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Abstract

This paper concerns boundary value problems for quasilinear second order
elliptic systems which are, for example, of the type

0; (affﬂ (u, A)Ou®™ + b{a (u, )\)) + cip(u, N)ou* = dg(u,A) inQ,
(affﬂ (u, A)Oiu™ + b]é (u, A)) vi = ep(u,A) onTg,
u o= on 9N\ T's.

Here Q is a Lipschitz domain in R, v; are the components of the unit
outward normal vector field on 052, the sets I'g are open in 02 and their rel-
ative boundaries are Lipschitz hypersurfaces in 9S). The coefficient functions
are supposed to be bounded and measurable with respect to the space vari-
able and smooth with respect to the unknown vector function v and to the
control parameter A. It is shown that, under natural conditions, such bound-
ary value problems generate smooth Fredholm maps between appropriate
Sobolev-Campanato spaces, that the weak solutions are Hélder continuous
up to the boundary and that the Implicit Function Theorem and the Newton
Iteration Procedure are applicable.
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1 Introduction

This paper concerns boundary value problems to quasilinear second order elliptic
equations and systems in divergence form. We consider boundary value problems



which have non-smooth data in the following sense: First, they are posed on a
domain Q C RV, the boundary of which is non-smooth, but only Lipschitz, in
general. Second, we deal with mixed (changing type) boundary conditions, where
the “Dirichlet” and the “Neumann” boundary parts can touch. Third, the right
hand sides are not functions, but only distributions in W=12(€), in general. And
fourth, the coefficient functions are not continuous with respect to the space vari-
able, but only measurable and bounded, in general. On the other hand, the coef-
ficient functions are smooth with respect to the unknown function » and to the
control parameter A. Remark that we do not impose any growth conditions on the
coefficient functions with respect to u and A.

The aim of our paper is to apply the Implicit Function Theorem and the
Newton Iteration Procedure to the boundary value problems. We state conditions
such that, roughly speaking, the following is true:

Let u = ug be a bounded weak solution to the boundary value problem with
control parameter A = )g, and suppose that zero is the only weak solution to
the formal linearization of the boundary value problem at u = ug and A = Ag.
Then there exists a v € (0,1) (depending on ug and Ag, in general) such that the
following holds:

(i) For all X close to Ag (in a certain normed vector space of control parame-
ters) there exists a weak solution u € C%7(Q) NW2(Q), it depends C'-smoothly
(in the sense of C%7(Q) N W12(Q)) on A and it is the only solution close to ug in
L= (Q) N W2(Q). In particular ug € C%7(Q).

(i) Let u; be sufficiently close to ug in L>® () NW12(Q), and let uz,us, .. .
be the Newton iterations determined by means of the formally linearized boundary
value problem in u = uy,us,... and A = Ag. Then u; € C%7(Q) and uw; = up in
Co(Q)NWH2(Q) for I — oo.

In order to formulate our results more precisely, let us consider the following
model problem:

-V - (pa(u)Vu) +bu) = —-V-f inQ,
pa(u)lVu-v+c(u) = f-v+g onT, (1.1)
u = 0 on 0Q\T.

In (1.1), T is a relatively open subset of 89, v : Q2 — RV is the unit out-
ward normal vector field on 99, and p € L>®(f2). Suppose that the nonlinearities
a,b,c : R = R are continuously differentiable, and the right hand sides satisfy
f € [LP(Q)]N and g € LP~Y(T) for some p > N. The control parameter is, for
example,

A= (p, f,9) € L=(Q) x [LP(Q)]¥ x /(D).

The formal linearization of (1.1) at u = ug, p = po, f = fo and g = go is

=V - (po (a(up)Vu + a'(ug)uVug)) + ' (ug)u = 0 inQ,
po (a(uo)Vu + a'(ug)uVug) - v+ c'(ug)u = 0 onT, (1.2)
u = 0 ondN\T.



Now, suppose that the essential infimum of pga(ug) is positive, that zero is
the only weak solution to (1.2) and that a mild assumption concerning the relative
boundary of T" in 912 is satisfied. Then the assertion (i) above is true. If, moreover,
a', b and ¢ are locally Lipschitz continuous, then assertion (ii) is also true. Here,
for a given Newton iteration u;, the next Newton iteration w41 is determined by
means of the inhomogeneous linear boundary value problem

—V - (po (a(w))Vugy1 + a' (up)ugp1 V) + b (ug) w11 =
==V (poa' (w)u;Vuy) + b (w)uy — b(w)) = V- fo in Q, (1.3)

po (a(u))Vuryr + a' (u) w1 V) - v + ¢ (w)upr =
= poa’ (ur)u; Vg - v + ¢ (w)uy — c(w) + fo-v—go onT, (1.4)

w1 =0 on dN\T. (1.5)

Let us use the model problem (1.1) also for explaining the main ideas of the
proofs in our paper.

As usual, we denote by W01’2(Q UT) the space of all u € W2(Q) such that
u =0 on OQ\T in the sense of trace, and W~12(QUT) is its dual space. A weak
solution to (1.1) is a function u € L>°(2) N Wy**(Q UT) such that

/((pa(u)Vu —f)- Vo +b(u)v)dz + /(c(u) —g)vdl'=0 (1.6)

Q r

for allv € I/VO1 2(QUT). Tt is easy to see that this variational equation is equivalent
to the operator equation

F(u,p, f,9) =0, (1.7)

where F is a continuously differentiable map from (L°°(Q) NWy2(QU I‘)) X

L2 (Q)x[LP(Q)]N x LP~1(T) into W~ 12(QUT) and is defined such that (F(u, p, £, g),v)
is the left hand side in (1.6). Here (-, -) is the dual pairing on W,**(QUT'). Moreover,
the weak formulation of (1.2) is equivalent to

oOF
%(anpoafoago)u =0.

But, unfortunately, the partial derivative %(uo, po, fo, go) is not a Fredholm op-

erator from L°(Q) N Wy*(QUT) into W—12(QUT), in general.

