§ 2 Lift-up

Our intention is to prove that \(\mathcal{U} \) Woodin in \(\mathcal{U}_\mathbb{N} = \mathcal{U}_{\emptyset + p} \), where \(p \) is the least \(\beta > 0 \) s.t. \(\mathcal{U}_\mathbb{N} \) is admissible. By § 1 Lemma it suffices to show that each \(B \in \mathcal{P}(\mathbb{N}) \cup \mathcal{U}_\mathbb{N} \) is captured at some \(n \). This is trivial for \(B \in M_{\mathcal{B}_0} \cap M_{\mathcal{B}_1} \), but if one of the \(\mathcal{B}_n \) is of type \(\mathcal{B} \), \(M_{\mathcal{B}_0} \cap M_{\mathcal{B}_1} \) may be too small. A possible strategy for handling this is to pick a \(\delta > 0 \) s.t. \(\mathcal{V}_n \), "lift" to

\[
\mathcal{V}_n^*: \mathcal{U}_\mathbb{N}(N_{\mathcal{V}_n}) \rightarrow \mathcal{U}_\mathbb{N}(N_\mathcal{V}_n)
\]

and show that the \(B \in \mathcal{P}(\mathbb{N}) \cup \mathcal{U}_\mathbb{N} \) are captured at some \(n \). This line of attack does, in fact, lead to a proof, although we must deal with the fact that \(\mathcal{U}_\mathbb{N}(N_{\mathcal{V}_n}) \) might be lifted to an ill-founded structure.

In this section we develop the techniques for handling such lift-ups.
Def. Let $\mathcal{N} = \mathcal{J}_\varnothing^\varnothing \models \langle \mathcal{J}_\varnothing^\varnothing, \varnothing, \varnothing \rangle$ be a ZFC-model.

Set: $\mathcal{J}_\varnothing(N) = \varnothing \cup \mathcal{J}_\varnothing(N)^{\mathcal{E}_\varnothing} \cup \{ (N, \varnothing) \}$.

\mathcal{N} is regular in $\mathcal{J}_\varnothing(N)$ iff (N, \varnothing) is a ZFC-model for all $\varnothing \in \mathcal{J}_\varnothing(N)^{\mathcal{E}_\varnothing}$ s.t. ACN.

\mathcal{N} is definably regular in $\mathcal{J}_\varnothing(N)$ iff (N, \varnothing) is a ZFC-model for all $\varnothing \in \mathcal{J}_\varnothing(N)^{\mathcal{E}_\varnothing}$ s.t. ACN.

At follows easily that \mathcal{N} is definably regular in $\mathcal{J}_\varnothing(N)$ iff it is regular in $\mathcal{J}_{\varnothing+1}(N)$.

Def. Let $\mathcal{M} = \mathcal{J}_\varnothing(N)$. \mathcal{M} is grounded w.r.t. \mathcal{N} iff there is $p \in \mathcal{M}$ s.t. $\mathcal{M}(\varnothing \cup \{ p \}) = \mathcal{M}$.

(Here $\mathcal{M}(\varnothing \cup \{ p \})$ is the closure of $\varnothing \cup \{ p \}$ under Σ_1-functions in \mathcal{M}. We have: $\mathcal{M}(\varnothing \cup \{ p \}) = \mathcal{M}''(\varnothing \times (\varnothing \times p^3)) \cup \{ \varnothing \}$, where \mathcal{M} is the Σ_1 Skolem function for \mathcal{M}.)

If this case we also call p a grounding parameter for \mathcal{M}.

Fact 1. At there is no \varnothing s.t. $\varnothing \subseteq \varnothing$ and $\mathcal{J}_\varnothing(N)$ is admissible, then $\mathcal{J}_\varnothing(N)$ is grounded.
Fact 2. Let \(M \) be grounded. Then there is a \(\Sigma_1(M) \) set \(BCN \) which codes the whole of \(M \) in such a way that every \(\Delta \in \Sigma_\infty(M) \) with \(A \subseteq N \vdash \Sigma_\infty(\langle N, B \rangle) \). Moreover we can effectively assign to every first order formula \(\varphi \) a formula \(\overline{\varphi} \) such that
\[
M \models \varphi[x] \iff \langle N, B \rangle \models \overline{\varphi}[x]
\]
for all \(x \subseteq N \).

