On some problems of
Mitchell, Welch and Vickers

Phillip Welch asked whether T_ω can be an initial segment of an iterate of a countable mouse. More specifically, Mitchell asked the question:

Assume $|K| = L^U$, where U is a measure on ω_1 (hence $U = E_\kappa$ where $\kappa = \kappa + \kappa$, $\kappa = \omega_1$). Can $<J^E_\kappa, E_\kappa>$ be an iterate of a countable mouse?

Welch stated a more difficult version of his question:

Assume that $(\times 1)\,\mathcal{O}^5$ does not exist but the reals are closed under #.

Can there be a countable mouse M and a real a s.t.
(a) K_{w_1} is an initial segment of an iterate of M.

(b) M is an initial segment of $K_{w_1}

Welch's student John Vickers asks whether, on the assumption (**), there can be a real a set $K_{w_1} = \{a\}$.

The answer to all these questions is yes.

We use the case model theorem of our notes "Non-Overlapping Extenders", though the argument should be quite comprehensible to those who know our notes "Measures of Order Zero". We make virtually no direct use of fine structure.
Note: The forcing method used in the proof of Thm 1 appears to have more general applications. For instance, forcing over an arbitrary ZFC model we can use it to give ω_2 cofinality while preserving ω_1. Thus providing an alternative to Bukovski-Nambrforcing.
I claim $V = K$. Let $E_\nu = \emptyset$, where $\kappa \geq \kappa^+$. Let $M = K_\beta$, where $\alpha \beta \geq \kappa$. Claim that β^ω is a cardinal of cofinality $> \omega$.

There is a set of conditions P such that G is P-generic. Then in (L,G) we have κ is regular and there are M_0, ν_0 such that:

(*) M_0 is a mouse and $\nu_0 \leq \text{On}(M_0)$.

Let $\langle M_i, i \leq \kappa \rangle$ be the simple iteration with indices $\nu_i = \prod_{M_i} M_i$.

Then $M_\kappa = M_0$, $\nu_\kappa = \kappa$.

The proof stretches over several lemmas.

Let $\Theta = \beta^{++}$. Let L be an infinitary language on K_θ with predicates \mathcal{E}, constants M_0, ν_0 and $x (x \in K_\theta)$, and axioms:

$\text{ZFC}^+ + \theta = \omega_1 + (*)$ (with M_i, ν_i in place of M_0, ν_0) and

$\forall x \in x \leftrightarrow \forall y \in y = x \ (x \in K_\theta)$.

(Note $L \vdash K_\nu = K_\nu'$.)
\[\text{Lemma } L \text{ is consistent.} \]

\textit{Proof.}

Let \(\tau = \Theta^+ \). Let \(K_\zeta \) \((\zeta \leq \tau)\) be the iteration of \(K \) with map \(\tau \mapsto \pi_{0\zeta} \).

Let \(i \in \omega \) such that \(\pi_{0\zeta} K_\zeta \) \((\zeta \leq \tau)\) is \(\omega \)-complete.

Set \(M_i = \pi_{0\zeta} (M) \), \(\rho = \pi_{0\zeta} (\rho I) \), where \(\rho = \rho^\omega \).

Then \(\pi_{i+1 \zeta} : J_{E_i} E_{i+1 \zeta} \rightarrow J_{E_i} E_{i+1 \zeta} \).

Since \(\rho \) is regular, \(\rho I > \alpha \).

But \(\rho = \rho^\omega + M_i \), and hence \(M_i = \text{the closure of } \rho \) under \(\Sigma^\omega \) functions.

At follow that \(\pi_{i+1 \zeta} M_i : M_i \rightarrow M_i \).

Hence \((M_i) \) is the iteration of \(M \) to \(\pi_{0\zeta} (M) \) with indies \(\zeta \leq \tau \).

