a (ω, ω_2)-model for L^* means, of course, that \square fails. Since \square holds whenever ω_2 is not Mahlo in L, we shall force over a ground model containing a Mahlo cardinal κ. The forcing has two stages. In the first stage
we do ordinary collapsing to turn κ into ω_2. The resulting generic extension has neither a Kunen tree nor an (ω, ω_2)-model for L^*. We then force to reinstate the principle \Diamond^+, but without adding a (ω, ω_2)-model of L^*.

In the following let N be a countable transitive model of $ZFC + GCH + \Diamond^+$ and there is a Mahlo cardinal.
Let κ be a Mahlo cardinal in N.
Let $S = \langle S_\alpha \| \alpha < \omega_1 \rangle$ be a fixed \Diamond^+-sequence in N. In the first stage of our forcing we use the normal conditions for collapsing to make κ become ω_2.

Def. Let $\omega_i \leq \tau < \kappa$.

$C^\tau = \{ \text{the set of maps } p \text{ with} \}

\text{dom}(p) \subseteq \omega \times [\tau, \kappa), \bar{p} \leq \omega_1 \text{ and}

p(i, \nu) < \nu \text{ for } <i, \nu> \in \text{dom}(p)

p \leq q \iff p \supseteq q \text{ for } p, q \in P^\tau.$

We also set $C^\omega = C^\omega_{\omega_1}$.

The properties of this forcing are well known:

(a) \mathbb{C}^κ_ξ is ω_1-distributive.

(b) (Assume GC^{+}) If $\mu > \omega_1$ is regular, then \mathbb{M}^κ_ξ satifies the μ-CC (i.e., every antichain has cardinality $< \mu$).

(c) $\mathbb{C}^\kappa_\xi \models \forall \bar{x} \in \bar{x}_0: \bar{x}_0 \leq \omega_1$ ($\xi < \mu$)

At follows that if $\mu > \omega^N_1$ is regular in N and $G \in \mathbb{C}^\mu_\xi$ - generic over N, then $\omega^N_1 = \omega^N_1$ and $\omega^N_2 = \kappa$.

We also note that (a), (b) are satisfied by $\mathbb{C}^\kappa_\xi \times \mathbb{C}^\mu_\xi$, and that $\mathbb{C}^\kappa_\xi = \mathbb{C}^\mu_\xi \times \mathbb{C}^{\omega_1}_\xi$ for $\omega_1 \leq \xi < \kappa < \mu$.

We force with \mathbb{C}^κ_ξ, where κ is a Mahlo cardinal in N. It is known that \square then becomes false in the resulting model. We improve this to:

Lemma 2 Let κ be Mahlo in N and let G be \mathbb{C}^κ - generic over N. Then L^G has no (ω, ω_2) - model in $N[G]$.
prof. of Lemma 2.
Suppose not. Let \(M \) be an \((\omega, \omega_1)\) - model of \(L^\kappa \) in \(N[G] \). Let
\[
M = \langle \omega, \mathcal{L}, A, B, C, \ldots \rangle.
\]
We can assume w.l.o.g. that \(\omega \in \kappa \) and hence that \(|\omega| < \kappa \) in \(N[G] \).
Let \(M = M^G \kappa \) and let \(\theta > \kappa \) be regular in \(N \) s.t. \(\omega \in H_\theta \) in \(N \).
Set \(H = H_\theta \). Since \(G \in \mathcal{G} \) - generic over the \(\mathcal{ZFC} \) - model \(H \) and the
above properties of \(M \) are absolute in \(H[G] \), there is a \(p \in G \) s.t.
\[p \Vdash (\omega \in \kappa \land |\omega| < \kappa). \]
Fix Skolem functions for \(H \) and set:
\[X_\alpha = \text{the smallest } X \subseteq H \text{ s.t. } \exists \nu \exists \gamma \exists \xi \exists X \]
\[X \subseteq X_\alpha \text{ and } X_\alpha \models p, \nu, \gamma, \xi \exists X \]
for \(\alpha < \kappa \). Set:
\[C = \{ \alpha < \kappa \mid \exists \eta X_\alpha \models \xi \exists \gamma \}. \]
Then \(C \) is club in \(\kappa \). By Mahlo's
there is a regular \(\tau \in C \). Let
\[X = X_\tau \text{ and set: } \sigma : H \leftrightarrow X, \]
where \(\sigma \) is transitive.
Then $\sigma : \overline{H} < H$, $\tau = \sigma \cap (\sigma)$, $\sigma (\overline{e}) = \overline{e}$, and $\sigma (\overline{C^2}) = C^2$. Clearly:

(2) $\varphi \models \overline{C^2} \sigma (t_1, \ldots, t_n) \iff$

$\varphi \models C^2 \sigma (t_1, \ldots, t_n)$,

for $\varphi \in C^2$, $t_1, \ldots, t_n \in \overline{H}$, since $\sigma (\overline{e}) = \overline{e}$.

Let $\overline{G} = \overline{G} \cap C^2$. By (2):

(3) There is a unique $\overline{\sigma} : \overline{H} \subseteq \overline{H}[\overline{G}]$ defined by $\overline{\sigma}(\overline{x}) = \overline{x}$.

Hence:

(4) $\varphi \models \overline{G} \iff \overline{\sigma}$, where

$\overline{\sigma}(\overline{x}) = \overline{\sigma}(\overline{x}^\overline{G}) = \sigma(\overline{x})^\overline{G} = \overline{\sigma}(\overline{x})$ for $\overline{x} \in \overline{H}$.

In particular:

(5) $\overline{\sigma} \models \overline{G} = \overline{id}$.

By (3) we have $\overline{\sigma} \models \overline{G} \iff \overline{G}$, but

$\overline{\sigma} \models \overline{G} = \overline{id}$ by (5). Hence

(6) $\overline{G} \models \overline{G}$.

Let $\overline{e} = \langle \overline{10}1, \overline{e}, \overline{A}, \overline{B}, \overline{C}, \overline{\cdots} \rangle$.

(7) \overline{e} is an end extension of \overline{e}.

Let $x \in \overline{e}$. Claim $\overline{e} \models \overline{x}^3 = \overline{\overline{e}} \models \overline{x}^3$.

The case $\overline{e} \models x = \emptyset$ is trivial by (6).

So assume $\overline{e} \models x \neq \emptyset$. There is
A 2-

\(f : B \to B \quad \text{in} \quad A \models \tau \).

Then

\(f : B \to B \quad \text{is} \quad \in \quad A \models \tau \).

Let \(g \in A \models \tau \).

Then

\(g : \in \quad A \models \tau \).

The same proof shows:

(8) \(A \models \tau \).

Thus \(\text{On} \) in an initial segment of \(\text{On} \) in \(N[\alpha] \). Moreover:

(9.1) \(\text{cf}(\text{On} \models \tau) = \omega_1 \) in \(N[\alpha] \).

Hence \(\text{there is} \ u \in \text{On} \models \tau \).
Note: Without the axiom:
\[C = \{ C_\lambda \mid \lambda \in \text{Lim}(\alpha) \} \text{ is a } \square_B \text{-sequence.} \]

as meaning:
(a) \(C_\lambda \) is cut-in \(\lambda \) and \(\sigma \tau \lambda (C_\lambda) \subseteq B \)
(b) If \(\gamma \in C_\lambda \) and \(\text{Lim}(\gamma) \), then \(C_\gamma = \gamma \cap C_\lambda \).

(This is the usual formulation of \(\square_B \) with the additional condition that, whenever \(\bar{\gamma} \in C_\lambda \) is a successor point in \(C_\lambda \), then \(\bar{\gamma} \) is a successor ordinal.

It is trivial that if there is a \(\square_B \)-sequence, then there is one with the additional condition.)