Hence:

Fact 3. Let \(N, M \) be as above, \(N \) is definably regular in \(M \) i.e. \(\langle N, B \rangle \) in a ZFC-model for every \(BCN \) which in \(\Sigma_1(M) \).

We also make use of the fact:

Fact 4. Let \(f : \bar{N} \rightarrow \Sigma_\infty \) co-finally, where one of \(\bar{N}, N \) is a ZFC-model. Then \(f : \bar{N} \rightarrow N \). (Hence both are ZFC-models.)

If \(M \) is a (possibly ill-founded) model of the extensionality axiom, we define the well-founded core of \(M \) (wfc(M)) to be the
set of \(x \) and. There is no infinite descending chain in \(E_{\theta} \) starting with \(x \).

We call \(M \) solid iff \(\mathrm{wfc}(\alpha \tau) \) is transitive and \(: x < y \rightarrow x \subseteq y \) for \(x, y \in \mathrm{wfc}(\alpha \tau) \).

Clearly, every model \(M \) of the extensionality axiom is isomorphic to a solid model.

Fact 5 Let \(\sigma : N \rightarrow N \) finally, where \(N \) is a ZFC-model. Let \(\bar{M} = J_{\delta}(N) \). Let \(\sigma \) be a \(\mathrm{wfc} \) of \(\bar{M} \) such that \(\bar{M} \) is solid. At \(\theta \) is ill-founded and \(\delta = \mathrm{On} \cap \mathrm{wfc}(\alpha \tau) \). Then \(J_{\delta}(N) \) is admissible.

Proof:
Let \(M = J_{\delta}(N) \), \(u, z \in M \) and
\[
M \models \forall x \epsilon u \forall y \epsilon u \varphi(x, y, z)
\]
where \(\varphi \in \Sigma_0^1 \).

Claim: \(M \models \forall x \epsilon u \forall y \epsilon u \varphi(x, y, z) \)
for some \(u \epsilon M \).

Let \(\Psi(u, v, z) \) be the \(\Sigma_0^1 \) formula
\[
\forall x \epsilon u \forall y \epsilon u \varphi(x, y, z)
\]
Recall that \(\bar{M} = J_{\theta}^{\bar{E}} \), \(\bar{N} = J_{\theta} \).
We recall that for every \(\beta \) we have:
\[J^\beta = \bigcup_{\nu < \omega \beta} S^\nu_{\beta}, \] where \(S^\nu_{\beta} \) (\(\nu < \omega_1 \)) is a cumulative hierarchy of transitive sets. Set \(A = \langle S^\nu_{\beta} \mid \nu < \omega \rangle \). We know that:

- \(\forall \nu \in J^\beta \) for all \(\nu < \omega \beta \)
- The formula \(y = \exists \nu \) is a \(\Sigma_0 \) condition on \(y_1 \nu \) (in the predicate \(\bar{E} \)).

The statement: \(\forall \nu \forall y \, y = \exists \nu \) holds in \(\bar{M} \).

Hence it holds in \(\bar{\omega} \). But the statement:

\[\forall u, z_1, z_2 \left((V^u_{3'} \leq \nu \, \exists \,(u, \lambda(z_1, z_2)) \rightarrow V^z_3 < \nu \, \forall (u, \lambda(z_1, z_2)) \right) \]

\[\forall z_3 < \nu \, \exists \,(u, \lambda(z_1, z_2)) \]

\[\forall A < \nu \, \exists \,(u, \lambda(z_1, z_2)) \]

also holds in \(\bar{M} \). Hence, it too holds in \(\bar{\omega} \). At is clear that if \(a \in ON \setminus \bar{\omega} \), then

\[\bar{\omega} = \lambda \exists u \forall y \in A \left(\varphi(x_1 y_1 z) \right). \]

But by the foregoing there must be a least such \(a \) in \(\bar{\omega} \). Hence a \(\in M \) and

\[M \models \lambda x \exists u \forall y \in S^x_{\alpha} \varphi(x_1 y_1 z), \]

\(\text{QED (Fact 5)} \)
Note that if σ' maps \bar{m} cotinally to \mathcal{M}, we also have \(\mathcal{M} \models \forall x \forall y \, x \in y \). This will also be the case if $\sigma' \in \Sigma_2$—preserving. Otherwise, I don't see why it would hold.