Now add \(ECK \), which generically collapses \(\zeta < \tau \) to \(\omega \). Then \((K_\zeta + LEF) \), \(M \) modules \(\pi_{0\zeta} (L) \).

Hence \(\pi_{0\zeta} \) \(L \) is consistent. Hence \(\pi_{0\zeta} \) \(L \).

\text{QED (Lemma 1).}
Let $f_c + p = \langle p_c, p_x, p_y \rangle$ s.t.

1. p_c is a finite partial map $\kappa \to \kappa$.
2. $\text{dom}(p_x) = \text{dom}(p_y)$ and each $p_x(i)$ is a finite partial map $\kappa \to \kappa$.
3. $\text{dom}(p_x) \subseteq \text{dom}(p_y)$ and $p_x(i) \subseteq p_y(i)$.

Set $\bar{\ell}(p) = \ell(p) = \text{dom}(p_x)$.

Set $\alpha^p = p_c(i), \beta^p = p_y(i), \gamma^p = p_x(i)$.

Let (P) be $\ell(p)$ enhanced by the axiom:

1. $\alpha^p \subseteq \beta^p \subseteq \gamma^p$, $i \in \text{dom}(P)$.
2. $\beta^p \subseteq \gamma^p$, $i \in \text{dom}(P)$.
3. $\forall i \in \text{dom}(P)$, $\langle \bar{\ell}(i), \alpha^p \rangle < \langle \bar{\ell}(i), \beta^p \rangle$.

p is good iff $\ell(p)$ is consistent.

Define: Let $i, j \in \text{dom}(P)$, $i < j$.

i is meet in j w.r.t p iff

a_i is $\langle \kappa, a_j(i) \rangle$-definable from parameters in any $\langle P, \gamma^p \rangle$ for some $m < \omega$, where $a_j(i) = \left\{ z \mid \langle m, z \rangle \in a_j \right\}$.

p is meet iff i is meet in j for all $i, j \in \text{dom}(P)$, $i < j$.
Def \(\mathcal{P} = \{ \text{the set of good, meat} \} \) ordered by:

\[
P \leq q \iff P_0 \supseteq q_0 \cap P_2 \supseteq q_2 \quad \text{and} \quad \forall \pi_i \subseteq \pi_i q_i \quad \text{for} \ i \in \text{dom}(q).
\]

We now state some lemmas on the possibility of extending conditions.

Lemma 2.1 Let \(p \in \mathcal{P} \), let \(u \) be finite, \(u \in \text{dom}(p) \), \(u < \alpha \). There is \(p' \leq p \) s.t. \(u < \text{dom}(p') \).

Proof.

Let \(K[E] \) be a generic extension which makes \(\Theta \) countable. An \(K[E] \) there is a model \(M \) for \(L(p) \) which we may take to be \(\text{not} \) in \(\Theta \) so that it is well-founded and \(\text{not} \) in transitive. Then \(x = x \overline{\text{M}} \subseteq \overline{\text{M}} \) for \(x \in K \), and \(x \in \overline{\text{M}} \) whenever \(\text{nor}(x, M) \neq x \in \overline{\text{M}} \). In particular
\[L_{p'} = \left\{ \xi \in \Lambda \mid \langle \eta_i, \xi \rangle \leq \alpha \right\} \subseteq \Lambda, \]
\[\langle \eta_i, \xi \rangle = \langle \eta_i, \xi' \rangle \quad \forall \xi' \in \Lambda', \]
\[\langle \eta_i, \xi \rangle = \langle \eta_i, \xi' \rangle \quad \forall \xi' \in \Lambda'. \]

Set \(p' = \langle p'_0, p'_1, p'_2 \rangle \), where
\[p'_0 = \langle \eta_i, \xi \rangle, \]
\[p'_1(\xi) = \begin{cases} p(\xi) & \text{if defined} \\ \emptyset & \text{if not} \end{cases} \]
\[p' \in \mathcal{P}. \] But \(p' \) is quasi since
\[M \] model \(L(p') \). Hence \(p' \leq p \).

\[\text{QED (Lemma 2.1).} \]

By entirely similar proofs:

Lemma 2.2 Let \(p \in \mathcal{P}, i \in \text{dom}(p), \xi \leq \eta \).
There is \(p' \leq p \) s.t. \(\xi \in \text{dom}(\pi^p_i) \),

(where \(\xi^p_i = \sigma(\eta_i^p) \)).