Def: For \(\kappa \in \text{On}_{\nu} \), let \(\Omega \) be \(\text{Lim}(\kappa) \) set:
\[C_\kappa = \{ \gamma \mid \nu \gamma = \gamma \in C_\kappa \} \]
In particular set: \(D = C_\kappa \), where \(\nu = \sup \text{On}_{\nu} \).
Set \(\Gamma = \{ \kappa \in \text{On}_{\nu} \mid \nu \kappa = \text{Lim}(\kappa) \} \)
and \(\bar{\kappa} = \{ \text{Lim}(\kappa) \} \) for \(\kappa \in \text{On}_{\nu} \).

Then \(D \) has the properties:
(10) (a) \(D \cap \Gamma \) is cofinal in \(\text{On}_{\nu} \)
(b) If \(\kappa \in D \cap \Gamma \), then \(D \cap \bar{\kappa} = C_\kappa \).
Def any $D \subseteq \mathcal{O}_\omega$ satisfying (10) is called devilish.

We have shown that there is a devilish set in $N[G]$, but $N[G] = N[G^-][G^-]$ where $G' = G \cap C^\omega$ is C^ω-generic over $N[G^-]$. Hence there is $q \in G'$ such that

$$q \not\in N[G^-]$$

(there is a devilish set).

Now let $G_0 \times G_1$ be $C_i^\omega \times C^\omega$-generic over $N[G^-]$ with $q \in G_i$ ($i = 0, 1$). We know that $C_i^\omega \times C^\omega$ is ω_1-distributive. Hence ω_1 is absolute in $N[G^-][G_0 \times G_1] = N[G^-][G_0][G_1]$. Let $D_i \subseteq N[G^-][G_i]$ be devilish. We derive a contradiction.

We first note:

(12) $\cap_i D_0 \cap D_1$ is bounded in \mathcal{O}_ω.

Proof.

Suppose not. Then

$$D_0 = D_1 = \bigcup_{x \in \Pi D_0 \cap D_1} C_x.$$

Hence

$$D = D_i \subseteq N[G^-][G_i]$$

for $i = 0, 1$.

By the product lemma, $D \subseteq N[G^-]$. But $\overline{D} \subseteq \mathcal{O}_\omega (C_x)$, hence

$$\overline{D} \subseteq C_x \subseteq A$$

for $x \in \Pi \cap D$.

By this we get:
Claim. $\text{cf}(D) \leq \omega_1$ in $\langle \omega_7 \rangle$ (in \mathbb{N}^ω).

Proof. Suppose not. Let $\langle x_i : i < \omega_2 \rangle$ be a monotone sequence in D, then $\langle x_i : i < \omega_2 \rangle$ is bounded in On_{ω_1} and there is $\omega \in \text{On}_{\omega_1}$ such $\omega = \sup x_i$ in $\langle x_i \rangle$ by Lemma 1. But then $x_i \in D \cap \omega = C_\omega$ for $i < \omega_1$. Hence $C_\omega \geq \omega_1$, where $\omega \in \text{P}_D$. Contradiction! QED.

Since D is unbounded in On_{ω_1}, it follows that $\text{cf}(\text{On}_{\omega_1}) = \omega_1$ in $\langle \omega_7 \rangle$. But in \mathbb{N}^ω, we have $\text{cf}(\text{On}_{\omega_1}) = 2 = \omega_2$.

Contradiction! QED (12).

Now let $x_0 \in \text{On}_{\omega_1}$ such that $(D_0 \cap D_1 \cap \Gamma) \setminus x_0 = \emptyset$.

In \mathbb{N} we define for each $z \in D_0 \cap \Gamma$ an m_z such that $\overline{D_1} = m_z \in \omega$ (hence $m_z \in A$). We do this as follows:

Pick a $z' \in D_1 \cap \Gamma$ such that $z <_{\omega_1} z'$.

Arguing in \mathbb{N}, there is a sequence $\langle z^\omega(i) : i < m_z \rangle$ defined by:

$z^\omega(0) = \text{the least } r \in C_z \setminus x_0$

$z^\omega(i+1) = \text{the least } r \in C_{z^\omega(i)} \setminus x_0$

$\forall z \in C_z \cap C_{z^\omega(i)} \setminus x_0 \setminus C_{z^\omega(i+1)}$.