In this section we shall be very concerned with embeddings $\sigma : \bar{m} \rightarrow \mathcal{M}$ which, as in Fact 5, "lift up" an embedding $\sigma : \bar{N} < \mathcal{N}$.

We shall, in fact, prove:

Thm 1. Let $\sigma : \bar{N} < \mathcal{N}$ cotinally, where \mathcal{N} is a ZFC-model. Let $\mathcal{M} = J_\alpha(N)$ s.t. $J_\beta(N)$ is not admissible for $0 < \beta < \alpha$. Then there exist $\bar{M} = J_{\beta'}(\bar{N})$, $\sigma' : \sigma \rightarrow \sigma'$ s.t. $\bar{M} \subseteq \mathcal{M}$, $\bar{M} \models \sigma'$, $\bar{N} \subseteq \mathcal{N}$, and $\mathcal{M} \models \sigma'$.

Hence $\mathcal{M} \subseteq J_\beta(N)$, where $\beta = \sup(\sigma(\bar{M}))$.

For later applications, however, we shall want more precise information about $\overline{\sigma}$ and $\overline{\sigma}'$. (Finally, we shall show that $\overline{\sigma}'$ is either cofinal into \mathcal{P}_1 or into Σ_2—preserving.)
One type of lift up map is the Σ_0-lift up:

Def. Let $\sigma : \overline{N} \rightarrow N$ where N is a Σ_0-model.

Let $\overline{M} = \bigcup_{d \leq \sigma} (\overline{N})$. (\overline{M}, σ') is called a Σ_0-lift up of (\overline{M}, σ) iff

(a) \overline{M} is solid.
(b) $\sigma' \subset \sigma$ and $\sigma' : \overline{M} \rightarrow \overline{M}$ cofinally.
(c) \overline{M} is the Σ_0-closure of $N \cup \text{rng}(\sigma')$ in \overline{M}.

Note: (c) is equivalent to

(c') Every $x \in \overline{M}$ has the form $\sigma'(f)(\exists \, z)$, where $f \in \overline{M}$, $f : \overline{M} \rightarrow \overline{M}$, $\exists < \theta$, and $\exists \in \sigma'(M)$.

It is also equivalent to:

(c'') For $x \in \overline{M}$, there $x \in \sigma'(M)$ for a $u \in \overline{M}$ such that $\exists u \in \overline{N}$ in \overline{M}.

Fact. Let $\sigma : \overline{N} \rightarrow N$, $\overline{M} = \bigcup_{d \leq \sigma} (\overline{N})$ be as above. Then a Σ_0 lift up (\overline{M}, σ') of (\overline{M}, σ) exists. Moreover, $\sigma'(\overline{N}) = \overline{N}$ (if $\exists > 0 \text{ on } \overline{N}$) and (\overline{M}, σ') is unique up to isomorphism. (Hence it is unique if \overline{M} is fully transitive.)
Note: The existence of \(\langle \mathcal{M}, \sigma' \rangle \) can be shown by an ultrapower-like construction.

Using the \(\Sigma_0 \)-lift-up alone will not suffice for the proof of Thm1. Under certain circumstances we can form the \(\Sigma_1 \)-lift-up of \(\langle \mathcal{M}, \sigma \rangle \), which exists whenever \(\mathcal{M} \in \Sigma_1 \)-reflecting wrt. \(\mathcal{N} \) in the following sense.

Def: Let \(\mathcal{N} = J^E_\theta \) be a \(\mathcal{ZFC} \)-model. Let \(\mathcal{M} = J^\theta_\eta (\mathcal{N}) \) with \(\theta > 0 \). \(\mathcal{M} \in \Sigma_1 \)-reflecting wrt. \(\mathcal{N} \) iff the following hold:

1. \(\mathcal{M} \) is grounded wrt. \(\mathcal{N} \)
2. \(\mathcal{M} \models \theta \) is the largest cardinal
3. \(\mathcal{N} \) is regular in \(\mathcal{M} \)
4. Let \(\rho \) be a grounding parameter. Then, there are arbitrarily large \(\eta \) s.t.
 whenever \(i < \omega, \exists \xi < \eta \), and
 \(h_\mathcal{M} (i; \langle \xi, \rho \rangle) < \theta \), then
 \(h_\mathcal{M} (i; \langle \xi, \rho \rangle) < \eta \).