Lemma 2.3 Let \(p \in \mathcal{P}, i \in \text{dom}(p), \xi \in \text{dom}(\pi^p_i), \gamma \leq \xi \).
There is \(p' \leq p \) s.t. \(\gamma \in \text{dom}(\pi^p_i) \),

Lemma 2.4 Let \(p \in \mathcal{P}, i \in \text{dom}(p), \xi \in M \). There is \(p' \leq p \) s.t.
\[\xi \in \text{dom}(\pi^p_i) \text{ for } a \xi \geq 3. \]
Lemma 2.5 Let $p \in P$, $\exists \in M$. There is $p' \leq p$ such that $\exists \in \text{rng} (\pi_i^{p'})$ for an $i \in \text{dom}(p')$.

Lemma 2.6 Let $p \in P$, $\lambda \in \text{dom}(p)$, $\exists \in \text{rng}(p')$. There is $p' \leq p$ such that $\exists \in \text{rng}(\pi_i^{p'}\lambda^{p'})$ for an $i \in \text{dom}(p')$.

Using $L \vdash \pi_i^{i+1}: M_i \rightarrow^{\forall} M_{i+1}$ we get:

Lemma 2.7 Let $p \in p$, $i, i+1 \in \text{dom}(p)$.

Let $\exists \in \text{rng}(\pi_{i+1}^p)$. There is $p' \leq p$ such that $\exists = \{\pi_{i+1}^p(\bar{x}_1), \ldots, \pi_{i+1}^p(\bar{x}_m)\}$ where $\bar{x}_1, \ldots, \bar{x}_m \in \nu_0$ and f is M-definable in parameters from $\text{rng}(\pi_i^{p'})$.

[Note: By the form of M_i, $\pi_i^{M_i} \rightarrow^{\forall} M_{i+1}$, simply map that M_{i+1} in the ultrafilter of M_i by $\Sigma_\omega(M_i)$ functions.]
Lemma 2.8. Let \(p \in \mathcal{P} \), \(c \in \text{dom}(p) \)
and \(\bar{a} \in [\pi_c]^{<\omega} \), \(\bar{a} \in \text{dom}(\pi_c^p) \),
and \(a = \pi_c^p \bar{a} \). Let \(X \subseteq [\pi_c]^{<\omega} \)
be \(M \)-definable in parameters from \(\text{rng}(\pi_c^p) \). Then:
\[
X \subseteq \mathcal{E}/a \iff \bar{a} \in X.
\]

We also have:

Lemma 2.9. Let \(p \in \mathcal{P} \), \(c \in \text{dom}(p) \)
and let \(\bar{y} \) be \(M \)-definable in parameters from \(\text{rng}(\pi_c^p) \). There \(p' \leq p \) s.t. \(\bar{y} \in \text{rng}(\pi_c^{p'}) \).

Lemma 2.10. Let \(p \in \mathcal{P} \), \(c \in \text{dom}(p) \),
\(i \in \text{dom}(p) \), \(i > c \), \(\bar{z} \in \text{dom}(\pi_c^p) \),
There \(p' \leq p \) s.t. \(\bar{z} \in \text{dom}(p') \).
Now let G be P-generic over K. By the extension lemma we can act:

$$\langle \kappa_i : i < \kappa \rangle = \bigcup_{p \in G} P_\kappa$$

$$\pi_c = \bigcup_{p \in G} \pi_i^p, \beta_i = \text{dom}(\pi_c),$$

$$i \in \text{dom}(p)$$

Then $\beta_i \geq \nu_i$ and $\pi_i^p : \beta_i \to \beta$ in order preserving. $\pi_i^p(\nu_i) = \nu$ if $\nu \leq \beta$.