Then $\overline{D_1} = m_z < \omega_1$, since otherwise
\[\omega_i \leq m_z = \omega \quad \text{and there is } u > x_i \]
\[\omega_i \geq u = \sup_i x^2(i), \quad \text{Then } u \in \Gamma \cap D_0 \cap D_1, \]
where \(\omega > x_0 \). Continue!

It is obvious that the definition of \(m_z \) does not depend on the \(C_{z'} \) chosen, since \(C_{z'} = \omega\cap D_1 \).

Also:
\[(13) \quad z < z', \quad \text{in } (\Gamma \cap D_0) \rightarrow m_z \leq m_{z'}, \]
Moreover:
\[(14) \quad \text{If } z \in (\Gamma \cap D_0), \quad \text{there is } z' > z \quad \text{in } \Gamma \cap D_0 \quad \text{s.t.} \quad m_z < m_{z'}. \]

Proof:
Choose \(w \in D_1 \cap \Gamma \) s.t. \(w > x_0, z \),
Choose \(z' \in D_0 \cap \Gamma \) s.t. \(z' > w \),
Then \(\omega_i \geq m_{z'} \geq m_z \). Hence
\(\omega_i \geq m_z \geq m_{z'} \). QED (14)

Now choose \(z_3 \in D_0 \cap \Gamma \) (\(z < \omega_1 \)) s.t.
\[z < \omega_i \quad \text{and } m_{z_3} \leq n_{z_3}, \]
and \(z > \omega_z \) for all \(z < \lambda \)
(see (11)). Then \(m_{z_3} \leq m_{z_3'} \)
for \(z < z' < \omega_1 \). Hence
\(m_{z_3} \) \(\leq \omega_1 \) injects \(\omega_1 \).
int into $\overline{A_{x_0}}$, where $\overline{A_{x_0}} = \omega$. Contr!

QED (Lemma 2)

Our main result is:

Lemma 3 Let G be \mathcal{C}^κ-generic over N. There is a generic extension $N[G][H]$ of $N[G]$ s.t. in $N[G][H]$

(a) $\kappa = \omega_2$; (b) \Diamond^+ holds;

(c) L^* has no (ω, ω_2)-model.

The proof depends on the construction of forcing conditions $IP \in N[G]$ s.t.

(a)-(c) are forced. The actual construction of IP will be given in §2. Here we list the salient properties of IP and derive Lemma 3 from them.

Since GCH holds in N, there is an $A_0 \in N$ s.t. $A_0 \subseteq \kappa$ and $L[\mathcal{A}_0] = \mathcal{H}_\kappa$

for all cardinals τ s.t. $\omega \leq \tau \leq \kappa$.

Let G be \mathcal{C}^σ-generic over N. Set

$A_1 = \{ \langle \mu, \gamma, i \rangle | V(p \in G \gamma(p, i)) = \mu \}$

$A = \{ \langle \langle \xi, i \rangle | \xi = 0 \lor \mu \in A_0 \lor i = 1 \lor \mu \in A_1 \}$

Let \mathcal{I} be regular in N s.t. $\omega \leq \tau \leq \kappa$.

Let $G = G \cap \mathcal{C}^\tau$. Then G is \mathcal{C}^τ-

- generic over N and
\[\text{and } N[A] = N[A_{f \cap A}] \text{. Moreover } H_\xi = L_\xi[A] \text{ in } N[G] \text{. In particular } L_\xi[A] = H_\xi \text{ in } N[G] \text{,} \]

Moreover, we shall define a set of conditions IP \subseteq N[G] with the following properties:

(A) IP \subseteq L_\xi[A] \text{ and } L_\xi[A] \text{-definable,} \]

(B) Each \(p \in IP \) is a function \(\eta : \text{dom}(p) \rightarrow \omega \) in a countable subset of \(\eta \). Moreover, \(\eta \leq \xi \in IP \iff \eta \supseteq p \text{ for } p, \eta \in IP \).

(C) IP is \(\omega_1 \)-distributive.