Def: \(C = C_M = C_{\mathcal{M}, \rho} \) is the set of such \(\eta \).
(Note The choice of the grounding parameter \(p \) is not really important, since if \(p' \) is a second grounding parameter, then \(C = C_{M,p} \) and \(C' = C_{M,p'} \) coincide. "on a tail" — i.e., \(C \setminus \omega = C' \setminus \omega \) for some \(\omega < \theta \).)

Note \(C = C_M \) is closed in \(\theta \). Hence it is club in \(\theta \) if \(M \in \Sigma_1 \) — reflecting.

Lemma 1.1 Let \(M \) be grounded in \(N \), where \(M = \theta \) is the largest cardinal. Let \(N \) be definably regular in \(M \). Then \(M \in \Sigma_1 \) — reflecting in \(N \).

proof:
Let \(p \) be a grounding parameter. Set \(F = \langle h_M(i, \langle 3, p \rangle) \mid i < \omega, 3 < \theta \land h_M(i, \langle 3, p \rangle) \in \theta \rangle \).
Then \(\langle N_i, F \rangle \) is a \(ZFC \) — model. The conclusion follows easily.

\(\square \) (Lemma 1.1)

Lemma 1.2 Let \(M \) be \(\Sigma_1 \) — reflecting in \(N \). Let \(B \in \Sigma_1 (M) \) and \(B \subseteq N \).
Then \(\langle N, i, B \rangle \) is amenable.
We make the following definition. Let \(p \) be a grounding parameter. For \(\gamma \in C = C_{\alpha, p} \) let:
\[
X_\gamma = \text{h} \diamond (\gamma \cup \{p\}); \quad \text{Let } f_\gamma : M_\gamma \hookrightarrow X_\gamma.
\]
Then \(M_\gamma = J_{\delta_\gamma}(N_{1\delta}) \), where \(N_{1\delta} = J_{\delta_\gamma}^\mathbb{N} \).

Moreover \(f_\gamma : M_\gamma \rightarrow M \) with \(\delta = \text{crit}(f_\gamma) \) and \(f_\gamma(\delta) = \delta \). We note, however, that \(M_\gamma \in N_\delta \), since \(\delta_\gamma \leq \delta \) and:

(a) \(p_\gamma = f_\gamma^{-1}(p) \) is a grounding parameter for \(M_\gamma \) wrt \(N_{1\delta} \).

(b) \(f_\gamma \gamma = \gamma \) is the largest cardinal.

Thus \(\Theta \) would be collapsed to \(\gamma \) if \(\delta_\gamma \geq \Theta \).

Now let \(B = \Sigma_1(M) \) in the parameter \(\delta \).
Let \(\gamma \in C \) s.t. \(f_\gamma(\delta) = \gamma \). Then
\[
B \cap (N_{1\delta}) \text{ is definable over } M_\gamma \text{ by } \gamma \text{ in } M_{\gamma'}. \text{ Hence}
\]
\[
B \cap (N_{1\delta}) \in N_\delta, \text{ QED (Lemma 1.2)}
\]

Note: The choice of \(p \) was not really important to the definition of
\(\langle M_\gamma, 1 \in C \rangle \), since if \(p' \) is another grounding parameter yielding
\(\langle M_\gamma, 1 \in C \rangle \), then...
The sequences again coincide on a tail - i.e., for some \(\lambda < \Theta \) we have:
\[C \setminus \lambda = C' \setminus \lambda, \quad M_y = M'_y, \quad f_y = f'_y \text{ for } \lambda \in C \setminus \lambda. \]

We also set:
\[\text{Def } f_{y, y'} = f_{y', y}^{-1} \text{ for } y \leq y' \text{ in } C. \]

Then \(f_{y, y'} \in N \), since \(f_{y, y'} \) is definable from \(M_y', p_y, y' \) as \(f_y \) was defined from \(M, p, y \).