The way out is to find a y € (0, 1), a Banach space X — C%Y(Q)NW,*(QUT)
and a Banach space ) — W~12(QUT) (which depend on ug, po, fo and go, in
general) such that the following holds:

(iii) There exist neighborhoods Uy of ug in L°(Q) N Wy *(QUT) and Vy of
(p07 fO;gO) in LOO(Q) X [LP(Q)]N X Lp—l(F) such tha‘t7 if (U,p, fa g) € uO X VO isa
solution to (1.7), then u € X.



(iv) The restriction of F on Uy N X maps Uy N X continuously differentiable
into ), %(uo, P0; fo, 90) is a Fredholm operator from X into ), and % (-5 po, fo,90)
is locally Lipschitz continuous from Uy N X into L(X,)).

Remark that X and Y are auxiliary spaces only, the assertions (i) and (ii)
are independent on the choice of them.

In the case N = 2 the Sobolev spaces X = Wy*?(QUT) and Y = W~14(QU
I) with ¢ € (2,p) sufficiently close to two satisfy (iii) and (iv). Using that, the
assertion (i) has been proved in [18, Section 4.1], and assertion (ii) will be proved
in Section 3 of the present paper. Moreover, in the case N = 2 we deal with general
elliptic systems.

If N > 2, it seems not to be possible to find spaces X and Y with (iii) and
(iv) in the scale of Sobolev spaces, in general. The reason is, that, on the one hand,
one would have to take ¢ > N so that F(-,¢, f, g) is well defined on Wol’q(Q ur)
and maps continuously differentiable into W~14(Q UT). On the other hand, the
operator %(Uo,&'o, fo,90) (more exactly: the restriction to Wh4(Q UT) of the
linear continuous extension of %(uo,so, fo0,90) onto WO1 ’2(9 UT)) is Fredholm
from Wy (QUT) into W=14(QUT) only for those ¢ > 2 which are close to two,
in general.

In the present paper we show that, for any space dimension N, the Sobolev-
Campanato spaces X = W, >*(QUT) and Y = W—129(QUT) with w > N — 2
sufficiently close to N — 2, satisfy (iii) and (iv). Using that, we prove the assertions
(i) and (ii). Moreover, we prove similar results for boundary value problems for
quasilinear equations and systems much more general than (1.1). But remark that
the boundary value problems we work with have the property that each weak
solution is Hélder continuous. Hence, we cannot consider general elliptic systems
in the case of space dimension N > 2. In that case we assume that the principal
part of the appropriately linearized system is triangular.

Our results are a generalization of [8], where the applicability of the Implicit
Function Theorem by means of Sobolev-Campanato spaces is shown for a special
quasilinear elliptic system with non—smooth data from semiconductor theory. In
[13] the Implicit Function Theorem as well as results from analytic bifurcation
theory are applied to a semilinear elliptic boundary value problem with non—
smooth data. There the semilinear structure of the equation is essentially used. In
[18, Section 4.2] the Implicit Function Theorem is applied to a class of semilinear
elliptic boundary value problems with non—smooth data, where the nonlinearities
satisfy certain growth conditions.

There exists a large number of results of the type of the Implicit Function
Theorem for nonlinear elliptic boundary value problems with smooth data, see,
e.g., [5, Chapter 6], [15, Chapter 6.4], [19], [21, Chapter 61.12] and [22] for appli-
cations in elastostatics, [6] for applications in hydrodynamics, [14, Chapter 6.4]
for applications in semiconductor device modeling, and [1, 2] for general elliptic
problems. In all these papers it is supposed that the boundary 9 and the de-



pendence of the coefficient functions on the space variable are sufficiently smooth
and that the boundary part T' is open and closed on 9Q (i.e. “genuine” mixed
boundary conditions are excluded). This is made in order to have the solutions
sufficiently smooth and, hence, in order to work in function spaces of smooth func-
tions and to use the property that superposition operators, generated by smooth
functions, are smooth on such function spaces. However, such superposition opera-
tors are non—smooth, in general (if they are not affine), on “large” function spaces
of non-smooth functions. This is the reason for the counter example [3], a second
order fully nonlinear elliptic boundary value problem in one space dimension with
smooth data, the solution behavior of which is of the type of the Implicit Function
Theorem on “small”, but not on “large” function spaces.

For second order fully nonlinear and for higher than second order nonlinear
(even semilinear) elliptic boundary value problems with non—smooth data we do
not know any results of the type of the Implicit Function Theorem.

2 Notation and Setting

Throughout this text Q denotes a bounded open domain in RY. By L?(Q) and
Il - [|zr(2) We denote the usual Lebesgue spaces and their norms. For 1 < p < oo
and 0 < w < p+ N we denote by

LP2(§)) :={u € LP(Q) : ||ullprw () < oo}

the Campanato space with its norm

1/p
lulzseio = | lullnigy + 500 (r [ ) = woemlPdy) |
r>0 Q(z,r)
where
1
Q = Q: - = - du.
(@)= {y € Qs ly—sll <7}, wnen = g [ u)dy
Q(z,r)

Here ||-|| is the Euclidean norm in R . The Campanato spaces LP**(T) of functions
defined on a Lipschitz submanifold T in RN are defined analogously (cf., e.g.,
[9, 10]).
Further, by W'?(Q) and || - ||w1.»(q) we denote the usual Sobolev spaces and
their norms, and we will work with Sobolev—Campanato spaces
Ou

WP (Q) := {u € WP(Q) : 32, € P (Q) for j=1,...,N}
j



and their norms

1/p
p

Ou
0

N
lullwreo) = | lelluiay + D | 5o
i=1 JNLee ()
Throughout this text, for « = 1,...n, Iy are relatively open subsets of 0f).
We shall assume that the following condition, concerning the boundary of  in
RY and the relative boundaries of the sets T, in 89, is satisfied:

For all « = 1,...,n and all z € 9 there exist an open
neighborhood U of z in RY and a Lipschitz transformation ® (2.1)
of U into RN such that ® (U N (QUT,)) € {E1, Es, E3},
where
E, = {zeRV: |z <1,zx <0},
Ey = {zeRV: |z <1, zx <0},
E; = {zx€FEy: 1 >00rzy <0}

If (2.1) is satisfied then 2 is a domain with Lipschitz boundary, and, hence, the
continuous embeddings

_ N —
Wire(Q) < CO7@) for N—p<w<Nandy=1- —2

are valid (cf, e.g., [7]). We write
WoP(QUT,) == clray{ula : u € CP(RY), (002 \ Ty) Nsupp(u) = 0}

for the subspace of the Sobolev space W1P(Q) of all functions vanishing on 9Q\T',
in the sense of trace, W~1P(Q UT,) is the dual space of W, %(2UT,) with
1/p+1/q =1, and the corresponding Sobolev—Campanato spaces are denoted by

Wy P (QUT,) == Wy P(QUT,) N WP (Q).