Set $X_i = \text{the smallest } X \subseteq M$

such that $\text{rng}(\pi_i^p) \subseteq X$.

Then $X_i \cap \beta = \text{rng}(\pi_i^p)$ by Lemma 2.9. Set $\bar{\pi}_i : M_i \hookrightarrow X_i$.

Then $\bar{\pi}_i : M_i \subseteq M$ and $\text{rng}(\bar{\pi}_i) \subseteq \text{rng}(\pi_i^p)$ for $i \leq i'$ by Lemma 2.

Set $\bar{\pi}_i^p = \bar{\pi}_i^p, \bar{\pi}_i = \bar{\pi}_i$.

$\nu_i = \nu, M_i \subseteq M_i$. By the extension lemma it follows exactly that...
Lemma 3 \(\langle M_i \mid i \leq \alpha \rangle \) is a simple iteration of \(M_0 \) with map \(\bar{\pi}_c \) and indices \(\nu_i = \bar{\pi}_c (\nu_0) \).

Thus it remains only to show:

Lemma 4 \(\chi \) is regular in \(\mathbf{K}^\| \).

Proof. Let \(\delta \leq \alpha \), let \(\delta \vdash \gamma \). Let \(p \in \mathbf{K}^\| \).

Claim. There is \(p' \leq p \not \vdash \chi \) for an \(\delta < \gamma \).

Let \(X = \) the smallest \(X \subseteq \langle \mathbf{K}_\nu^\|, M, \pi \rangle \)

n.t. \(\beta \in X \). Let \(\nu : N \rightarrow X \)

where \(N \) is transitive. Then

\(\bar{\nu} (M, \pi) = M, \pi \).

Let \(\bar{f} = \bar{\nu} (\bar{f}_c) \).

Let \(\langle \bar{\nu}, \ldots, \bar{\nu}_n \rangle \) be a recursive enumeration of the \(N \).

- \(\bar{\nu}_0 + \not \vdash \).

\[b_i = \{ \tilde{z} \mid N \models \bar{\nu}_i [\tilde{z}] \text{ and } \tilde{z} \in M \} \]
Set: $\beta = \exists <\alpha_2 > | \alpha \in \beta$. Then:

$a \in \mathcal{P}(\beta) \cap N = \mathcal{P}(\beta) \cap X$. If $a \in \langle M, b, \rangle$ definable in some parameters for an $i < \omega$.

Go to $K[F]$, where F generically collapses θ to ω and let \mathcal{N} be a solid model of $L(p)$. Since κ is regular in \mathcal{N}, there must be $d < \kappa$ s.t. $d = \kappa_d > \text{dom}(p)_{1}$ and $\exists_{d} : \langle M_d, b \rangle < \langle M, b \rangle$

for some b. Set: $p' = \langle p_{0}', p_{1}', p_{2}' \rangle$

where $p_{0}' = p_{0} \cup \exists <d, d> \exists$, $p_{1}' = p_{1} \cup \exists <\phi, d> \exists$, $p_{2}' = p_{2} \cup \exists <b, d> \exists$, p' in quod, since \mathcal{N} models $L(p')$. p' in neat since each $\alpha_{i}^p (i \in \text{dom}(p)) \in \langle M, b, \rangle$ definable in no parameters. Hence $p' \in$
Claim: \(p' \vdash \text{rny} (f) < \xi \).

Suppose not. Let \(q \leq p' \) s.t.

1. \(q \vdash f(\xi) \geq \xi \), where \(\xi < \xi' \).

