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Abstract

We formulate a result of the type of the Implicit Function Theorem for abstract
equivariant equations, and we demonstrate by two examples (problems for ordinary
and partial differential equations) how the assumptions can be verified and how the
assertions can be interpreted.

Let U and V be Banach spaces, Λ a normed vector space, k ≥ 2 a natural number,
F : U × Λ → V a Ck-map and u0 ∈ U a point such that F (u0, 0) = 0 and that

L := ∂uF (u0, 0) is a Fredholm operator (index zero) from U into V .

Further, let G be a compact Lie group which works linearly on U and V , respectively,
such that the maps u ∈ U 7→ γ · u ∈ U and v ∈ V 7→ γ · v ∈ V are continuous for all
γ ∈ G, that the map γ ∈ G 7→ (γ · u, γ · v) ∈ U × V is continuous for all (u, v) ∈ U × V
and that

F (γ · u, λ) = γ · F (u, λ) for all u ∈ U, λ ∈ Λ and γ ∈ G.

Then the group orbit O(u0) := {γ · u0 : γ ∈ G} is a Ck-submanifold in U (cf. [2]), and
the tangential space Tu0O(u0) is a subspace of ker L. We assume that ker L is as small as
possible under these assumptions, i.e. that

ker L = Tu0O(u0). (1)

Let G0 := {γ ∈ Γ : γ · u0 = u0} be the isotropy subgroup of u0 and U0 := {u ∈ U :
γ · u = u for all γ ∈ G0} and V0 := {v ∈ V : γ · v = v for all γ ∈ G0} the corresponding
fixed point subspaces. Then LU0 is a closed subspace of finite codimension in V0, and we
denote its codimension in V0 by codimV0LU0.

The following theorem was proved in [3]. It describes the solution behavior near
O(u0)× {0} of equation

F (u, λ) = 0. (2)

Theorem Let Λ2 be a subspace in Λ such that

dim Λ2 = codimV0LU0 and V0 = LU0 ⊕ ∂λF (u0, 0)Λ2. (3)

Further, let Λ1 be a closed complement of Λ2 in Λ.
Then there exist neighbourhoods W ⊆ U of O(u0) and Wj ⊆ Λj of the zero’s (j = 1, 2)

and Ck–maps û : W1 → U0 and λ̂2 : W1 → Λ2 with û(0) = u0 and λ̂2(0) = 0 such that for

u ∈ W and (λ1, λ2) ∈ W1 ×W2 it holds F (u, λ1 + λ2) = 0 if and only if λ2 = λ̂2(λ1) and
u = γ · û(λ1) for some γ ∈ Γ.



The so-called G-invariant Implicit Function Theorem of E. Dancer [2] is a special
case of the theorem above, namely that of codimV0LU0 = 0. In that case the theorem
states that for all small λ there exists exactly one orbit of solutions to (2) near O(u0). But
if codimV0LU0 > 0 (codimV0LU0 can be any nonnegative integer up to dim G − dim G0),

then (2) is solvable near O(u0)×{0} if and only if λ2 = λ̂2(λ1), i.e if and only if λ belongs
to a Ck-submanifold in Λ of codimension codimV0LU0. In other words: In order to have
solutions u ≈ O(u0) to (2), one can choose λ1 ≈ 0 arbitrarily, but then λ2 is determined
by λ1. In this spirit λ1 is a “control” parameter and λ2 a “state” parameter. In applica-
tions the role of condition (3) is to show how to split Λ into subspaces of “control” and
“state” parameters. Of course, such a splitting is not unique, in general.

Let us consider two examples. The results produced in the setting of these examples,
are already known, of course. So the aim is to show how the assumptions (1) and (3) can
be verified in simple, but typical for more complicated applications, examples, which type
of assertions follows and that quite different “dynamic” and “static” problems fit in the
abstract setting above.

Periodic traveling waves The problem of periodic traveling wave solutions to
reaction-diffusion systems ∂tw = A∂2

xw + f(w), x ∈ R, w ∈ Rn, leads, via the ansatz
w(t, x) = u(dx − ct), to the problem of 2π-periodic solutions to the system of ordi-
nary differential equations d2Au′′ + cu′ + f(u) = 0. Here f : Rn → Rn is supposed
to be smooth, and A is a positive definite n × n-matrix. Thus, we have the setting
above with U := C2

2π(Rn), V := C2π(Rn), Λ := R2, F (u, c, d) := d2Au′′ + cu′ + f(u),
G := SO(2) ≈ R/2π and (γ · u)(t) := u(t + γ). Suppose that F (u0, c0, d0) = 0, that
d0 > 0 and that 2π is the minimal period of u0. Then U0 = U and V0 = V , and (1) is
satisfied with Tu0O(u0) = span {u′

0} iff the eigenvalue zero of ∂uF (u0, c0, d0) is geomet-
rically simple. Further, we have ∂cF (u0, c0, d0) = u′

0 /∈ im ∂uF (u0, c0, d0), and hence (3)
with Λ2 = {(c, d) : d = 0}, iff the eigenvalue zero of ∂uF (u0, c0, d0) is algebraically simple.
Therefore, in this case the wave speed c is locally determined by the spatial period 2π/d.