We will also use the Sobolev—Campanato spaces of functionals (see, e.g., [9, 12,
16, 17])

WP (QUT,) = {F € WP (QUT,) : ||F|lw-1ee@ur,) < 00}-

The norm ||F||y-1.0.«(qur,) of FF € W12 (QUT,) is defined as the supremum of
the set of all #=“/?|(F, u),|, where u € Wy?(QUT,), llullwa) < 1, supp(u) C
Qz,r), £ € N and r > 0. Here (-.-), : W P(QUT,) x Wy '(QUT,) — R is the
duality pairing. For the sake of shortness we will use the following notation

WEP = WIPC(QUTY) X ... x Wy P (QUT,),
WP = WTLPO(QUTY) X ... x WL (QUT,).



In place of W'P0 and W~1P0 we write more shortly W'P and W~1P, respec-
tively. We identify the space W12 with the space (W"?)* in the usual way, and
we denote by (-,-) : W52 x W12 — R the corresponding duality pairing.

Let U be an open subset in [L°°(2)]" N W2 A a normed vector space and
Y an open subset in A. We consider the variational equation

ou® ovP

hdih — a 1,2
oz, oz, dz = (Fu(u, A),v*) for allv € W2, (2.2)

wel, \eV: /Agﬁ(u,)\)
Q

In (2.2) and in the sequel the summation over indices a, = 1,...,n and 7,j =
1,...,N is understood if the indices appear pairwise, once “below” and once
“above”, but no summation is understood if they appear pairwise, but twice “be-
low”, (as, for example, in (3.4)) or twice “above”. The free subscripts «, 3 vary
from 1 to n and the free subscripts i, j from 1 to N. Concerning the nonlinearities
we suppose: N

Ay € CHU x V; L=(9)), (2.3)

F, e C'(U x v; W~12(Q)). (2.4)

Besides of the nonlinear variational equation (2.2) we consider its linearization at
u=u EUand A= €V

3 S DAY oug \ Ov
1,2 AY < of 0 .
wew /( o (05 Xo) s + U (uo, Ao)u dz: | Bz, dzx
)
= <66%(u0, )\o)u,va> for all v € W2 (2.5)

and the linear inhomogeneous variational equations determining Newton iterations
u+1 € U for given u; € U by

ij iy
/ (Aof@(ul;/\o) Sy

Q

dAY ou?®\ ov
apB _ l B
Ou (ut; o) (ursr ul)] 6:1:,~> oz; dz

6Fa (ula )‘0)
ou

= <Fa(ul, o) + (wp1 — up) ,va> for all v € W2, (2.6)

3 The Case N > 2. Elliptic Systems With Trian-
gular Main Part

The main result of this section is the following



Theorem 3.1 Suppose (2.1) and (2.3) and that there exists an wo > N — 2 such
that
F, € C*U x v; W L2wo(Q)). (3.1)

Further, let u = ug, A = Ao be a solution to (2.2) such that zero is the only solution
to (2.5), that N
Al5(uo, Ao) =0 for all a > (3.2)
and that
OF, . .
—— (ug, \o) is completely continuous (3.3)

Ou
from [L®°(Q)]" N W12 into W=12%0(Q UT,). Finally, suppose that there ezists
an € > 0 such that

[AY (w0, Xo)] (2)&:&; > €||€||? for almost all € Q and all £ € RN . (3.4)

Then there exist anw € (N —2,wo] and a neighborhood Uy of ug in [L°(Q)]"N
W12 with Uy C U such that the following is true:

(i) There exist a neighborhood Vo of Ao in A with Vo C V and a map ® €
C(Vo; WH2%) such that (u,)\) € Uy X Vo is a solution to (2.2) if and only if u =
®(\). In particular, for each solution (u,\) € Uy X Vo to (2.2) it holds u € WhH>¥.

(i) If the maps

AU,

ou
OF,, o ennin 12w
W("AO):M = L([L=Q)]" n W2, W—12#0(Q))

are locally Lipschitz continuous, then, for each uy € Uy, (2.6) defines uniquely a
sequence us,us, ... € U such that u; € WH2¥ and u; = ug in Wh>¥ as | = oo.

() U = L(L®]" nWh2 L)),

Proof For arbitrary i,j = 1,...,N, z € Q, a € L*(Q), r,w > 0, u €
wl29(Q) and v € WH2(Q) with supp v C Q(z,r) we have

2

ou Ov / ou |? / ov
a —dz| < |lallf~ dz — | dx
oy ‘ < lallz (9)\/ o) | OT; \/Q(M) dx;
< rlallpe @ llullwrze @) llvllwz @)

Hence, there exists a bilinear continuous map B : [L°(Q)]""N* x W2 o W-1.2,

which is defined for A = [agﬁ]’o;f;:l’l”{\; € [L®()]” N and u,v € Wh2 by

ij aua 61)5

(B(A,u),v) :=/aaﬂ oz, 8—% dz,
Q

such that the restriction of B(4, -) to W12* maps W'2 continuously into W12,
Because of assumption (2.1), the bilinear map B has the following properties (see [9,



Theorem 4.12] and [10, Theorem 7.1]): For all § € (0, 1) there exists an w(J) > N—2
such that for all w € [0,@(d)] and for all A = [agﬁ]gfﬁ::ll’{\; € [L2()]" N we
have: If for almost all z €

SlIEII” < agy(z)€:&; < I€]J* for all & € RY
and if afljﬁ (x) =0 for all @ > 3, then