Pick a solid \(M \) which models \(\mathcal{L}(\xi) \). Again there is \(b \in M \) s.t.

\[\overline{\pi_d} : \langle M, b \rangle \leq \langle M, b \rangle. \]

Set:

\(Y = \text{the smallest } Y \leq N \) s.t. \(\text{rny}(\overline{\pi_d}) < \xi' \).

It follows easily that \(\forall M = \langle M, b \rangle, \text{rny}(\overline{\pi_d}) \).

Set: \(\pi : \overline{N} \preceq Y \),

where \(\overline{N} \) is transitive. Then \(\pi : \overline{N} \preceq N \) and \(\overline{N} \succ \overline{\pi_d} \).

It is easily seen that \(\overline{\pi} (M_d) = M \).

Set: \(\overline{\pi} f = \overline{\pi}^{-1} (p \circ \overline{f}) \). If we define \(\overline{P}_{\overline{N}} \) in \(\overline{N} \), \(N \) and \(\overline{P} \) was defined in \(N' = \langle K_{\theta'}, \langle M, p \circ \overline{f} \rangle \rangle \), then \(\overline{P}_{\overline{N}} = \overline{P} \cap N \).
\[q' = \langle q_0 \cdot d, q_1 \cdot d, q_2 \cdot d \rangle. \]

Then \(q' \leq q \leq p \). But

(21) \(q' \in \text{IP}_N \)

since if \(i \in \text{dom}(q'_2) \), then \(a = a_i^{q'_2} \) is \(\langle M, b_m \rangle \)-definable in parameter from \(a \) by \(\pi \) and hence \(a \in N \).

Let \(\bar{q}' = \pi^{-1}(q') \). Since

\[\models f : \bar{x} \rightarrow \bar{y}, \text{ there is } \bar{q}'' \leq \bar{q}' \text{ in } \text{IP}_N \]

in \(\text{IP}_N \) at (1).

(31) \(\bar{q}'' \models \pi_N \bar{f}(\bar{y}) = \bar{v} \), where \(\forall \bar{d} \in \text{IP}_N \)

and \(\bar{y} = \bar{y} \) as in (1). Hence

(41) \(\bar{q}'' \models \bar{f}(\bar{y}) = \bar{v} \),

since \(\sigma \pi' : N \geq N' \). Hence

(5) \(\bar{q}'' \), \(\bar{q} \) are incompatible.

We derive a contradiction by constructing \(q^* \leq q'' \) if
Set $\overline{L} = (\pi_{00})^{-1} (L)$. Then $\overline{L} (\overline{q})$ is consistent theory on $\mathcal{N}_{\overline{q}} = (\pi_{00})^{-1} (L)$. But \overline{q} is countable in \mathcal{M}. Hence there is a solid $\overline{M} \in \mathcal{M}$ which models $\overline{L} (\overline{q})$, giving $\langle \overline{M}_i \mid i < \alpha \rangle$, $\langle \overline{M}_i \mid i < i < \alpha \rangle$ with indices \overline{r}_i.

Set $\overline{r}_i = \overline{M}_i (\overline{r}_0)$ and $\overline{M}_i, \overline{r}_i = \overline{M}_i, \overline{r}_i$. But then $\overline{M}_0, \overline{r}_0$ iterate up to $\overline{M}, \overline{r}$, the iteration being identical to that of $\overline{M}_0, \overline{r}_0$ from α onward. At follow worried that $\overline{M} = \langle \overline{M}_0, \overline{M}_0, \overline{r}_0 \rangle$ models $L (\overline{q})$ and $L (\overline{q})$. Thus we may assume without