Using this machinery we define the \(\Sigma_1 \)-liftings:

\[\text{Def } \sigma : N \rightarrow N \text{ cofinally, where } N \ni a \in \mathcal{Z} \subset C \text{ - modal. Let } \tilde{M} = \mathcal{U}_a(N) \text{ be } \Sigma_1- \text{ reflexive with } N. \text{ Define } \tilde{C} = C \setminus M \setminus \tilde{M} \text{, } \tilde{f}_{y, y'} (y \in \tilde{C}), \tilde{f}_{y, y'} (y \leq y' \text{ in } \tilde{C}) \text{ as above. Set: } \]

\[\tilde{M}_y = \sigma(M_y), \quad \tilde{f}_{y, y'} = \sigma(f_{y, y'}). \]

Let \(\langle \tilde{M}_y, \tilde{f}_{y, y'}, \tilde{C} \rangle \) be a direct limit of \(\langle M_y, f_{y, y'}, C \rangle \), \(\langle \tilde{M}_y, \tilde{f}_{y, y'}, \tilde{C} \rangle \), where \(N \) is solid.

Define \(\sigma : \tilde{M}
ightarrow N \), \(\mu \) by \(\tilde{f}_{y, y'} = \tilde{f}_{y, y'} \sigma. \)
By our above remarks on "coincidence on a tail" it is clear that \(\sigma \) is defined independently of the choice of the grounding parameter \(\bar{\rho} \), which gave \(\bar{\sigma} = \bar{\sigma}_{\bar{\rho}} \).

Any such pair \(\langle \bar{\mathcal{U}}, \bar{\sigma} \rangle \) is called a \(\Sigma_1 \)-liftup of \(\langle \bar{\mathcal{M}}, \bar{\sigma} \rangle \).

It is clear that \(\langle \bar{\mathcal{U}}, \bar{\sigma} \rangle \) is unique up to isomorphism. Hence it is unique if \(\mathcal{U} \) is well-founded (hence transitive).

We leave it to the reader to prove:

Lemma 1.3 Let \(\langle \mathcal{U}, \sigma \rangle \) be a \(\Sigma_1 \)-liftup of \(\langle \bar{\mathcal{M}}, \bar{\sigma} \rangle \). Then

(a) \(\bar{\sigma} : \bar{\mathcal{M}} \to \mathcal{U} \)

(b) \(\bar{\sigma}(\bar{\mathcal{N}}) = \mathcal{N} \in \text{wfc}(\mathcal{U}) \)

(c) \(\bar{\sigma} \) is an \(\Sigma_1 \)-liftup of \(\langle \bar{\mathcal{M}}, \bar{\sigma} \rangle \),

Set \(\bar{B} = \{ \bar{u} \in \bar{\mathcal{M}} \mid \exists \bar{u}' \in \bar{\mathcal{M}} : \bar{u}' \vdash \bar{u} \}, \) (Hence \(\bar{\sigma} : \langle \bar{\mathcal{N}}, \bar{B} \rangle \to \mathcal{U} \) finaly.)

Then \(B \in \Sigma_1(\mathcal{U}) \) in \(q = \bar{\sigma}(\bar{q}) \) by the same definition.
Lemma 1.4 Let \(\langle M, \sigma' \rangle \) be the well-founded \(\Sigma_1 \)-lifftup of \(\langle
abla M, \sigma \rangle \). Then

(a) \(M \upharpoonright \Sigma_1 \)-reflective wrt \(N \)

(b) If \(\sigma' \in M \) is a grounding parameter for \(\nabla M \), then \(\sigma = \sigma'(\sigma') \) is a grounding parameter for \(M \).

We now define:

Let \(\sigma : \nabla N \rightarrow N \) cofinally, where \(\nabla N \) is a \(\text{ZFC} \)-model.

Let \(M = J_{\infty}(\nabla N) \), where \(\nabla N \) is regular in \(M \).

\(\langle M, \sigma' \rangle \) is a good lifftup of \(\langle
abla M, \sigma \rangle \)

if either \(M \upharpoonright \Sigma_1 \)-reflective wrt \(\nabla N \) and \(\langle M, \sigma' \rangle \) is a \(\Sigma_1 \)-lifftup, or else \(M \) is not \(\Sigma_1 \)-reflective and \(\langle M, \sigma' \rangle \) is an \(\Sigma_0 \)-lifftup.

Lemma 1.5 Let \(\langle M, \sigma' \rangle \) be the well-founded good lifftup of \(\langle \nabla M, \sigma \rangle \).

If \(M \upharpoonright \Sigma_1 \)-reflective wrt \(N \),
then \(\nabla M \upharpoonright \Sigma_1 \)-reflective wrt \(\nabla N \).