B(A,-) is a Fredholm operator (index zero) from Wh?¥ into W=1%%  (3.5)

and
u € WH¥ for all u € Wh? with B(A,u) € W12, (3.6)
Let us introduce the maps
A e CHUxWL=@I™) 0 Aw ) = (A NN,
F e C'(UxVy;wt2wo) Flu,X) = (Fi(u,N),...,Fau,N),

where Aflj and F, are the maps from (2.3) and (2.4). Then, obviously, the varia-
tional equation (2.2) is equivalent to the operator equation

u€UNEV: B(A(u,N),u) = F(u,N). (3.7)
Moreover, the linear variational equation (2.5) is equivalent to the linear operator
equation

u € WH? 1 B(A(ug, Xo),u) + B (g—ij(uo,)\o)u,uo) = %—Z_—(uo,)\o)u. (3.8)

Now, let us prove assertion (i) of Theorem 3.1. We have B(A(ug, Xo),uq) =
F(ug, Xo)- Because of (2.3) and (3.4), there exists a § € (0,1) such that

SIEl < [A2, (0 0] (2)6:&s < eIl

for almost all z € Q and all ¢ € RV, all u, which are close to ug in [L*>(Q)]" NW2
and all A\ which are close to Ag in A. Hence, (3.6) yields that there exist w €
(N —2,w] and neighborhoods U of ug in [L>®(2)]" NW2 with Uy C U and V, of
Ao in A with Vy C V such that for all solutions (u, ) € Uy x Vo we have u € W12,
In particular, ug € W12, Hence, close to the solution (ug, \g) equation (3.7) is
equivalent to

u € Ug NWHHY X e Vg : B(A(u,N),u) — Flu,\) =0, (3.9)

and it remains to solve (3.9) by means of the classical Implicit Function Theorem.
Because of w > N — 2 the space W12%(Q) is continuously embedded into
L*>®(Q). Hence, UpNW12¥ is open in W12« Moreover, the map (u, \) = B(A(u, \), u)—



F(u, ) is a C*-map from (Uy N WH*¥) x Vy into W12, The partial derivative
with respect to u of the left hand side of (3.9) at the solution u = ug, A = Ao is

oA oF
B(A(ug, Xo),)+B (%(uo,)\o)'ﬂm) - %(Uo, Xo) € LOWVE2, WL2@Y - (3.10)

Tt is injective because, by assumption, u = 0 is the only solution to (3.8). Supposing
that it is Fredholm, then it is an isomorphism (because the Sobolev-Campanato
spaces W12« (Q) and W—12%(Q) are complete), and the Implicit Function The-
orem works.

Thus, it only remains to prove that (3.10) is Fredholm. To this end, it suffices
to show that the operators

0A oF
B<%(u0,,\0)-,u0> and %(UO,/\()) (3_11)

are completely continuous from W2¢ into W12« (because B(A(ug, \o),") is
Fredholm by (3.5)). But the first operator in (3.11) is completely continuous be-
cause of the continuous embedding of W12« (Q) into C%7(Q) with v =1 — (N —
w)/2 and of the completely continuous embedding of C%7(Q) into L>(Q2), and the
second operator is completely continuous by assumption (3.3).

Finally, let us prove assertion (ii) of Theorem 3.1. Newton iteration sequences
for (3.9) are defined by

0A oOF
B(A(ug, Xo),wis1) + B (%(Uh /\O)ul+17ul) - %(Ul; Ao)Uit1
0A

oOF
=B (%(UZ;)\O)UHUJ) - %(Ul,)\o)ul + F(ut, Ao)- (3.12)
Let u; € Y. Then the right hand side of (3.12) with I = 1 belongs to W20
and, hence, to W™1:2%_ Because (3.10) is an isomorphism,

BA(u, M), ) + B (%(u,AO)-,u0> _ g—i(u,)\o) € LOVI2@ W 12e)  (3.13)

is also an isomorphism, if  is sufficiently close to ug in [L°(Q)]* N W2, Hence,
if u; is sufficiently close to ug in [L®°(£2)]” N W12, then usy is uniquely defined,
belongs to W2« and is close to ug in W12, Now the classical Newton Iteration
Procedure (cf. [20, Proposition 5.1]) for (3.9) works, because (3.13) depends Lips-
chitz continuously on u on a neighborhood of ug in W2, [ ]

The next theorem is a slightly weaker version of Theorem 3.1, which follows
easily from Theorem 3.1 and which can be formulated without using Campanato
spaces (similarly to assertions (i) and (ii) of Section 1). We don’t know, however,
any proof of this result without using Sobolev-Campanato spaces.

10



Theorem 3.2 Suppose (2.1) and (2.3) and that there exists a p > N such that
F, € CY(U x V;W=1P2(Q)). Further, let u = ug, A = \o be a solution to (2.2)
such that zero is the only solution to (2.5), that (3.2) holds and that 6;;“ (uo, Ao) is
completely continuous from [L>=(Q)]" NWY2 into W—=1P(QUT,). Finally, suppose
that there exists an € > 0 such that (3.4) holds.

Then there exist v € (0,1) and a neighborhood Uy of ug in [L*°(Q)]" N W2
with Uy C U such that the following is true:

(i) There exist a meighborhood Vo of Ao with Vo C V and a map ® €
C' (Vo; [CO7 ()" N W) such that (u,\) € Uy x Vo is a solution to (2.2) if
and only if u = ®(N\). In particular, for each solution (u,\) € Uy X Vo to (2.2) it
holds u € [C%7(Q)]".

(i) If the maps

aAijﬁ n 1,2
T (X)) : U = L(L=Q)" N W2 L=(Q)),
%(-,AO):U = L([L=Q)]"nw"?,Ww1?)

are locally Lipschitz continuous, then, for each ui € U, (2.6) defines uniquely
a sequence us,us,... € U such that u; € [COYQ)* N WY2 and uw; — uo in
[COT( Q)" N W2 as | — .

Proof Let 1/p+1/q=1.1f v € W, %(Q) and supp v C Q(z,r) for some
z € Q and r > 0, then the Holder inequality yields

N2-q) _Np-2)
=2,

w0/2

”U”WW(Q) < const r ||'U||W1:2(Q) with wg =
Therefore, W~17(Q) is continuously embedded into W =120 (()). Hence, because
of Theorem 3.1 we have an w € (N — 2,wp], a neighborhood Vy of A¢g and a map
® e C! (Vg,Wl*z’w), which parameterizes the set of solutions to (2.2) close to
(ug, Ao), and we have the Newton iterations u; — ug for I — oo in W12 But
W2 is continuously embedded into [C%7(Q)]™ with v := 1+ (w — N)/2, so
Theorem 3.2 is proved. n

4 The Case N = 2. General Elliptic Systems

In this section, again, we consider the problem of local unique smooth continuation
of a solution (ug, Ag) to the variational equation (2.2), but now in the case of space
dimension N = 2. We replace the assumptions (3.2) and (3.4) by the assumption
(4.1) below.