(6) $\overline{M} \models L (\overline{q})$, $L (\overline{q})$. Set $\overline{q}^* = \langle \overline{q}_0^*, \overline{q}_1^*, \overline{q}_2^* \rangle$

where $\overline{q}_0^* = \overline{q}_0 \cup \overline{q}_0''$, $\overline{q}_1^* = \overline{q}_2 \cup \overline{q}_2''$

and $\overline{q}_1^* \models \overline{q}_1 \cup \overline{q}_1''$ is defined.
as follows:

$$\pi_i \cdot \beta'^* = \pi_i \beta'^* \quad \text{for} \ i < \alpha.$$

Since $$\bar{a}_i = a_i \beta'^* \in \bar{N}$$ for $$i \in \text{dom}(\beta'^*)$$, there are $$m < \omega$$ and a finite $$u \subseteq \beta$$ such that $$\bar{a}_i \in \langle M_m, \bar{b}_m \rangle$$ - definable in parameters from $$u$$. Hence $$a_i = a_i \beta'^* \in \langle M_m, \bar{b}_m \rangle$$ - definable in parameters from $$\pi_i \beta'^* \subseteq u$$. Assume w.l.o.g. that

$$\pi_i \beta'^* \cap \text{dom}(\pi_i \beta'^*) \subseteq u \quad \text{for} \ i \in \text{dom}(\beta'^*)$$

For $$i \in \text{dom}(\beta'^*), i \geq \alpha$$ set:

$$\pi_i \beta'^* = \pi_i \upharpoonright (\pi_i \beta'^* \cup \text{dom}(\pi_i \beta'^*))$$

This definition guarantees maximality.

But $$\beta'^*$$ is good, since $$\beta$$ model $$L(\phi^*)$$. Hence $$\phi^* \leq \beta \beta'^*$$.

Contr. QED (Thm 1)
We recall the defining property of E:

(1) $A \uparrow K = \mathcal{J}_\mathcal{E}^E$ and $\langle \mathcal{J}_\mathcal{E}^E, E \rangle$ in a strong mouse \mathcal{M} s.t. $E \neq \emptyset$, then $F = E$.

A mouse $N = \langle \mathcal{J}^N_\mathcal{E}, E^N_\omega \rangle$ is called strong if

(2) Whenever M is a premouse s.t. $N = M \uparrow^N_\mathcal{E}$ and M is iterable beyond $\omega^M + \text{crit on extenders of index } > \omega^M$,

then M is a mouse and $N = \text{core}(M) \uparrow^N_\mathcal{E}$

This is equivalent to

(3) $N = \text{W} \uparrow^N_\mathcal{E}$, where W^N is a universal weakly.
If $K'_v \neq K_v$ for some v, let ν be the least α such a α exists. Let G be IP - generic, $W = K[G]$. Then letting $K' = K^W = J^E$, we have $J^E_v = J^E_{\omega \nu}$ and $E \neq E'$. But K is universal in W since successors of sufficiently large singular cardinals are preserved. Hence $E_v = \emptyset$ and $E'_{\omega \nu} \neq \emptyset$, so otherwise $\langle J^E_v, E_{\omega \nu} \rangle$ is strongly δ. Hence $E_{\omega \nu} = E'_{\omega \nu}$. Now let $G \times G'$ be $IP \times IP$ - generic. Set $W' = K[G,G']$, $K'' = J^{E''} = K^W$. Then $K''_v = \langle J^E_v, E'' \rangle$. K', K'' are universal in $K[G \times G']$. Since sufficiently large singular cardinals are preserved, hence $\langle J^E_v, E_{\omega \nu} \rangle, \langle J^E_v, E'_{\omega \nu} \rangle$ are strongly δ in $K[G \times G']$. Hence $E_{\omega \nu} = E''_{\omega \nu} = E_{\omega \nu}$, where $K^v = K[K[G \times G']]$.
But then $E'_w \subseteq K$, since $E'_w \subseteq K$ and $E'_w \subseteq K[G] \cap K[G']$, where $G \times G' \approx |P \times P|$ is generic. Hence $\langle J_{v'}^E, E'_w \rangle$ is strong in K. Hence $E'_w = E_w$. Contd.

QED (Fomma 5)

Corollary 6. Let $W = K[G]$ be the model of Theorem 1. Then $\kappa = \omega_1 W$ and $K = K W$.