(Hence \(\langle M, \sigma' \rangle \) is the \(\Sigma_1 \)-lifftup.)

proof

Suppose not. Then \(\langle M, \sigma \rangle \) is the
Σ_0 - lift up. Since Θ is the largest cardinal in M, it follows readily that Θ is the largest cardinal in \bar{M}.

Now let ρ be a grounding parameter for M. Then $\rho = \sigma'(f)(\xi)$, where $f \in \bar{M}$, $\xi < \Theta$. Thus every $\nu \in M$ in $\Sigma_1(M)$ in $\sigma'(f)$ and parameters from Θ. Hence $\sigma'(f)$ is a grounding parameter for M. Hence we may assume w.l.o.g. that $\rho = \sigma'(\bar{\rho})$ for a $\bar{\rho} \in \bar{M}$. But then for any $\nu \in \bar{M}$, we have:

$$\forall \xi < \Theta \forall \nu < \omega \sigma'(x) = h_M(\nu, \langle \xi, \rho \rangle)$$

Hence:

$$\forall \xi < \Theta \forall \nu < \omega \nu = h_{\bar{M}}(\nu, \langle \xi, \bar{\rho} \rangle)$$

and $\bar{\rho}$ is a grounding parameter for \bar{M}. We must show:

Claim: $\bar{C} = C_{\bar{M}, \bar{\rho}}$ is unbounded in $\bar{\Theta}$.

Let $\gamma < \bar{\Theta}$. We must find $\bar{s} > \gamma$ s.t. $\bar{s} \in \bar{C}$.

Let $C = C_{M, p}$. Pick $\gamma \in C$ s.t. $\sigma(\gamma) < \delta$. Set $\bar{\gamma} = \text{the least } \bar{\gamma} \text{ s.t. } 1(\bar{\gamma}) \geq \delta$.

Claim $\bar{\gamma} \in C$.

Let $h_M(\vec{i}, \langle \bar{\gamma}, p \rangle) = \delta < \Theta$, where $\delta < \bar{\gamma}$. Then

$h_M(\vec{i}, \langle \sigma(\bar{\gamma}), p \rangle) = \sigma(\bar{\gamma}) < \Theta$

where $\sigma(\bar{\gamma}) < \delta$. Hence

$\sigma(\bar{\gamma}) < \delta \leq \sigma(\bar{\gamma})$, since $\bar{\gamma} \in C$.

Hence $\delta < \bar{\gamma}$, QED (Lemma 1.5)

We are now ready to prove Thm 1 in the stronger form:
Thm 2 Let \(\sigma: \bar{\mathcal{N}} < \mathcal{N} \), where \(\mathcal{N} = \bigcup_{\emptyset}^{E} \), is a ZFC-model. Let \(\mathcal{M} = \bigcup_{\emptyset}^{E} \mathcal{N} \), where \(\mathcal{N} \) is regular in \(\mathcal{M} \) and \(\bigcup_{\emptyset}^{E} \mathcal{N} \) is not admissible for \(0 < \nu < \delta \). Let \(\bar{\mathcal{M}} = \bigcup_{\emptyset}^{E} \bar{\mathcal{N}} \) where \(\bar{\mathcal{N}} \) is maximal s.t. \(\mathcal{N} \) is regular in \(\bar{\mathcal{N}} \) and \(\mathcal{M} \subseteq \bigcup_{\emptyset}^{E} \bar{\mathcal{N}} \) is admissible for \(0 < \nu < \bar{\delta} \), Let \(< \bar{\mathcal{M}}, \bar{\sigma} > \) be a good lift up of \(< \bar{\mathcal{N}}, \bar{\sigma} > \). Then \(\mathcal{M} \) is an initial segment of \(\bar{\mathcal{M}} \).