Theorem 4.1 Let N = 2. Suppose (2.1) and (2.8) and that there exists a py > 2
such that F, € C*(U x V;W~LPo(Q UT,)). Further, let u = ug, X = X be a
solution to (2.2) such that zero is the only solution to (2.5) and that %(uo, o)

u

11



is completely continuous from [L®(Q)]" N WH2 into W=1Po(Q U T,). Finally,
suppose that there exists an € > 0 such that

i v HvP 12
,/QAC‘Z (UO,)\U) 8 6 d >e€ Z ||'U ||W1 2(Q) fO’f' allv e W (41)

Then there ezist p € (2,po] and a neighborhood Uy of ug in [L>®(2)]" N WhH2
with Uy C U such that the following holds:

(i) There exist a meighborhood Vo of Ao with Vo C V and a map ® €
C' (Vo; WhP) such that (u,\) € Uy x Vo is a solution to (2.2) if and only if
u = ®(N\). In particular, for each solution (u,\) € Uy x Vo to (2.2) it holds
u € WhHp,

(i) If the maps

BA“

ou

OF,

ou

are locally Lipschitz continuous, then, for each ui € Uy, (2.6) defines uniquely a
sequence us,us, ... € U such that u; € WHP and u; = ug in WP as | — oo.

Bl — L ([L=()]" n W2, L= (),

—2(X0) U = L([L=(Q)" nWh2, W 1)

Proof It follows from the Holder inequality that the restriction of the map
B(A,-) to WHP maps W'P continuously into W=1? for all p € [2,00). Here B :
[L°()]"*N* x W2 — W12 i the bilinear map introduced in the proof of
Theorem 3.1. Because of assumption (2.1), the bilinear map B has the following
properties (see [11]): For all § € (0,1) there exists a p(d) > 2 such that for all
p € (2,5(9)] and for all A = [a” sl hisleN e [Leo ()] N? we have: If

, ’n

e ; ov® 1 N
(SZ ||U ||%Vl!2(9) Z / 045 al' (9 5 Z |U ||%V1’2(Q) for all v € W1’2
a=1 =

then
B(A,) is a Fredholm operator (index zero) from W%? into W17

and
u € WY for all u € WH? with B(A,u) € WP

Now we proceed as in the proof of Theorem 3.1, replacing everywhere W12« and
W29 with w > N — 2 by WHP and WP with p > 2, respectively, and using
the fact that, because of N = 2, the Sobolev space W1?(Q) is continuously em-
bedded into the Hélder space C%7(Q) with v =1 — 2/p. [ |

Remark 4.2 There exist various results concerning “pointwise” conditions (Leg-
endre condition, systems of elasticity type) to the coefficient functions Agﬁ (ug, Mo),
which imply (4.1), see, e.g., [4, Chapter 6].
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5 Examples of Coefficient Functions

In this section we indicate some classes of maps A which are candidates for the
coefficient maps Afjﬂ of Sections 2—-4. We consider superposition operators

[A(u, N)](z) = a(z,u(z), A) for almost all z € Q. (5.1)

Here a : 2 x U x V — R is the function, generating the superposition operator, U
is an open subset in R™, and V is, as in Sections 2—4, an open subset of a normed
vector space A. By U we denote the set of all u € [L>°(2)]" such that there exists
a compact set K C U with u(z) € K for almost all z € Q. Obviously, I/ is open in
(L= ().

In Proposition 5.1 below we state conditions on the function a which imply
that A € C' (U x V,L>(2)). Hence, we describe a class of continuously differ-
entiable superposition operators from [L*(€)]™ x A into L>®(2). Of course, this
is only a subclass of the class of all continuously differentiable operators from
[L=()]" N W2 x A into L°°(Q2) (in Theorems 3.1, 3.2 and 4.1 the coefficient
maps Agﬁ have to be in this class, cf. (2.3)), but most of the coefficient maps
appearing in applications are in this subclass.

In what follows we use the notation || - || for the norm not only in R™ but also
in A and in its dual space A*.

Proposition 5.1 Let the following conditions be fulfilled:

(1) a(z,-,-) € CY{U x V) for almost all x € Q, and %(-,u,)\) and %(-,u,)\)
are measurable for allu € U and A € V.

(I) For all X\ € V and compact K C U there exists an M > 0 such that
la(z,u, )|+ |22 (z, u, A) || + | 34 (2, u, A)|| < M for almost allz € Q and allu € K.

(IIT) For all A € V, compact K C U and € > 0 there exists a § > 0 such
that |a($:u;)‘) - G(IE,U,HN <g, ||%($aua)‘) - %(%U,M)H <e and ”%(Sﬂ,u,)\) -
%(m,v,u)” < € for almost allx € Q and allu € K, v € U and pp € V such that
llu =l +[|A = pll < 6.

(IV) For all X € V and compact K C U there exists an L > 0 such that
||%(:L‘,u,/\) - %(w,v,)\)ﬂ < L||u — v|| for almost all z € Q and all u,v € K.

Then the map A, defined by (5.1), is continuously differentiable from U x V
into L>=(Q),

[%(U,A)U] (z) = %(w,u(x),/\)v(x), (5.2)
[%(U,A)M] (x) = g—i(x,u(w),)\)u, (5.3)

and %(-, A) is locally Lipschitz continuous from U to L ([L>(Q)]™, L>=(N)) for all
AeV.

Proof It follows immediately from the definition of the set ¢/ and from
assumptions (I) and (IT) that A maps U x V into L*(Q).