On the other hand, we have ∂dF (u0, c0, d0) = 2d0Au′′
0 /∈ im ∂uF (u0, c0, d0) iff it holds∫ 2π

0
〈Au′′

0, v〉dt 6= 0 for all nonzero 2π-periodic solutions to the adjoint linearized equation
d2

0Av′′ − c0v
′ + f ′(u0)

T v = 0. Hence, in that case the spatial period is locally determined
by the wave speed.

Now, let us consider solutions with c = 0, i.e. periodic “frozen” or “standing” waves.
In this case we have Λ := R and G :=O(2), because F (·, 0, d) is O(2)-equivariant (with
the reflection (δ · u)(t) := u(−t)). Suppose again that 2π is the minimal period of u0, but
now, additionally, assume that there exists a γ ∈SO(2) such that δγ · u = γ · u. Then
V0 = {v ∈ V : δγ · v = γ · v} and U0 = U ∩ V0. If the eigenvalue zero of ∂uF (u0, 0, d0)
is simple, then ∂uF (u0, 0, d0) is a Fredholm operator from U0 into V0 which is injective
(because u′

0 /∈ U0). Hence, (3) is satisfied with Λ2 = Λ, and for all d ≈ d0 there exists
exactly one orbit of symmetric periodic standing wave solutions near O(u0).

Symmetric elliptic boundary value problems Consider the elliptic boundary
value problem

A∆u + f(u, µ) = 0 in Ω, u = 0 on ∂Ω, u ∈ Rn (4)



in a symmetric bounded domain Ω ⊂ R2. Here f : Rn × R → Rn is supposed to
be smooth, again, and A belongs to the space Mn of n × n-matrices. We have the
setting above with U := W 2,2(Ω) ∩ W 1,2

0 (Ω), V := L2(Ω), Λ := M2 × R, F (u, A, µ) :=
A∆u+ f(u, µ), G :=O(2), (γ ·u)(r, ϕ) := u(r, ϕ+ γ) for all γ ∈SO(2) and (δ ·u)(r, ϕ) :=
u(r,−ϕ). Suppose F (u0, A0, 0) = 0 with a positive definite A0, and let the eigenvalue zero
of ∂uF (u0, A0, 0) be simple. Then (1) is satisfied with Tu0O(u0) = span {∂ϕu0}. Further,
let 2π

n
be the minimal period of u0(r, ·) (with n ∈ N). Then G0 = Dn (the dihedral group)

or G0 = Zn (the cyclic group) if there exists a γ ∈SO(2) such that δγ · u0 = γ · u0 or if
not. In the first case we have, as in the example above, ∂uF (u0, A0, 0)U0 = V0 (because
∂ϕu0 /∈ U0). Hence, in that case (3) is satisfied with Λ2 = Λ, and for all A ≈ A0 and µ ≈ 0
there exists exactly one orbit of symmetric solutions near the orbit of u0. In the second case
we have ∂µF (u0, A0, 0) ∈ V0 \ ∂uF (u0, A0, 0)U0 iff

∫
Ω
〈∂µf(u0, 0), v〉dx 6= 0 for all nonzero

solutions to the adjoint linearized boundary value problem A∆v + ∂uf(u0, 0)T v = 0 in Ω,
v = 0 on ∂Ω. Hence, in that case (3) is satisfied with Λ2 = {(A, µ) : A = 0}, and only for

all A ≈ A0, which satisfy an equation A = Â(µ), there exists an orbit of solutions near
O(u0).

In other words: If a solution to (4) is not radially symmetric, but has a reflection
symmetry, then generically its orbit survives under all small perturbations of A and µ as
an orbit of solutions. In [1] a problem from elastostatics is analyzed in a similar setting,
where all the radially nonsymmetric solutions (up to eight for appropriate parameters)
have a reflection symmetry.

If a solution to (4) doesn’t have a reflection symmetry, then generically it survives
as an orbit of solutions only under quite special perturbations. If in that case (4) is the
stationary problem of an evolution problem, for example of ∂tu = A∆u + f(u, µ) = 0, it
is natural to ask whether or not the orbit of u0 survives under all small perturbations as
an invariant manifold. But that’s another question, of course.

Rotating and modulated waves In [3] it is shown how the abstract theorem above
can be applied in order to describe the parameter dependence of rotating and of modulated
wave solutions (especially of the wave frequencies and the modulation frequencies) to
equivariant ordinary differential equations.
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