Def. Let \(\xi < \omega_1 \). Set \(IP_\xi = \{ p \in IP : \exists \eta \leq \xi \text{ in } IP \} \)

with \(\eta \leq p \in IP_\xi \rightarrow p \supseteq \eta \).

(D) \(IP \subseteq L_\xi[A] \)

(E) Let \(p \in IP \), \(\xi < \omega_1 \), \(q \in IP_\xi \) a.t. \(q \leq p \in IP \)

in \(IP \). Then \(q \cup p \in IP_\xi \). (Hence \(q \cup p \leq p \in IP)\)

(F) Let \(\langle L_\xi[A], A \rangle \) \(< \langle L_\xi[A], A \rangle \)

a.t. \(\text{cf}(\xi) = \omega_1 \). Then \(IP_\xi \subseteq L_\xi[A] \).

*Note. The actual definition of IP given in \(\S 2 \) refers to a \(\Box \)-sequence \(S = \langle S_\xi : \xi < \omega_1 \rangle \). We have assumed that \(\Box \)-hitting in \(N \). At \(\tau \) is known that any \(\Box \)-sequence in \(N \) remain a \(\Box \)-sequence in \(N[G] \). Hence we may take: \(S = \text{the } L_\xi[A_\tau] \text{-least } \Box \text{-sequence.} \)

By (D), (E) a standard proof gives:

(7) IP satisfies the \(\omega_2 \)-cc.
Let X be a maximal antichain in \mathbb{P}. Define $<\bar{z}_i | i \leq \omega_1>$ by $\bar{z}_0 = \emptyset$. Given \bar{z}_i, select for each $p \in \mathbb{P} \bar{z}_i$ a $q \in X$ s.t. q_p is compatible with p. Let \bar{z}_{i+1} be the least $\bar{z} \supseteq \bar{z}_i$ s.t. $q_p \in \mathbb{P} \bar{z}_i$ for all $p \in \mathbb{P} \bar{z}_i$. For limit $X \subseteq \omega_1$ s.t. $\bar{z}_X = \sup_{\bar{z}_i < X} \bar{z}_i$.

Claim: $X \subseteq \mathbb{P} \bar{\omega}_1$ (hence $\bar{X} \subseteq \omega_1$).

Suppose not. Let $p \in X \setminus \mathbb{P} \bar{\omega}_1$. Then $p \uplus \omega_1 \in \mathbb{P} \bar{z}_i$ for some $i < \omega_1$.

Since $\text{dom}(p)$ is countable. By our construction there is $q \in \mathbb{P} \bar{z}_{i+1}$ s.t. $q \in X$ and q is compatible with $p \uplus \omega_1$. But then there is $q' \in \mathbb{P} \bar{z}_{i+1}$ s.t. $q' \leq q \uplus \omega_1$.

Set $p' = p \uplus q'$. Then $p' \in \mathbb{P}$ and $p' \leq q', q$. Contradiction! QED (1).

A further property of \mathbb{P} is:

(G) $\mathbb{P} \vdash \Box^+$.
Now let $\tau \leq \mu$ and let \bar{H} be $1P^\tau$-generic over $N[G]$. Define $1P^\tau_H$ by:

$$1P^\tau_H = \{ p \in 1P \mid p \upharpoonright \tau \in \bar{H} \}.$$

By (E), (D) a standard proof gives:

(2) $H \cup 1P_\tau$-generic over $N[G]$ if

$$H = H \cap 1P^\tau \cup 1P^\tau - \text{generic over } N[G] \text{ and } H \cup 1P^\tau_H - \text{generic over } N[G][\bar{H}] \quad (\tau \leq \omega).$$

Proof:

\rightarrow If $\bar{H} \cup 1P^\tau$-generic, then if $\Delta \in N[G]$ is dense in $1P^\tau$, then $\Delta^* = \{ p \in 1P \mid p \upharpoonright \tau \in \Delta \}$ is dense in $1P$. Now let $\Delta \in N[G][\bar{H}]$ be dense in $1P^\tau_H$. Claim: $H \cap \Delta \neq \emptyset$.