13



In order to prove (5.2) let us fix w € & and A € V. Again, it follows from the
definition of & and from (I) and (II) that

v e L@ o D2 u(), Xo() € Q)

is a linear bounded map. Now we show that %(u,)\) exists and is this linear
bounded map: There exist a compact set K C U and a § > 0 such that for all
v € L®(Q)" with ||u — v|[gee(qy» < 0 it holds u(z) € K and u(z) + v(z) € K
for almost all 2 € Q. Taking ¢ small enough we can assume that it is the §
(corresponding to A, K and ¢) from (III). Hence, we have for all v € L>°(2)™ with

llu —v[[g (@) < & and almost all z € Q

G(JE,U(.’E) + U(SL'),)\) - CL(SL',U(SE),)\) -

du

= [ (Buw) + o) = L)) ot
0 u u

< el[v]| oo )n -

In order to prove that % is continuous we fix u € Y, A € V and € > 0 and
take K C U and a § > 0 as above. Moreover we assume § to be small enough such
that A+ p € V for all 4 € A with ||\ —p|| < 4. Then for all v € L>°(Q)" and p € A
with [|Ju — v|[pe (@)= + [|A = pl| < 6, for all w € L>(Q)™ and for almost all z € Q
we have

‘[(%(U+U’A+M) - g—;:l(u,)\)> w] (z)

= ‘ (S—Z(x,u(x) +o(z), A+ p) — %(x’u(w)”\)> w(z)

< gllw|| Lo ()n-

Analogously one shows that % exists, that it is continuous and that (5.3)
holds. Hence, A4 is C!.

Finally we show that % (-, A) is locally Lipschitz continuous. Take arbitrarily
fixed u € U and A € V. Take, again, a compact set K C U and a é > 0 such that
for all v € L ()™ with [lu —v|| g () < d it holds u(z) € K and u(x)+v(z) € K
for almost all x € Q. Let L be the Lipschitz constant from (IV) corresponding to
A and K. Then for all v € L*(Q)" with ||[u — v||pe @)= < J, for all w € L*(Q)"
and for almost all z € 2 we have

H(g—j(u+v,)\) - Z—f(u,)\)) w] (x)

Oa

= (82w 000 - Bt ) i)

< L[ poo(@yn llw]] Loo (yn -
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We close this section giving two examples of generating functions affﬁ
QO x U xV — R with “large” infinite dimensional parameter spaces A, which
satisfy the assumptions (I)~(IV) of Proposition 5.1 and for which the correspond-
ing superposition operators (according to (5.1)) Afjﬂ U XV — L*(Q) satisfy
assumptions (3.4) or (4.1) at each (ug, Ao):

Example 5.2 Take m € N, A = [L°°(Q)]’”"2N2, VY C A open, and set for almost
alzeQandallue U and A €V

m
. ik "
agﬁ(l"aua)\) = Z)‘gﬂ (w)agﬁ( u) (5.4)
k=1
with affg € CY(U). Here the system of L*°-functions A = {)\fjg : a,f =
1,...,n; 4, = 1,...,N; k =1,...,m} is the control parameter. Then the as-

sumptions (I)-(IV) of Proposition 5.1 are satisfied. In particular, from (5.2) and
(5.3) it follows

Y s

6—f<u,x>v] (@) = A ek u@))
k=1

DAYk

6—;%»4 () = ;uzs A (ulz).

Coefficient functions, which are piecewise constant with respect to the space vari-
able z, are of type (5.4): In this case Q is the disjoint union of measurable sets
Q1,...,Q,, and the functions )\ij k are constant in Q) and zero in Q \ Q.

If moreover, for all u € U it holds al* (u) > 0 and a¥*(u) = 0 for i # j and
if V is the set of all A € A such that ess inf Aitk > 0, then (3.4) is satisfied for all
ug €U and Ay € V.

Example 5.3 Let A be the vector space of all maps A : @ x U — R N* such
that for all @, = 1,...,n and i,j = 1,..., N we have that A\s(z,) € C?(U) for

.. ij 2y 4]
almost all z € Q, that /\gﬁ, ag;‘* and 632‘;‘* are measurable and that there exists
an M > 0 such that for almost all z € Q and all u € U
A 0N
B apB
|)\a5 (z,uw)| + 5 (z,uw)|| + 502 (z,u)|| < M. (5.5)

As the norm of A we take the infimum of all constants M in (5.5). If V is an
arbitrary open set in A and

agﬁ(m,u,)\) = Agﬁ(az,u) for almost all z € Q and all w € U and A € V,
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then the assumptions (I)~(IV) of Proposition 5.1 are satisfied. Here the system of
the Caratheodory functions A = {)\fjﬂ ta,f=1,...,n; 4,5 =1,...,N} is the
control parameter. In particular, from (5.2) and (5.3) it follows

DAL ONY DAY .
5, (WA| (@) = — = (2,u(@))u(), | (e (@) = pgs(e, ul@).

If, moreover, V is the set of all A € A such that for all compact K C U there
exists an £ > 0 such that A%, (z,u)&;¢&; > ¢l|€]|? for almost all z € Q and allu € K
and £ € RV, then V is open, and (3.4) is satisfied for all ug € & and \g € V.

6 Examples of Right Hand Sides

In this section we indicate some classes of maps F € C* (U x V,W~122(QUT))
and F € C* (U x V,W=1P(QUT)), which are candidates for the right hand sides
F,, of Sections 3 and 4, respectively. Here I' is a subset of 02 such that

and a Lipschitz transformation ® of U into RY such that

for all z € 9N there exist an open neighborhood U of z in RY
(6.1)
(0] (U n (Q U F)) < {El,EQ,E;;}

and, hence, a candidate for the “Neumann” boundary parts Iy, of Section 2 (cf.
(2.1)). The sets i and V are, as in Sections 24, open in [L°°(Q)]" N W2 and in
a normed vector space A, respectively.

We consider maps F' which work as

e = [ (g

and such that, in a reasonable sense,

<(g—i(u,)\)v,w> = /Q ([6{:; (u,)\)v] gaqu + [Z—S(u,)\)v] w) dx

+/r [%(u,)\)w] vdl, (6.3)

<g—§(u,)\),u,v> :/Q ([a(f\i (u,)\),u] g;; + [g—f(u,)\),u] v) dx

+ /F {g—f(u,k)u] vdr. (6.4)

+ C(u, A)v) dz + / D(u,A\)v dT (6.2)
r

Proposition 6.1 Suppose (6.1), and let

Bi € C'(UxV;L>*(Q)),
C € Cl(u x V;L2N/(N+2),wN/(N+2)(Q))’
D € CYU x v; L2N-1D/Nw(N-1)/N(T)),
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Then the following holds:

(i) The map F, defined by (6.2), is continuously differentiable from U x V
into W12« (QUT), and it holds (6.3) and (6.4).