Proof:
Suppose not. Then \(\mathcal{M} \) is well founded, since otherwise, letting
\(\mathcal{S} = \{ \alpha \in \mathcal{N} \mid \mathcal{M} \prec (\mathcal{M}, \alpha) \} \), we know that
\(\mathcal{M} \) is admissible, hence contains \(\mathcal{M} \) as a segment. Let \(\mathcal{M} = \mathcal{M} = \bigcup_{\emptyset}^{E} \mathcal{N} \), Then \(\bar{\mathcal{N}} < \bar{\delta} \). Hence \(\mathcal{N} \) is regular in \(\bigcup_{\emptyset}^{E} \mathcal{N} \). Hence \(\mathcal{M} \) is \(\Sigma_1 \)-reflecting at \(\mathcal{N} \) by Lemma 1.9.
Hence \(\mathcal{M} \) is \(\Sigma_1 \)-reflecting at \(\bar{\mathcal{N}} \) by Lemma 1.5 and \(< \mathcal{M}, \bar{\sigma} > \) is the \(\Sigma_1 \)-lifting of \(< \mathcal{N}, \sigma > \). Now let
\[\mathcal{B} \subseteq \Sigma_1(\overline{M}) \text{ s.t. } \mathcal{B} \subseteq \overline{N}, \text{ Set: } \mathcal{B} = \bigcup_{\gamma \leq \alpha} (\gamma, \overline{B}). \]

By Lemma 1.3 (c1), \(\mathcal{B} \subseteq \Sigma_1(\overline{M}) \); hence \(\mathcal{B} \subseteq \mathcal{F}_\alpha(\overline{N}) \).

But then \(\langle N, \mathcal{B} \rangle \) is a ZFC-model and
\[\Rightarrow \langle N, \mathcal{B} \rangle \models \Sigma_0 \langle N, \mathcal{B} \rangle. \]

Hence \(\langle N, \mathcal{B} \rangle \) is a ZFC-model. By Fact 3, \(\overline{N} \) is definably regular in \(\overline{M} \), or in other words:

\(\overline{N} \) is regular in \(\mathcal{F}_\alpha(\overline{N}) \). Hence by the definition of \(\overline{M} \) we have \(\overline{M} \) is definable.

Now let \(\bar{\rho} \) be a grounding parameter for \(\overline{M} \) and let \(\overline{\mathcal{B}} \) be \(\Sigma_1(\overline{M}) \) in \(\overline{\rho} \) s.t. \(\overline{\mathcal{B}} \) codes the whole of \(\overline{M} \) with the properties given in Fact 2. Letting \(\overline{\mathcal{B}} \) be as above, \(\overline{\mathcal{B}} \) has the same \(\Sigma_1(\overline{M}) \) definition over \(\rho = \bar{\rho}(\bar{\rho}) \), which is a grounding parameter for \(M \). Hence \(\overline{\mathcal{B}} \) codes \(\overline{M} \) with the properties given in Fact 3. The statement "\(\overline{M} \) is definable" is a first order statement over \(\overline{M} \), hence is expressible by a first order statement over \(\langle N, \mathcal{B} \rangle \).

Hence \(\langle N, \mathcal{B} \rangle \) satisfies the same statement. Hence \(\overline{M} \) is definable. Hence \(M \) is a segment of \(\overline{M} \).

Contr! \ QED (Thm 2)
Now suppose that $\sigma : \bar{N} \prec N$ cofinally, where N is a ZFC-model, and $\sigma = \sigma_1 \circ \sigma_0$, where $\sigma_0 : \bar{N} \rightarrow N_0$, $\sigma_1 : N_0 \rightarrow N$ are cofinal Σ_0-preserving maps. (Hence, of course, all maps are elementary and all models are Σ_0-models.)

Let $\bar{M} = \bigcup_{\bar{N}} (\bar{N})$ be grounded with \bar{N} not. $\bar{M} = \bar{E}$ is the largest cardinal, (where $\bar{E} = \text{On} \cap \bar{N}$, $\Theta = \text{On} \cap N$, $\Theta = \text{On} \cap N$).

Let $< \bar{M}, \sigma >$ be a good lift up of $< \bar{M}, \sigma >$ and $< \bar{M}_1, \sigma_0 >$ a good lift up of $< \bar{M}, \sigma >$. Then there is a canonical bridge $\sigma_1 : \bar{M}_0 \rightarrow \bar{M}$ such that $\sigma_1 \circ \sigma = \sigma_0$ and $\sigma_1 \circ \sigma_0 = \sigma$. This is defined by cases as follows:

Case 1. \bar{M} is not Σ_1-reflective w.r.t. \bar{N}.

Then $< \bar{M}, \sigma >$, $< \bar{M}_0, \sigma_0 >$ are Σ_0-lift ups and every $x \in \bar{M}_0$ has in \bar{M}_0 the form $\sigma_0' (f) (\bar{z})$ where $f \in \bar{M}$ and $\bar{z} < \theta_1$. We then set $\sigma_1' (\sigma_0' (f) (\bar{z})) = \sigma_1' (f) (\sigma_1 (\bar{z}))$. ...
Cure 2 Cure 1 faith.