Let $\Delta = \Delta^\bar{H}$, where $\Delta \in N[G]$. Suppose w.l.o.g. that $1P^\tau \models \Delta$ is dense in $1P^\tau_H$, where \bar{H} is the canonical term for \bar{H}.

(Hence $1P^\tau \models (H \cup 1P^\tau$-generic) and $\phi \models \varphi \in \bar{H}$ for $\phi \in 1P^\tau$.) Set $\bar{\Delta} = \{ p \in 1P \mid p \upharpoonright \tau \models \varphi \in \Delta \}$. At

Claim: $\bar{\Delta}$ is dense in $1P$.

We also need:

(H) Let \mathcal{H} be \mathbf{IP}^∞-generic over $N[G]$. Then $\mathbf{IP}_H^\infty \times \mathbf{IP}_H^{\mathcal{H}}$ is w_0-distributive in $N[G][\mathcal{H}]$.

\textbf{Claim 1:} Let $p \leq p'$, let \mathcal{H} be \mathbf{IP}^∞-generic over N. Then $p \in \mathbf{IP}_H^\infty$. Let $p \leq p'$, let $p \in \Delta = \Delta^{\mathcal{H}}$. Pick $q \in \mathcal{H}$ s.t. $q \leq p \mathcal{V}$, $p \mathcal{V}$ and $q \vdash p' \in \Delta$, set $p'' = q \uplus p'$. Then $p'' \leq p'$, $p'' \in \Delta$, QED (→)

Let Δ be dense in \mathbf{IP}_H.

\textbf{Claim 2:} $\Delta \cap \mathcal{H} \neq \emptyset$.

It suffices to show: $\Delta \cap \mathbf{IP}_H^\infty$ is dense in \mathbf{IP}_H^∞. Let $p \in \mathbf{IP}_H^\infty$. Then $\Delta^* = \{ p' \in \mathbf{IP}_H^\infty | p \leq p' \mathcal{V} \in \Delta \}$ is dense in $\{ q \in \mathbf{IP}_H^\infty | q \leq p \mathcal{V} \}$ by (E). Hence there is $q \in \Delta^* \cap \mathcal{H}$. Hence there is $p' \leq p$, $p' \in \Delta$, s.t. $p \mathcal{V} = q$. Hence $p' \in \Delta \cap \mathcal{H}$, QED (2)
At suffices to prove:

Sublemma 3.1 Let H be IP-generic over $N' = N[G]$. There is no (ω, ω_2)-model for L^s in $N'[H]$.

Proof: Suppose not.

By a good model of L^s, let us understand an (ω, ω_2)-model whose elements are ordinals $< \omega_2$.

We can assume, w.l.o.g., that there is a good model in $N'[H]$.

But then there is a good model in $H_\theta | N'[H] = H_\theta | N'[H] = H_\theta | N[G][H]^*$, where $\Theta > \alpha$ is regular in N'.

G is then \mathcal{C}_α-generic over $M = H_\Theta$ and H is IP-generic over $M' = M[G]$.

Thus, there is a $g \in H$ s.t. $\forall H^* \forall^{I_P^M} (\text{there is a good model})$.

Hence there is $\forall \in G$ s.t.