(i) If, for a certain (u,A) € U XV, aaﬁl (u, ), 2&(u, ) and G2 (u,N) are
completely continuous (from [L°(Q)]"NW2 into the corresponding image spaces),
then %(u, A) is completely continuous from [L>(Q)]" NWY2 into W =12« (QUT).

(iii) If, for a certain A € V, the maps %—%(-,)\), 8C(-,X) and G2(-,\) are
locally Lipschitz continuous (from U into the corresponding image space), then
9L(.,X\) is also locally Lipschitz continuous (from U into L([L°(Q)]" N W2,
W—h32(Q))).

Proof (i) From [9, Theorem 3.9] follows that there exists a linear continuous
map

b - [LZ,w(Q)]N x L2N/(N+2),wN/(N+2)(Q) x L2(N71)/N,w(N71)/N(1—\) N W71,2,w(Q)

such that

(@(f,g,h),q;):/ﬂ(f"g;i —I—gv) dm+/rhv dr (6.6)

for all f c [LW(Q)]N7 g€ L2N/(N-+—2),u.;N/(N-i-z)(Q)7 h € L2,2(N—1)/N,w(N—1)/N(F)
and v € Wy*(QUT). Because of (6.2) we get

F(u,X) = ®(B(u, 1)), C(u, A), D(u, A))

with B(u, A) := (B'(u,\),...,BN(u,\)). Thus, F is a superposition of C'-maps,
i.e. F is C'. Moreover, the equation

B w0 = (5 1w A0, O, ), D, V)
‘o (B(u, 2.2 w, )0, D(w, A)) ‘o (B<u, 2,02, 2, A)v) (6.7)

yields the differentiation rules (6.3) and (6.4).

(ii) The right hand side of (6.7) is completely continuous with respect to v
(as a map from [L>®°(Q)]" N W2 into W~1.2%(Q UT)) by assumption.

(iii) The maps Z2(-,A), 2£(-,A) and %2(-,\) are locally Lipschitz con-
tinuous by assumption. Hence, the maps B(-,\), C(-,A) and D(-,A) are locally
Lipschitz continuous by the mean value theorem. Now it follows easily from (6.7)

that g—f;(-, A) is locally Lipschitz continuous. [ |

Proposition 6.2 Suppose (6.1), and let

Bi € CYU xV;Lr(Q)),
C € CYU x y;LPN/PtN)(Q)),
D € C'U x V; LPN=D/N(T)).
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Then the following holds:

(i) The map F, defined by (6.2), is continuously differentiable from U x V
into W=P(QUT), and it holds (6.3) and (6.4).

(i) If, for a certain (u,A) € U X V, %(u,A), 8% (u,A) and Z2(u, \) are
completely continuous (from [L°(Q)]"NW2 into the corresponding image spaces),
then %(u,)\) is completely continuous from [L°°(Q)]" NWH2 into W=1P(QUT).

(iii) If, for a certain A € V, the maps %(-,A), 8C(-,X) and G2(-,\) are
locally Lipschitz continuous (from U into the corresponding image space), then

9L (., X) is locally Lipschitz continuous from U into £ ([L=(Q)]" N WL, W—1P(Q)).

Proof The proof is analogous to that of Proposition 6.1, but now with
® : [LP(Q)]Y x LPN/(TN)(Q) x LPIN=D/N(T) o wbP(Q)

such that (6.6) holds for all f € [LP(Q)]Y, g € LPN/P+N)(Q), h € LPN-1D/N(T)
and v € Wy*(QUT). The map ® now is well-defined and continuous because
of Holder’s inequality, the Sobolev embedding theorem and the trace theorem: If
v € WH4(Q) with 1/p+ 1/q = 1, then v € LPN-D/(P(N-1)=N)(T) and

/hvdF‘ < Al e —nv @y vl Leav—1/@av—1 -
r

A

const ||| Locv—1/5 () ||v||wra(q)-

Example 6.3 Let b',c : 2 x R® x V = R be Caratheodory functions satisfying
analogues of the assumptions (I)~(IV) of Proposition 5.1 (with U = R” for sim-
plicity) and, hence, generating continuously differentiable superposition operators
from [L*°(Q)]™ x V into L>®(Q). Let d : T' x R* x ¥V — R be a Caratheodory func-
tion generating a continuously differentiable superposition operator from [L*(Q2)N
Wh2(Q)]" x V into L*®(T). Remark that for v € [L®(Q) N W12(Q)]™ the trace
on T is well-defined and belongs to [L°°(T")]™. Hence, like in Proposition 5.1 one
can easily formulate “pointwise” conditions on d which imply that d generates
such a superposition operator. Let the operators B, C and D be defined for
u, € [L®(Q) N WH2(Q)]", X € V and functions f = (f,...,f") : @ —» R,
g:Q—=Rand h:T = R by

[Bi(u7(p> I )\)](.CL') = b’(m,u(x) —p _q;),)\) _ fi(.'L'),
[C(Ua%g, )\)](IE) = c(x,u(x) _ <P(33), )\) _ g(a:) } for almost all z €

and

[D(u, @, h,\)](z) = d(z,u(z) — ¢(z),\) — h(z) for almost all z € T.
Then they satisfy the assumptions of Proposition 6.1 or Proposition 6.2 with
control parameter (g, f,g,h,)), ¢ € [L®(Q) N WE2(Q)]*, f € [L>*(Q)]N or
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f € [LP(Q))N respectively, g € L>N/N+2)wN/(N+2)(Q) or g € LPN/(PN)(Q)
respectively, h € L*N-D/Nw(N-1)/N(T) or b € LPIN-D/N(T) respectively, and
A € V. Obviously, taking in the variational equation (2.2) right hand sides of such
type, one gets results on local uniqueness of weak solutions to boundary value
problems of the type

50, (aivjﬁ(“’)‘)% + b (u, )\)) +cg(u,A) = ZTf‘j. +g5 inQ,
(a8 V5 + b)) vy +ds(w)) = by oLy (69
u? = QOB on 0N\ T'g

(with Caratheodory functions afjﬁ, bé, g AxR*xV 5> Randdg : g xR* xV —
R) as well as results on smooth dependence of the solutions on the boundary values
©?, the right hand sides fé, gp and hg and on the parameter .