Proof.
$K = K W$ is immediate. Since $E_{w_0} = \emptyset$ for $i < \kappa$, $\langle J_{v_i}^E, E_{w_0}^M \rangle$ is not strong for any $i < \kappa$. Hence $E_{w_0}^M$ is not ω-complete. Hence $\Gamma (\kappa) = \omega$ for limit $\kappa < \alpha$, since otherwise $E_{w_0}^M$ is ω-complete.

Hence $\kappa = \omega_1$. QED (Cor 6)

This takes care of Mitchell's problem.
Note. The question whether such anomalies can occur between ω_1 and ω_2 seems to be more difficult. From ω_1 let $M = \langle J_{d_1}^E, E_{d_1} \rangle$ be a mouse with $\text{crit}(E_{d_1}) = \kappa$; the largest cardinal in M. Let $M_\beta = \langle J_{d_\beta}^E, E_{d_\beta} \rangle$ be the iteration of M by the top measure. Set $\beta = \beta_M = \beta_f$ that β is $M = \langle J_{d_\beta}^E, E_{d_\beta} \rangle$ and $d_\beta = \kappa + \kappa$. Then $\beta \leq \omega_1$ if it exists. We can show that β can take any finite value, but do not know if $\beta = \omega_1$ is possible (we conjecture that β can have any value $\leq \omega_1$.)
We now give the solution of Welch's problem. Assume $V = K$ and $E_v \neq \emptyset$, where $v = \kappa^+$, $\text{crit}(E_v) = \kappa$. Assume furthermore that there are arbitrarily large $\frac{2}{3}$ with $E \neq \emptyset$. Hence every set of ordinals has a $\#$. Let β be the least $\beta > v$ such that $E_\beta \neq \emptyset$. Set $M = K_\beta = 2^{<J_{\beta}^E,E_\beta>}$. (Then M has the constructibility degree of $A\#$, where $A = \langle \kappa, \Delta \rangle$, coded $2^{<J_{\kappa}^E,E_\kappa>}$.)

Let $W = K[G]$ be the extension of Thm 1 and let M_i, κ_i be as in Thm 1. Then $M_\kappa \supseteq M_i, \kappa_i = \kappa_i$. Note that if $N_i = M_i \oplus \kappa_i$, then N_i is the iteration of N_0 to $M_i \oplus \kappa_i = 2^{<J_{\kappa}^E,E_\kappa>}$ by the same indices.
Now let \(Q_i = \langle J_{E_i}^{\gamma}, E_{\beta_i}^{\gamma} \rangle \) be the iteration of \(Q_0 = M_0 \) by the \(\beta_i \) (i.e., only the top measure is moved). Letting \(I_i = \text{crit}(E_{\beta_i}^{\gamma}) \), we have:

\[\bigcup_i Q_i = J_{\tilde{E}}^{\gamma} \],

where

\[\tilde{E} = (E_0 \cup (\nu_0 + 1)) \].

[Thus \(|J_{\tilde{E}}^{\gamma}| = \aleph_\alpha L[N_\alpha] \)]. Set \(\tilde{\nu} = J_{\tilde{E}}^{\gamma} \).

Since \(\nu_0^+ \tilde{\nu} \) is countable in \(W \),

there is an \(F \in W \) which is generic over \(\tilde{\nu} \) by the condition for collapsing \(\nu_0 \) to \(\omega \). Set \(\tilde{W} = \tilde{\nu}[F] \). Then \(\tilde{W} = \tilde{\nu}[a] \), where \(\tilde{\nu} \) is \(\tilde{\nu} = \tilde{\nu}[a] \) for an \(a \in \omega \) which codes \(N_\alpha, F \). Hence \(\tilde{\nu} = \tilde{\nu} \).

and \(N_\alpha \) is an initial segment of \(\tilde{\nu} \). But \(K_{\tilde{\nu}} \) is an initial segment of \(N_\alpha = \langle J_{\tilde{E}}, E_{\nu} \rangle \),

which is an iterate of \(N_\alpha \).
Finally we note that every set of ordinals has a sharp in \mathcal{W}, since \mathcal{W} is a set generic extension of \mathcal{H}. This gives a positive solution to Welch's problem.