(3) $\forall H^* \forall^{I_P^M} (\text{there is a good model}),$

where \mathcal{C}_α is the canonical term for C (in particular $\forall \in \mathcal{C}_\alpha$-gen. over N' and $\forall H^* \forall \in \mathcal{C}_\alpha$ for $\forall \in \mathcal{C}_\alpha$).
An N we now define for $\alpha \leq \kappa$:
\[X_\alpha = \text{The smallest } X < H_\alpha \text{ s.t.}
\alpha \in \{i, j\} \]
Set $C = \{ \alpha \mid \alpha = X_\alpha \cap \kappa \}$, Then $C \cap \kappa$ is unbounded in κ and there is $\zeta \in C$ which is regular. Set $X = X_\zeta$ and let $\sigma : \bar{M} \to X$, where \bar{M} is transitive. Then $\sigma : \bar{M} \preceq M$, $\tau = \text{crit} (\sigma)$, $\tau (\bar{\zeta}) = \kappa$.
Hence $\sigma \cap L^*_\zeta [A_\zeta] = \text{id}$, where $L^*_\zeta [A_\zeta] = H^N_{\zeta}$. As before,
\[\sigma^{< \zeta} (C^\zeta) = C^{< \zeta} \]. Since
\[(\forall \bar{t} \in \bar{M} \quad \bar{t} \in \prod_{n \in \omega} \bar{t}_n) \to (\forall \bar{t} \in \bar{M} \quad \bar{t} \in \prod_{n \in \omega} \bar{t}_n) \]
σ extends to a $\bar{\sigma} : \bar{M} [\bar{G}] \preceq M [G] = M'$ (where $\bar{G} = \bar{G} \cap C^\zeta$), defined by:
\[\bar{\sigma} (t \bar{G}) = \sigma (t) \bar{G}, \quad \text{Set } \bar{M}' = \bar{M} [\bar{G}] \],
Then $\bar{\sigma} (A \cap \tau) = A$ and $\bar{\sigma} \cap L^*_\zeta [A] = \text{id}$, where $L^*_\zeta [A] = H^N_{\zeta} [\bar{G}]$. At follows that $\bar{\sigma} (1P^\zeta) = 1P$. Since:
\[(\forall \bar{t} \in \bar{M}' \quad \bar{t} \in \prod_{n \in \omega} \bar{t}_n) \to (\forall \bar{t} \in \bar{M}' \quad \bar{t} \in \prod_{n \in \omega} \bar{t}_n) \]
$\bar{\sigma}$ extends to a $\sigma^* : \bar{M}' [\bar{H}] \preceq M' [H]$ defined by $\sigma^* (t \bar{H}) = \bar{\sigma} (t \bar{H})$ (where $\bar{H} = H \cap 1P^\zeta$).
Since (3) holds, where $p \in \bar{G}$, $q \in \bar{H}$, there is $\bar{\eta} \in M'[\bar{H}]$, which is a good model (in $M'[\bar{H}]$, hence in $N'[\bar{H}]$). Thus $\sigma^* (\bar{\eta}) = \eta$ is a good model in $N'[\bar{H}]$.

At follow exactly as before that:
(6) E_n is an end extension of $\bar{\eta}$;

\[A_{\bar{\eta}} = A_{\bar{\eta}} \quad \text{and} \quad B_{\bar{\eta}} = B_{\bar{\eta}}. \]

As before, this implies:
(7) There is $D \subseteq N'[\bar{H}]$ which is a devilish set for $\bar{\eta}$.

But \overline{H} is $1P$-generic over $N' = N[\overline{G}][\overline{G}']$, where $\overline{G} = G \cap C^\infty$, $G' = G \cap C_{\infty}^\infty$. Since C_{∞}^∞, $1P \subseteq C_{\infty}^\infty$, it follows that G' is C_{∞}^∞-generic over $N[\overline{G}][\overline{H}]$. We can then repeat the argument in the proof of Lemma 2 ((47)–(44)) to show:
(8) There is no devilish set in $N'[\overline{H}]$.

As before, however, there is a devilish set in $N'[\bar{H}] = N'[\bar{H}][\bar{H}]$,
where \(H \in \text{IP}_H \) - generic over \(N'[\bar{H}] \).

Hence there is \(q \in H \) such that

\[q \upharpoonright H \text{ is a devilish set.} \]

Let \(H_0 \times H_1 \) be \(\text{IP}_H \times \text{IP}_H \) - generic over \(N'[\bar{H}] \) with \(q \in H_i \), \(i=0,1 \).

Let \(D_i \in N'[H_i] \) be devilish.

Since \(\text{IP}_H \times \text{IP}_H \) is \(\omega \) - distributive, we obtain a contradiction exactly as before, arguing in \(N'[H][H_0 \times H_1] \).

QED (Lemma 3)