Example 6.4 Let C' € C*(U x V; L>®(Q)) for i = 1,..., N. Then, obviously, the
map C, which is defined on U« x V by

i Ou
C(u, A) :==C*(u, A) oz’
is continuously differentiable from U x V into L?(Q). But L/ (N+2)wN/(N+2)(Q)
is continuously embedded into LPN/(P+N)(Q) for w < 2 and into L?(Q) provided
(N —2)p < 2N. Hence, if N < 3, then C € C'(U x V; 2N/ (N+2)wN/(N+2)((Q))
for some w > N — 2 and C € C*(U x V; LPN/(P+N)(Q)) for some p > 2. In this
way one gets, in the case N < 3, results on local uniqueness of weak solutions to
boundary value problems of the type

5% (alls(u NG + V() + chp(w NG +da(u,)) = FE+gain Q
(a;]ﬁ(u,)\)% + b (u, /\)) vi+eg(u,\) = hgonTg,
u? = P ondN\Tg

(with Caratheodory functions affﬁ, bfa, chprdp s QxR xV — Rand eg : Tg xR x
V = R) as well as results on smooth dependence of the solutions on the boundary
values P, the right hand sides fé, gp and hg and on the parameter .

7 Van Roosbroecks Drift Diffusion System

As an example for a quasilinear elliptic system with non-smooth data, let us con-
sider van Roosbroecks Drift Diffusion System (se, e.g., [14])

V-(M(2)Vur) — e"tug + e"tuz = f(x), .
= (AJ(m)eU1 Vu]) - R((E,Ul,’u,g,'u:;) = 0; .7 = 17 2; in . (71)
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System (7.1) describes the carrier distribution in nondegenerate (i.e. such that
Boltzmann statistics can be applied) semiconductors. The unknown functions are
the electrostatic potential 41 and the Slotboom variables us and us (—Ilnwus and
—Inwug are the electrochemical potentials of the electrons and holes, respectively).
The coeflicient function A; is the dielectric permitivity, Ay and A3 are the mobilities
of the electrons and holes, respectively, and f is the net impurity concentration. In
applications these functions are discontinuous (piecewise constant) due to the het-
erostructure of the semiconductor device. Hence, \;, f € L>°(Q2) and ess inf A; > 0.
Let us take the recombination generation term R in the Shockley-Read-Hall form

UgU3 — 1
Ty (e“ug + pa(z)) + 73 (e“uz + p3(x))

Here 7; are positive constants (the life times of electrones and holes, respectively),
and the functions p; € L*°(2) are (positive) reference densities. We have adopted
a suitable system of units such that the intrinsic carrier density is one.

The domain ( is a Lipschitz domain in RV (N = 1,2 or 3 in applications),
describing the semiconductor device. We consider the boundary conditions

R(xaulau2;u3) =

Vuy -v—7(x)ugs = Vus-v=Vuzg-v=0onT, (7.2)
uj = uf on OQ\T. (7.3)
Here v is the unit outward normal to 99, v € L*°(T") in nonnegative, and the

functions u) are supposed to be traces on Q2 \ T of functions from W' (Q) with
p > N. Condition (7.2) describes the isolated part of the device boundary and
(7.3) Ohmic contacts. The boundary part I is relatively open in 0 and satisfies
(2.1) (with T’y =Ty =T'3 =T), and Q\T has positive N —1 dimensional measure.

Obviously, the boundary value problem (7.1)-(7.3) is of the type (6.9) (if
we take, for example, as control parameter A the triple of coefficient functions

()\1,/\2,)\3), ie. A= [LOO(Q)]3 and V = {()\1,)\2,)\3) € A: essinf /\j > 0}) with

aﬁ(w,u,)\) =M (2)0, cr(@,u,\) = —e“uy + e“lus,

all (z,u,\) = Ao ()09 €™, co(z,u,\) = R(z,u) for a = 2,3,
aijﬁ:0fora7éﬂ,

by =0, f5=0,

91 =f, go =0for a =2,3,

di(z,u, ) = —;’1((?), do =0 for a = 2,3,

hg =0, uP =u.

In particular, the functions afljﬁ are of the type, described in Example 5.2 (with
m=1,n=3).

Existence of weak solutions u € [L®(Q) N WH2(Q)]? to (7.1)-(7.3) can be
shown by the Schauder fixed point theorem (see, e.g., [14]). For the sake of sim-
plicity, let us consider the case, if



is a positive constant. Then the solution to (7.1)-(7.3) is known to be unique (the
thermodynamic equilibrium), and

=cfor all z € Q.

U\ ) =
(z) 5@
Let us denote by v the electrostatic potential of the given thermodynamic equi-
librium state. The linearization of (7.1)-(7.3) in this thermodynamic equilibrium
state is

(M Vuy) +e¥ (—ug —cuy +uz —ug fc) =

v 0, } 00
. . ) — u2+u — - n §2,
v (/\Jevvuj) (7'2(e”c-‘f-pz(w))j-Ts(36”/c-{-p3(:c)))2 = 0, j=12

Vui -v —vy(x)us = Vus-v=Vus-v=0onT,
u; =00n OQ\T.

It is easy to check that this linear homogeneous boundary value problem does not
have nontrivial solutions: We have

2 2 (u2 + u3)?
0 = e” )\2 VUQ /\3 V’U,g ) da:
/( PalVual” + dslVual ) + )+ (/e T 7o @) )

This gives ug = ug = 0. Therefore

. 1 .
0= / <A1|Vu1|2 + e%u? (c+ —)) dx + / yuldr,
Q c r
ie.up =0.

Thus, for data, which are close to those, creating thermodynamic equilibria,
the weak solution to (7.1)-(7.3) depends C'-smoothly (in fact analytically) in the
sense of [L>®°(Q) N W12(Q)]? on all data A1, A2, A3, f, p2, p3 € L>®(Q), v € L>®(T),
u?,ud,ud € WHP(Q) and 72,73 € R.
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