Then \(\langle M, 0' \rangle, \langle M_0, 0' \rangle \) are \(\Sigma_1 \)-elements.

Let \(\bar{\sigma} \) be a grounding parameter, \(\bar{C} = \bar{C}_{\bar{M}, \bar{M}_0} \).

Let \(\sigma' (\bar{M}_0) = M_0, \sigma' (\bar{f}_{y, y'}) = f_{y, y'} \).

\(\sigma (\bar{M}_0) = M_0, \sigma (\bar{f}_{y, y'}) = f_{y, y'} \),

for \(y \leq y' \) in \(\bar{C} \). Then \(\sigma' f_{y} = f_{y} \sigma \) and

\(\sigma' f_{y} = f_{y} \sigma \), where:

\(\langle M, f_{y} | y \in \bar{C} \rangle = \text{the limit of} \)

\(\langle M_0, f_{y} | y \in \bar{C} \rangle, \langle f_{y}, y' \rangle | y \leq y' \in \bar{C} \rangle, \)

and accordingly for \(\langle M, f_{0} | y \in \bar{C} \rangle \).

We define \(\sigma'_1 \) by:

\(\sigma'_1 f_{y} = f_{y} \sigma \) for \(y \in \bar{C} \),

An Cure 1 we then have:

\(\sigma_1 : \mathcal{M}_0 \rightarrow \mathcal{M} \) \text{ cofinally}

and in Cure 2:

\(\sigma_1 : \mathcal{M}_0 \rightarrow \mathcal{M} \).

Now suppose that \(\mathcal{M}_0 = M_0 \) is well founded. We leave it to the reader to prove:

Lemma 2.1 Let \(\mathcal{M}_0 = M_0 \) be well founded (hence transitive). Then:
* (M, σ') is a Σ_0-lift up of (M_0, σ_1) if \bar{M} is not Σ_1-reflective with \bar{N}.

* (M, σ') is a Σ_1-lift up of (M_0, σ_1) if \bar{M} is Σ_1-reflective with \bar{N}.

But if \bar{M} is not Σ_1-reflective, then neither is M_0 by Lemma 1.8. Hence (M, σ') is a good lift up of (M_0, σ_1).

Now suppose $\sigma_i^j : N_i^j < N_i^j$ for finally for $i \leq i' < \gamma$, where each N_i is a \mathcal{ZFC}-model. Let $M_0 = \bigcup_i (N_i)$ be grounded with N_0 and set $M_0 \subseteq \Theta_0$ be the largest cardinal, where $\Theta_i = \text{con}_i \cap M_0$. Let (M_j, σ_0^j) be a good lift up of (M_0, σ_0^j) for $j < \gamma$. Let $\sigma_i^j : M_i^j \to \Theta_i^j$ be the bridging map defined above. It follows from the definition that $\sigma_i^j \circ \sigma_0^j = \sigma_k^j$ for $i \leq i' \leq k < \gamma$.

Historical Note

Thm 1 has the corollary:

(*) Let $\tilde{\sigma} : \tilde{N} \prec N$ cofinally, where $N = J^E_\kappa$ is a \ZFC\ - model. Assume that N is regular in $J_\rho(N)$, where ρ is least in κ, $\rho > 0$ and $J_\rho(N)$ is admissible. Let $\tilde{\rho}$ be least $\tilde{\rho} > 0$ in $\tilde{\kappa} : J_\tilde{\rho}(\tilde{N})$ is admissible. Let $J_\rho(\tilde{N}) = \varphi(\vec{x}, \tilde{N})$ where φ is a Σ_1 formula and $\vec{x} \in \tilde{N}$. Then $J_\rho(N) \models \varphi(\sigma(\vec{x}), N)$.

To see this, note that we can indirectly assume the \vec{a} in Thm 1 to be $\leq \tilde{\rho}$.

In our note [SPSC] we made heavy use of a lemma which draws the same conclusion under the assumption that \tilde{N} is full. Hence (*) is a strengthening of that lemma. However, Theorem 1 and its corollary (*) predate the lemma by several decades. Our recollection is that we proved them in late 1975.

The lemma on fullness was, of course, more suitable to [ESI], since its proof involved no fine structure,