To solve Vickers' problem, we use a theorem on coding which is stated on p. 308 of *Coeating the Universe* (Becker, Jensen, Welch).

\[
\text{(***) Let } M \text{ be an inner model of } \text{ZFC, U an ultrafilter on } \mathcal{P}(\kappa+)^M \text{ s.t.,}
\]

(a) $\langle M_{\kappa+}, U \rangle$ is amenable ($\kappa = \text{cf} \kappa + M$) and U is normal on κ in $\langle M_{\kappa+}, U \rangle$.

(b) M is iterable by U.

(c) κ^+ is countable.

Then there is a c.c.c \mathbf{r}-s.t.

(i) $M \subseteq L[a]$

(ii) Cardinality and cofinalities of M are preserved in $L[a]$.

The proof shows that a book "locally" like a real which is added to M by the forcing.
for coding the universe. An important
idea. If \(a\) is a cardinal in \(M\), then
\[
L[a] = L[b] [\overline{a}],
\]
where
\[
L[b] \subset M \text{ and } \overline{a} \text{ is set
generic over } L[b].
\]

Now assume that in \(K\) we have
\(E_{\kappa} \neq \emptyset\), \(\kappa = \text{crit}(E_{\kappa})\), \(\nu = \kappa^+\).
Set \(M = \langle J^E_{\nu}, E_{\nu} \rangle\). Let \(W = K[G\]
be as in Thm 1, giving \(M_0, \nu_0\).
Set \(R = \bigcap_{i < \kappa} \bigcup_{i < \infty} M_i = \bigcup_{i < \infty} (M_i, ||\kappa||_i)\),
where \(M_i = \langle J^E_{\nu_i}, U_{\nu_i} \rangle\) are the
iterates of \(M_0\) with indices \(\nu_i\).
Set \(U = U_0\), \(\kappa = \kappa_0\). Then \(R, R\) satisfy the assumptions of \((***)\)
in place of \(M, \kappa, U\). Let \(L[a]\)
be as in \((iii), (iii), (iii)\). The call that
\(\kappa = \omega_1\) in \(W\). Thus it suffices
to show:

\[\text{Claim } \kappa \in L[a] \text{, } K[a] = K[\kappa] \]
Since \(K_\alpha = \overline{K}_\alpha \), this follows by:

Claim \(K L [a] = \overline{K} \)

Set \(K' = K L [a] \). Let \(a \) be regular in \(\overline{K} \), let \(L[a] = L[b] L[G] \), where \(G \) is not generic and \(L[b] \models G \).

Let \(b \) will code \(\overline{K} \) as an inner model of \(L[b] \). \(K' = K L[b] \) by Lemma 5.

Claim \(K' \models K_\alpha \) for \(\alpha < \lambda \).

Suppose not. Let \(\exists \) be the least counterexample. Let \(\overline{K}_\exists = \langle \mathcal{J}_\exists, \mathcal{F} \rangle \), \(K'_\exists = \langle \mathcal{J}'_\exists, \mathcal{F}' \rangle \), \(\overline{K} \) is universal in \(L[b] \), hence cardinals are preserved.

Thus if \(\mathcal{F} \neq \phi \), we have \(\mathcal{F} = \mathcal{F}' \), since \(\overline{K}_\exists \) is strong in \(L[b] \), \(\mathcal{F} \neq \phi \), then \(\mathcal{F} \in \overline{K} \) and \(K'_\exists \) is strong in \(L[b] \), hence in \(\overline{K} \).

Hence \(\mathcal{F}' = \mathcal{F} \). Contradiction!

QED